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We study the problem of coupling an electromagnetic beam of any state of coherence and polarization into a
multimode optical fiber. Using the well-known concept of the cross-spectral density matrix, we derive a general
expression for the coupling efficiency of a stochastic electromagnetic beam into a multimode fiber in terms of
the cross-spectral density matrix of the incident beam and another matrix representing field distributions of
fiber modes. We apply this result to a specific case in which the incident beam belongs to a broad class of so-
called electromagnetic Gaussian Schell-model beams and obtain a simple analytical expression for the coupling
efficiency in the case of single-mode fibers. We use this expression to study how coupling efficiency depends on
the coherence and polarization properties of the incident beam. © 2009 Optical Society of America
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1. INTRODUCTION

Optical fibers are employed for a variety of applications,
including optical communications, biomedical optics, and
high-power lasers. Efficient coupling of light into an opti-
cal fiber at any stage of an optical system is very impor-
tant, since increasing the coupled light improves the
signal-to-noise ratio at the detection stage. The coupling
process includes using suitable optical components re-
quired to match the spatial profile of the incident light
with the field distribution of the desired mode to be
launched into the fiber.

The coupling of light into optical fibers has been inves-
tigated, both theoretically and experimentally, since 1972,
when attempts were made to couple light into a fiber by
using the so-called butt joint [1]. Improved coupling tech-
niques have been suggested since then. For example,
Weidel described a coupling method using a cylindrical
glass fiber as a focusing element [2]. Cohen and Schneider
fabricated microlenses on the fiber endfaces to increase
the coupling efficiency of GaAs semiconductor lasers into
single-mode fibers [3]. Sakai and Kimura introduced a
miniature optical lens tipped on one end of a single-mode
fiber for improving the power coupled from a semiconduc-
tor laser [4]. Saruwatari and Sugie coupled light from a
laser diode into a single-mode fiber by employing a com-
bination of two lenses in the confocal configuration [5].
Shah et al. showed, both theoretically and experimentally,
that efficient power coupling can be achieved between a
laser and a single-mode fiber by using a wedge-shaped fi-
ber endface that is butt coupled to the laser [6].

Several theoretical studies discuss issues relevant to
the coupling efficiency of optical fibers. For example, Bar-
rell and Pask studied the excitation of an optical fiber by
a plane wave [7] and focused on the effects of misalign-

1084-7529/09/112452-7/$15.00

ments of the fiber and the coupling optics on the coupled
light. Lazaroni and Zocchi studied much later the cou-
pling efficiency of a plane wave to a single-mode step-
index fiber, taking into account the exact expression of the
mode’s field distribution [8]. Wagner and Tomlinson dis-
cussed in 1982 the effects of aberrations of the coupling
optics on the coupling efficiency [9]. Shaklan and Roddier
calculated the coupling efficiency when star light is
coupled into a single-mode fiber and studied the effects of
atmospheric turbulence [10]. Christodoulides et al. devel-
oped a theory to estimate the coupling efficiency of inco-
herent radiation from a light-emitting diode into a single-
mode fiber [11]. Chen and Kerps analyzed the same
problem and took into account the coherence properties of
the source [12]. Winzer and Leeb studied the problem of
coupling partially coherent light into a single-mode fiber
[13], with emphasis on the effects of speckle on the cou-
pling efficiency. They also discussed the implications of
their results for a lidar system. Dikmelik and Davidson
studied the effects of atmospheric turbulence on the cou-
pling efficiency of laser light into single-mode fibers [14].
They also investigated the use of a coherent fiber array,
instead of a single fiber, and pointed out the superiority of
the array in such a situation. Mukhopadhyay et al. stud-
ied the coupling efficiency of a laser diode into an ellipti-
cal core, single-mode, step-index fiber via a hyperbolic mi-
crolens on the tip of the fiber [15]. These authors
employed a simple theoretical formulation for the evalua-
tion of the coupling efficiency, using an ABCD matrix for
the coupling optics.

