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We study numerically the dependence of dispersive and birefringence properties of silicon nanowires on
waveguide dimensions and show that they have a strong geometrical dependence when nanowire dimen-
sions become comparable to the wavelength of light inside the device. We develop a graphical method for
engineering two or more dispersion parameters simultaneously and use it to demonstrate the possibility of
fabricating silicon nanowires with flattened dispersion curves over a wide spectral range with normal or
anomalous nominal values. We quantify polarization-mode dispersion through the differential group delay
and show that it can acquire large values for properly designed nanowires. Our analysis should help in de-
signing silicon-based photonic integrated circuits. © 2010 Optical Society of America
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A recent trend in the field of silicon photonics is to-
ward the miniaturization of silicon-on-insulator
(SOI) waveguides to subwavelength dimensions.
Such waveguides, dubbed “nanowires,” have
several advantages for lightwave applications.
Nanometer-scale dimensions are required for single-
mode operations, owing to a high index contrast in-
herent in the SOI technology. The small area of their
optical modes also increases effective nonlinearity
and allows nonlinear devices to operate at lower
power levels. As a result of these advantages, SOI de-
vices with dimensions smaller than 300 nm have
been employed in several experiments [1,2]. Such
nanowires are smaller than the effective optical
wavelength in silicon in the 1550 nm telecommunica-
tion window (A/n =440 nm). Under such conditions,
the optical modes of SOI waveguides can be expected
to lose their tight confinement and exhibit a strongly
dispersive behavior [3].

The two dispersive phenomena that affect the
propagation of short optical pulses inside a wave-
guide are group-velocity dispersion (GVD) and
polarization-mode dispersion (PMD), which is a re-
sult of waveguiding-induced birefringence. Although
parameters that characterize PMD and GVD have
been studied for specific nanowire geometries [4-8],
it appears that a systematic study of the influence of
nanowire size and geometry on these parameters has
not been carried out. In this Letter we present such a
study by solving Maxwell’s equations numerically for
a wide variety of SOI waveguides. We employ a
graphical method for engineering GVD and PMD to
exhibit characteristics that are desirable for specific
applications.

Our starting point is Maxwell’s equations, written
in the frequency domain as

VX E=iouH, (1)

(2)
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V X H=-iwegn?(x,y,0)E,

where n(x,y,w) is the refractive-index profile of the
SOI waveguide at a specific frequency w. The modes
of the waveguide have the form

E(w;x,y,2) = e(w;x,y)eP?, (3)

H(w;x,y,2) = h(w;x,y)eP @2, (4)

where the propagation constant B(w) is found by solv-
ing Eqgs. (1) and (2) numerically.

At this point, we need to specify the waveguide ge-
ometry. Silicon nanowires are commonly fabricated
as rectangular waveguides. The silicon core is either
exposed to air or buried so that it is surrounded by
silica on all sides. We focus on buried waveguides,
since they are less sensitive to environmental influ-
ence and are therefore advantageous for commercial
applications (see the inset of Fig. 1). The qualitative
features of our results will apply to other waveguide
designs as well. The waveguide width w and height 2
are varied from 150 to 1000 nm to cover a wide range.
The material dispersions of silicon and silica are
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Fig. 1. (Color online) TE-mode group index at \q

=1550 nm as a function of waveguide dimensions. The in-
set shows the waveguide geometry schematically.
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taken into account using Sellmeier equations and
corresponding parameters given in [9].

We focus on the fundamental TE and TM modes of
the waveguide. Since true TE and TM modes do not
exist for real waveguides, it is common to refer to
them as quasi-TE and quasi-TM modes. We solve
Eqgs. (1) and (2) with a fully vectorial finite difference
method [10] using a two-dimensional grid whose size
is large enough that the electric and magnetic fields
nearly vanish at its boundaries. The step size in the x
and y directions can be anywhere from 3-20 nm
within the silicon region, depending on the wave-
guide geometry. The numerical code provides us with
the values of f™(w) and f™(w) for the TE and TM
modes, respectively. The nth-order dispersion param-
eter is found by differentiation, B,=J"8/dw".

The group index of a mode is defined by n,=c/v,
=c¢;. Figure 1 shows how the group index of the fun-
damental TE mode at a wavelength of 1550 nm var-
ies with the waveguide width and height. Our calcu-
lated results are in good agreement with
experimental values reported in [5,7]. As the wave-
guide width w is decreased, the group index n " in-
creases from around 3.7 at larger widths to values of
>4.5 when w becomes close to 300 nm and then drops
rapidly for width values of <300 nm. Note also that
ngE is relatively independent of 4. The situation is re-
versed for n™, which shows a rapid variation with
the waveguide height A but is relatively insensitive
to the width. In fact, because of an inherent symme-
try of the device, curves for n™ are identical to those
shown in Fig. 1 if we interchange w and h.