All these publications considered only the coupling of
scalar beams, and the polarization state of the beam was
not taken into account. Recently, the coherence and polar-
ization properties of stochastic electromagnetic beams
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have been studied extensively [16] by using a unified
theory of coherence and polarization, and this theory pro-
vides a theoretical framework for dealing with these two
phenomena [17]. The theory revealed that these phenom-
ena are intimately related and can be determined for any
stochastic electromagnetic beam if the cross-spectral den-
sity matrix of that beam is known [18]. The cross-spectral
density matrix defines an optical beam with any state of
coherence and polarization.

In this paper we generalize the definition of the cou-
pling efficiency, given previously for scalar beams, to sto-
chastic electromagnetic beams. We derive an expression
for the coupling efficiency in terms of the cross-spectral
density matrix of the incident beam and another matrix
related to the field distribution of each mode. We examine
how the coupling efficiency varies with changes in the co-
herence and polarization properties of the incident beam.

The paper is organized as follows. In Section 2 we de-
rive a general expression for the coupling efficiency of sto-
chastic electromagnetic beams into an optical fiber. We
apply it in Section 3 to find the coupling efficiency of a
particular class of beams, namely, the electromagnetic
Gaussian Schell-model (GSM) beams. An analytical ex-
pression for the coupling efficiency can be derived in this
case. In Section 4 we show through numerical examples
the effects of the coherence and the polarization proper-
ties of the incident beam on the coupling efficiency. We
conclude with some remarks in Section 5.

2. COUPLING EFFICIENCY OF STOCHASTIC
ELECTROMAGNETIC BEAMS

Light guided inside optical fibers can be decomposed into
a set of modes that are linearly polarized in the weakly
guiding approximation [19]. Each mode in an optical fiber
is twofold degenerate. These two modes have the same
transverse distribution and the same propagation con-
stant, with the only difference being that they are polar-
ized along two orthogonal directions, which we choose to
coincide with the x and y axes of a Cartesian coordinate
system. The optical fiber modes also have longitudinal
components in the z direction, but their values are known
to be small relative to the transverse components of the
modes. In our analysis we ignore the longitudinal compo-
nents because they are related to the transverse compo-
nents through Maxwell’s equations and can be found eas-
ily by using them.

We consider the arrangement shown in Fig. 1, used
typically to couple the incident beam into an optical fiber
by means of a lens of focal length f. The fiber supports
multiple modes, and the field distributions at plane B (the
entrance plane) of the mth mode in the two orthogonal di-
rections x and y are given by F,,,gz and F,,,p. It is more
convenient for us to use an equivalent field distribution of
the mode at plane A (the aperture plane), as this step sim-
plifies the following analysis. The field distribution of the
fiber modes at plane A can be determined with a back-
propagation technique [20]. Let us assume that the com-
ponents of the field distribution of the mode at plane A in
two orthogonal direction are given as F,,,4 and F,, 4. In
view of the linear nature of the coupling process, we focus
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Fig. 1. Schematic and notation relating to the coupling of a sto-
chastic electromagnetic beam into an optical fiber.

on one Fourier component of the electromagnetic beam in-
cident on plane A and write it in the form

E(p,0) = E,(p,w)X + E,(p,0)y, (1)

where o is the angular frequency, p is a two-dimensional
transverse vector in plane A and &£ and y are unit vectors
along the two transverse directions.

When an electromagnetic field is coupled into the opti-
cal fiber, it excites both the guided and the radiation
modes of this fiber. Since these modes form a complete
set, we can use the following expansion to express the
electric field at any transverse position p of the aperture
plane A:

E(P,(U) = 2 [meAmeA(pa w)fc + CmyAmeA(p> w)j’L (2)

where C,,,4 and C,,,4 are the coupling coefficients for the
mth mode polarized along the x and y directions, respec-
tively. The summation in Eq. (1) extends over all the
guided modes and a continuum of radiation modes. Using
Egs. (1) and (2), we can write

E{(p,0) = >, CrjaFrmjalp,0) (j=x). 3)

Equation (3) can be used to express the components of the
cross-spectral density matrix of the incident beam in
terms of the mode-field distributions,

Wij(Pl,Pz, w) = <Ej(P1, w)Ej(P2, w))
= E 2 <CjniAanA>F;iA(pl’w)FnjA(p27w)y

4)

where i and j take values x or y and the angle brackets
denote ensemble averaging. Noting that fiber modes are
orthogonal to each other, we obtain from Eq. (4),