The different mode and group indices of the TE and
TM modes indicate that SOI waveguides exhibit bire-
fringence. It should be noted that this birefringence
is of geometrical nature because bulk silicon exhibits
no birefringence. Because of it, the phase and group
velocities of light coupled into the waveguide depend
on the direction along which it is polarized. This can
lead to a significant amount of PMD. It is common to
characterize PMD by the differential group delay
(DGD), defined as §8=B1"- g™, Figure 2 shows how
the DGD varies with w and h. As dictated by symme-
try, the DGD vanishes for square waveguides (w=~h)
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Fig. 2. (Color online) DGD as a function of waveguide di-

mensions at \y=1550 nm.

of any dimension. As seen from Fig. 2, the DGD is
relatively small for large waveguides with dimen-
sions >\/n but can exceed 5 ps/mm for nanowires
with w # h <300 nm.

Such large values of the DGD in SOI waveguides,
induced solely by geometrical birefringence, can be
useful for device applications requiring the separa-
tion of an input pulse into two orthogonally polarized
pulses. For example, a DGD of 5 ps/mm in a device of
only 5 mm length will introduce a 25 ps delay that
corresponds to the bit slot in a 40 Gbits/s system.
Thus, the DGD can be exploited as a practical tool for
designing novel lightwave devices using silicon nano-
wires. As an example, a birefringent fiber was used in
a recent experiment showing how the DGD can be
employed for designing a coherent receiver [11]. The
use of the SOI technology may allow such devices to
be fabricated monolithically on a single chip.

We now consider how GVD changes with the size of
silicon nanowires. GVD is characterized by B3,, which
depends strongly on the waveguide geometry [4-8].
In particular, GVD becomes anomalous for the TE
mode ( §E<0) when the waveguide width w is re-
duced to below 800 nm. It is often believed that the
anomalous nature persists for w <400 nm. Figure 3
shows that this belief is not justified, because Bi°
changes dramatically as w is decreased below 400
nm. It not only becomes positive (normal GVD) but
its values can become quite large for w <300 nm. Val-
ues as large as 25 ps?/m are possible for narrow sili-
con nanowires. GVD has been measured for specific
nanowires, and our results are in good agreement
with experimental values reported in [5].

Some device applications require a specific range of
values of By. For example, If B, is relatively small, op-
tical pulses can propagate without much dispersion-
induced temporal broadening. Four-wave mixing re-
quires the control of both B, and B4, whereas
supercontinuum generation mainly requires the con-
trol of B, and B5. Since these dispersion parameters
depend on waveguide dimensions, they can be tai-
lored by adjusting them. It is thus useful to consider
the contours in the w—h plane where By, B3, and B,
become zero. Figure 4 shows such contours at the
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Fig. 3. (Color online) TE-mode GVD at \y=1550 nm as a

function of waveguide dimensions.
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Fig. 4. (Color online) Contours in the w—#A plane showing

locations where ﬁgE (solid curve), ﬁgE (dashed curve), and
B:E vanish at a wavelength of 1550 nm.

1550 nm wavelength. Silicon nanowires exhibit
anomalous GVD inside the tongue-shape region
(solid line) and normal GVD outside it. Similarly,
dashed and dotted-dashed lines show the boundaries
below which B; becomes negative and B, becomes
positive, respectively.

A particularly interesting device is the one with
w=554 nm and A=208 nm. For such a waveguide,
both B, and B3 vanish simultaneously, indicating the
possibility of a spectral region in which B, is close to
zero. Similarly, one can find other device geometries
for which B does not vary much from a specific value
over a wide spectral region. We refer to such devices
as the dispersion-flattened devices. Figure 5 shows
several such curves. It is clear from this figure that
we can tune a spectrally flat B, over a wide range of
nominal values. The center wavelength of these dis-
persion curves can also be tuned. Figure 4 can be re-
produced at other wavelengths to find geometries
with flattened-dispersion curves that are centered at
any wavelength in a broad spectral region containing
the entire telecommunication window.
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Fig. 5. (Color online) Spectral dependence of ,BgE (solid

lines) and ,8r3fE (dashed lines) for a few dispersion-flattened
geometries.

The effective bandwidth of devices that make use
of four-wave mixing does not depend on Bs; it de-
pends primarily on the values of By and B,. Large
bandwidths can be obtained by engineering the val-
ues of By and B4 simultaneously. An ideal geometry
for such a device is the one with values of 85 and B,
close to zero. Figure 4 shows that such a geometry ex-
ists for a nanowire with w=710 nm and ~A=265 nm.
This conclusion explains the results of [12] where it
was found that the device that was closest to this
ideal geometry yielded the largest effective band-
width in a four-wave mixing experiment. This geom-
etry could enhance the performance of a wide variety
of devices such as wavelength converters, signal re-
generators, and optical buffers.

In conclusion, we have studied the dependence of
PMD and GVD parameters on the dimensions of sili-
con nanowires. We have found that dispersion pa-
rameters have a strong dependence on the waveguide
geometry when nanowire dimensions become compa-
rable with A/n. We have also used a graphical
method to demonstrate the possibility of fabricating
silicon nanowires with flattened dispersion curves.
Our anaylsis should help in designing silicon-based
photonic integrated circuits.
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