<C:1iAanA> = f f Wtj(pl,p27 w)FmiA(plyw)F;:jA

X (pg, w)d?pydpy. (5)

In deriving Eq. (5) we used the following orthogonality re-
lation for the fiber modes:
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IF;i(p’ w)Fnj(p7 w)d2P= 5nm5ij' (6)

The power coupled into a specific mode can be obtained
by setting m=n in Eq. (5) and summing over the two val-
ues of i and j. Writing the resulting expression in a matrix
form, the power coupled into the m mode of the fiber is
given by

= f f Tr[W(Pl’Pz,w) : F;A(Pl,Pz’w)]d2P1d2P2, (7)

where a dagger denotes the Hermitian adjoint and the
matrix F,,4 depends on the transverse profiles of the mth
mode at plane A as

FmA(plap27w)
F;knxA(plyw)meA(pZ’w) F;xA(P1,w)meA(P2,w)
- F:,LyA(plrw)meA(p%w) F;yA(Pl,w)meA(p% (U)
(8)

The coupling efficiency is the fraction of the incident
power that gets coupled into a specific fiber mode and is
obtained by dividing Eq. (7) by the total power of the in-
cident beam. With this normalization, the coupling effi-
ciency can be expressed as follows:

ffTr[w(Pl,Pz,w)‘F;A(P1,Pz,w)]d2pld2f’2
Nem = - (9)
2 J Tr{W(p,p,»)]d*p

Equation (9) constitutes our main result, and it reduces to
a similar expression obtained previously in [13] in the
scalar case, except for some notational differences. This
equation shows explicitly the relationship between the
coupling efficiency and the cross-spectral density matrix,
which defines the coherence and polarization properties of
the incident beam. In the next section we apply Eq. (9) to
a specific situation in which the incident beam belongs to
a class of stochastic beams, the so-called electromagnetic
GSM, and the Gaussian approximation is used to repre-
sent the field distribution of a single-mode fiber.

3. APPLICATION TO ELECTROMAGNETIC
GAUSSIAN SCHELL-MODEL BEAMS

When the incident beam belongs to a class of electromag-
netic GSM beams [21], the elements of the cross-spectral
density matrix have the form

sz(PbPz;w) = \’/Si(pl;w) \/Sj(Pz;w)Mij(Pz - p1;0)

(i=xy;j=%Y), (10

where S; and S; are the spectral densities of the i and j
components of the electric field and w;; denotes the degree
of correlation between the two components. Moreover, in
this model the spectral densities S, and S, as well as the
spectral degree of correlation wu,,, are Gaussian functions
of positions, i.e.,
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Si(p;w) =A? eXp[— } (=2, (11a)

(P2~ p1)?
Hij(p2 = p1;@) = Bjjexp| — T

(i=xy;j=x9). (11b)

The parameters A;, B;;, 0;, and &; are assumed to be in-
dependent of posmon but may depend on frequency.

Assuming a single-mode fiber with a circular or ellipti-
cal cross section, the field distribution of this mode can be
approximated by a Gaussian function [22-24]. The field
distribution of the mode polarized along the j direction is
then given by (in plane B)

Fip=\2/muj" exp(- p’*w}) (i=xy),  (12)
where p’ is a transverse position vector in the fiber plane
and w; is a measure of the mode width. The field distri-
bution of the mode at the aperture plane A is found by us-
ing the backpropagation technique and is given by

Fip= V"%wj‘Al exp(- pzlezA) s (13)
where w;, is the effective mode width at the aperture
plane and is given by

N
ij= —_—. (14)

7TwJ'

In Egs. (13) and (14), \ is the wavelength of the incident
beam and f is the focal length of the coupling lens.

Using Eq. (13) in Eq. (9), we can write the coupling ef-
ficiency as

EPC

i,j=xy

"zl

=X,y

(15)

In Eq. (15) PC represents the power coupled from the
component W;; ‘Into the fiber and is given by the expres-
sion

Pcij= f f Wij(pbp%w)FiA(Pl)F;A(pZ)dZPIdZPQ’
D

(@) =(xy). (16)

P;,...in Eq. (15) represents the power of the incident beam
in the jth component,

1nc f jj(p’p7 w)d2P (U=xy). a7

The symbol D in Egs. (16) and (17) indicates that the
integration extends over the area of the aperture of the
coupling optics. In practice, it is a hard aperture of diam-
eter D. To simplify the integration, following [25], we ap-
proximate this diameter by a Gaussian aperture of radius
W related to the aperture diameter as
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W?=D?8. (18)

More specifically, we multiply the integrands on Egs. (16)
and (17) by the exponential cutoff factor exp[—(p%
+p2)/W2), extend the integration limits to infinity, and
write them in the forms

ch=ffWij(Pl,P2,w)F;(Pl)FjA(Pz)
W

PO L
Xexp| - W2 d“p1d=ps, (19)
2p? )
Pincjj= fW Wii(p’p’ w)eXp - W d P- (20)

With the Gaussian approximation given in Eq. (12) for
the fundamental mode of a single-mode fiber with Eqs.
(10) and (11) for a GSM beam, Eqgs. (19) and (20) can be
written in the following forms:

(2 )2 pi
Pcij= g‘ ffBUALA]eXp —E
w

y p_% (p2— p1)? p_?
exp| - — |exp _—263- exp| -~

Z,

[ Pips |
Xexp| - — |exp| — ——— [d"p1d”pa, (21)
Ojg w
P A2 P2 2P2 d2 ( )
inc;; = i €Xp| — exp| — 1L=Xx,Y).
,= | ATexp| = 5os |exp| g | y
(22)

The multidimensional integrals in Eqgs. (21) and (22) can
be performed analytically, and the mathematical details
are given in Appendix A. With the results from Appendix
A, the analytical expressions for PCi; are given by

I

17

P, =~ (23)
—

I 4c8)

JiY%j
where

1 1 1 1

Cii=—s+—5+—5 +—, 24

i 40-1'2+25i2j+0-12g+W2 (24)
4

Iij = WBUAZAJ' (25)

The analytical expression for the denominator of Eq. (15)
is
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mA?
Pye=7—7—7——-. 26
mcii 1 1 ( )
S
207 W2

Using Egs. (23) through (26) and some algebra, we find
the following analytical expression for the coupling effi-
ciency in Eq. (15):

> mw? >, BAA[CC) - (/451!

i=xy J=xy

ne = . (27)
WS A2+ 207

i=x,y

In the next section we use this expression to present
some specific numerical examples and to discuss the ef-
fects of coherence and polarization on the coupling effi-
ciency of an electromagnetic GSM beams into the funda-
mental mode of an optical fiber with a circular cross
section.

4. RESULTS AND DISCUSSION

In this section we consider variations in the coupling effi-
ciency of stochastic electromagnetic beams for different
states of coherence and polarization with changes in the
numerical aperture, NA=D/2f, of the coupling optics. To
be specific, we consider an optical fiber with a circular
core of radius a=5 um. We assume that the fiber is
weakly guiding with the refractive index profile

pr g |12
7’L1|:1 - 2(_) :|
n(p')= a , (28)

ng=ny(1-A47)

where n, is the peak value of the refractive index of fiber
at the core center, ny is the refractive index of the clad-
ding, and A=(n;-ny)/n;. The normalized frequency or
the V parameter of the fiber is defined as

V=nka(24)2, (29)

where k=w/c is the wavenumber. Assuming V=2.4 and
g=2, we find the radius of the mode field of the fundamen-
tal propagating mode, by using the empirical formula
given in [22], to be w,=w,=5.15 um. In all cases, we as-
sume that the focal length f=10 cm and that the wave-
length A=1550 nm. Even though we focus on a graded-
index fiber, our analysis can be applied for step-index
fibers as well (g=x) [26].

We begin our investigations by checking the effects of
the degree of the correlations on the coupling efficiency of
a stochastic beam. For this purpose, we consider the cou-
pling of an unpolarized electromagnetic GSM beam into
the optical fiber. We assume that the beam is circularly
symmetric with o,=0,=1 cm, A,=A,=1, and B,,=B,,=0.
Figure 2 shows how the coupling efficiency varies with
NA for three different values of &,,=4,,. As the degree of
the correlations decreases, the coupling efficiency de-
creases as a result of the mismatch between the incident
beam and the distribution of the mode field. One can note
also that the maximum coupling efficiency occurs at a
smaller numerical aperture as the degree of the correla-
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Fig. 2. (Color online) Variation of the coupling efficiency with
numerical aperture for different correlation conditions. The pa-
rameters of the optical fiber are given within the text. The inci-
dent beam is assumed to be symmetric with the parameters
o,=0,=1cm, A,=A,=1, B, =B,,=0.

tions decreases; hence, matching between the incident
beam and the mode field will exist only for a smaller area
in this case. Finally, we note that the coupling efficiency
has a maximum value of 0.5 in this unpolarized-beam
case because of the absence of any off-diagonal correla-
tions.

Next we consider the effects of asymmetry of the beam
on the coupling efficiency. For this purpose, we assume
that the incident beam is still an unpolarized, asymmetric
GSM beam but has different widths in the two directions
of polarization. We use o,=1cm, A,=A,=1, B,,=B,,=0,
and J,,=9,,=» and vary o,. Figure 3 shows how the cou-
pling efficiency varies with NA for three different values
of 0. As one can see in Fig. 3, the coupling efficiency var-
ies with changes in the ratio o,/ 0,. The reason is basically
that the power coupled from one correlation is different
from the other in each case. Also, we can see that maxi-
mum coupling occurs in the o,=5 mm case because of the
dominance of one of the correlations to the coupled power
in that case.
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Fig. 3. (Color online) Variation of the coupling efficiency with
numerical aperture for three values of o,. The parameters of the
optical fiber are given within the text. The incident beam is as-
sumed to be asymmetric with parameters o,=1cm, A=A, =1,
B,,=B,,=0.
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In Fig. 4 we show that changes in the degree of corre-
lations affect the coupling efficiency of a fully polarized
beam. We assume that the beam is symmetric with that
parameter values o,=o0,=1cm, A,=A,=1, and B, ,=B,,
=1. We also assumed that &,,=6,,=6,, and considered
three values of the resulting single parameter. As ex-
pected, the coupling efficiency is larger in this polarized
case, but the qualitative behavior is similar to the unpo-
larized case seen in Fig. 2. As before, the coupling effi-
ciency decreases with a decrease in the degree of the cor-
relations. The only difference is that the coupling
efficiency can reach a value of 100%, as all four correla-
tions contribute to it.

Finally, we focus on the effects of changing the polar-
ization of the incident beam on the coupling efficiency. We
considered two limiting cases in Figs. 2 and 4, where we
illustrate the cases of unpolarized and fully polarized
beams, respectively. The degree of polarization of an opti-
cal beam increases as we increase the amplitudes of the
cross-correlations terms. For example, the degree of po-
larization DOP of the beam at the source plane z=0 is
given by [21] (assuming o, =0,)

[(A2 2\2 242 2
(A7 - A} + 4AA[IB, |
DOP = - oyt E— (30)
x T4y

In Fig. 5 we show the coupling efficiency as a function
of NA for three values of DOP, using B,,=B,,. We assume
that the incident beam is symmetric with parameters o,
=o,=1cm, A,=A,=1, and 5,,=9,,=3,,=> (spatially uni-
form correlations). As one can see from Fig. 5, as the de-
gree of polarization of the incident beam increases, the
coupling efficiency increases too, mainly because match-
ing between the incident beam and the mode field im-
proves. Polarization changes do not affect the optimum
value of the numerical aperture at which coupling effi-
ciency becomes maximal, although this value varies with
the degree of correlations and the widths of the two polar-
ization components.
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Fig. 4. (Color online) Variation of the coupling efficiency with
numerical aperture under conditions identical to those of Fig. 2,
except that the input beam is taken to be fully polarized with
B,,=B,.=1.
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Fig. 5. (Color online) Variation of the coupling efficiency with
numerical aperture for three partially polarized beams. The pa-
rameters of the optical fiber are given within the text. The inci-
dent beam is assumed to be symmetric with parameters o,=o0,
=1cm, A,=A,=1, 6,=8,,=8,,=.

5. CONCLUSIONS

In this paper we derived a general expression for the cou-
pling efficiency of stochastic electromagnetic beams into
multimode optical fiber in terms of its cross-spectral den-
sity matrix. This expression involves multidimensional
spatial integrations in the transverse plane containing
the coupling lens. We were able to derive an analytical ex-
pression for the coupling efficiency when the incident
beam satisfies an electromagnetic Gaussian Schell model
(GSM) and the field distribution of the fundamental mode
of an optical fiber is approximated by a Gaussian func-
tion. We studied, through some numerical examples, the
effects of the coherence and the polarization of the inci-
dent beam on the coupling efficiency. The results showed
that both the value of the coupling efficiency and the
maximum numerical aperture vary considerably with
changes in the incident beam parameters.

APPENDIX A

In this Appendix we provide mathematical details leading
to the analytical solution for the coupling efficiency of
electromagnetic GSM beams into a single-mode optical fi-
ber.

Let us start by evaluating the coupled power of the cor-
relation pv of an electromagnetic GSM beam into optical
fiber, by using Eq. (21):

o (2 2 5 P P;
w

% (P2—P1)2 P_% P_%
exp ——252 exp—o2 exp—a_2

wv ne vg

2, 2
p1+ P2
Xexp |: i :| d2p;d%p,. (A1)

By using the cylindrical coordinates, we can write Eq.
(Al) as
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2m 2 Ed o
PC#V = J J J f I/J.V exp[— C/va%]exp[_ prg]
$9=0 ¥ ¢1=0 ¥ pg=0 +/ p1=0

= p1pz cos(¢y — o)
Xexp 5 p1p2dp1dped drd g,
wv
(A2)
where
9 2
I,u,v = ()\_f) B;LVA,AIAV’ (AS)
c 1 1 1 1 Ad
=ttt + —,
w i e W (A
c 1 1 1 1 A
=+t +t 5+ . 5
Vi 40_‘2/ 262» 0"2/g W2 ( )

Let us perform the integration over ¢;:

27 o
$2=0

P2=

f I,uv exp[— C;LVP?]
0+ p1=0

Xexp[~- CVﬂpﬁ]plpzdmdpzdaﬁz

J% = p1p2 cos(¢y — )
X exp de;. (A6)
$1=0 5

wv

By using the identity in [27,28], we obtain

2
f elecos dbsindlqy = omf (o + B, (A7)
¢=0

where I is the modified Bessel function of zero order; the
integration over ¢; gives

27 L o
PC#V= f f f 277-1//,1/ exp[— C,u.vp%]
$2=0 ¥ pg=0 < py=0

9 P1P2
Xexp[-C,,p3ll, 5 p1p2dpidpeddy.  (A8)

nv

The integration over ¢, yields only a factor of 2, result-
ing in

Pg = f f (2m)1,,, exp[- C,,,p1]
2=0 < p1=0

9 P1P2
xexp[- C,,p3)lo = pip2dprdps.  (A9)

v

The integration over py can be performed by using the fol-
lowing two identities [29]:

L(xy) =" n(x), j=\-1, (A10)

e Igv B2
v+l _ 2 —
fx R e exp( )

" 4a
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[Rea>0,Re v>-1]. (A11)
After performing the integration over py, we obtain
@mL,, [~ , pi
Pc, = Tm fp . exp[-C Mypl]exp{m] p1dp;.
(A12)

Finally, the integration over p; can be performed by using
the identity [29]

A13
2a) (A13)

Performing this last integration over p;, we obtain the fi-
nal result:

* 1
f x exp(— ax?)dx = —.
x=0

1

v

PC}LV= 1
O O dc,8,

vuur

(A14)

Next we evaluate Pinc##’ given in Eq. (22) as
Py =| A ’ 2 d%. (Al5
inc,,; = v w€XP| — 2_0_2 exp| — W p. ( )

Using the cylindrical coordinates, we can write Eq. (A15)

as
» fQﬂ' Joc A2 p2 2p2 4 d¢
inec .= ex -5 |exXp| — = .
w= ) A P~ ) P~z |Pde

(A16)
Integrating over ¢, we find that

P =2 ) A? p—2 2—p2 d A17
inc,,,; = ™ , u €XP _20_2 exp —W2 pdp. ( )
=

o

The integration over p can be performed by using the
identity given in (A13), and the result is

A
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