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We study the problem of coupling an electromagnetic beam of any state of coherence and polarization into a
multimode optical fiber. Using the well-known concept of the cross-spectral density matrix, we derive a general
expression for the coupling efficiency of a stochastic electromagnetic beam into a multimode fiber in terms of
the cross-spectral density matrix of the incident beam and another matrix representing field distributions of
fiber modes. We apply this result to a specific case in which the incident beam belongs to a broad class of so-
called electromagnetic Gaussian Schell-model beams and obtain a simple analytical expression for the coupling
efficiency in the case of single-mode fibers. We use this expression to study how coupling efficiency depends on
the coherence and polarization properties of the incident beam. © 2009 Optical Society of America
OCIS codes: 030.1640, 060.2310, 260.5430.
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. INTRODUCTION
ptical fibers are employed for a variety of applications,

ncluding optical communications, biomedical optics, and
igh-power lasers. Efficient coupling of light into an opti-
al fiber at any stage of an optical system is very impor-
ant, since increasing the coupled light improves the
ignal-to-noise ratio at the detection stage. The coupling
rocess includes using suitable optical components re-
uired to match the spatial profile of the incident light
ith the field distribution of the desired mode to be

aunched into the fiber.
The coupling of light into optical fibers has been inves-

igated, both theoretically and experimentally, since 1972,
hen attempts were made to couple light into a fiber by
sing the so-called butt joint [1]. Improved coupling tech-
iques have been suggested since then. For example,
eidel described a coupling method using a cylindrical

lass fiber as a focusing element [2]. Cohen and Schneider
abricated microlenses on the fiber endfaces to increase
he coupling efficiency of GaAs semiconductor lasers into
ingle-mode fibers [3]. Sakai and Kimura introduced a
iniature optical lens tipped on one end of a single-mode

ber for improving the power coupled from a semiconduc-
or laser [4]. Saruwatari and Sugie coupled light from a
aser diode into a single-mode fiber by employing a com-
ination of two lenses in the confocal configuration [5].
hah et al. showed, both theoretically and experimentally,
hat efficient power coupling can be achieved between a
aser and a single-mode fiber by using a wedge-shaped fi-
er endface that is butt coupled to the laser [6].
Several theoretical studies discuss issues relevant to

he coupling efficiency of optical fibers. For example, Bar-
ell and Pask studied the excitation of an optical fiber by
plane wave [7] and focused on the effects of misalign-
1084-7529/09/112452-7/$15.00 © 2
ents of the fiber and the coupling optics on the coupled
ight. Lazaroni and Zocchi studied much later the cou-
ling efficiency of a plane wave to a single-mode step-
ndex fiber, taking into account the exact expression of the

ode’s field distribution [8]. Wagner and Tomlinson dis-
ussed in 1982 the effects of aberrations of the coupling
ptics on the coupling efficiency [9]. Shaklan and Roddier
alculated the coupling efficiency when star light is
oupled into a single-mode fiber and studied the effects of
tmospheric turbulence [10]. Christodoulides et al. devel-
ped a theory to estimate the coupling efficiency of inco-
erent radiation from a light-emitting diode into a single-
ode fiber [11]. Chen and Kerps analyzed the same

roblem and took into account the coherence properties of
he source [12]. Winzer and Leeb studied the problem of
oupling partially coherent light into a single-mode fiber
13], with emphasis on the effects of speckle on the cou-
ling efficiency. They also discussed the implications of
heir results for a lidar system. Dikmelik and Davidson
tudied the effects of atmospheric turbulence on the cou-
ling efficiency of laser light into single-mode fibers [14].
hey also investigated the use of a coherent fiber array,

nstead of a single fiber, and pointed out the superiority of
he array in such a situation. Mukhopadhyay et al. stud-
ed the coupling efficiency of a laser diode into an ellipti-
al core, single-mode, step-index fiber via a hyperbolic mi-
rolens on the tip of the fiber [15]. These authors
mployed a simple theoretical formulation for the evalua-
ion of the coupling efficiency, using an ABCD matrix for
he coupling optics.

All these publications considered only the coupling of
calar beams, and the polarization state of the beam was
ot taken into account. Recently, the coherence and polar-

zation properties of stochastic electromagnetic beams
009 Optical Society of America
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ave been studied extensively [16] by using a unified
heory of coherence and polarization, and this theory pro-
ides a theoretical framework for dealing with these two
henomena [17]. The theory revealed that these phenom-
na are intimately related and can be determined for any
tochastic electromagnetic beam if the cross-spectral den-
ity matrix of that beam is known [18]. The cross-spectral
ensity matrix defines an optical beam with any state of
oherence and polarization.

In this paper we generalize the definition of the cou-
ling efficiency, given previously for scalar beams, to sto-
hastic electromagnetic beams. We derive an expression
or the coupling efficiency in terms of the cross-spectral
ensity matrix of the incident beam and another matrix
elated to the field distribution of each mode. We examine
ow the coupling efficiency varies with changes in the co-
erence and polarization properties of the incident beam.
The paper is organized as follows. In Section 2 we de-

ive a general expression for the coupling efficiency of sto-
hastic electromagnetic beams into an optical fiber. We
pply it in Section 3 to find the coupling efficiency of a
articular class of beams, namely, the electromagnetic
aussian Schell-model (GSM) beams. An analytical ex-
ression for the coupling efficiency can be derived in this
ase. In Section 4 we show through numerical examples
he effects of the coherence and the polarization proper-
ies of the incident beam on the coupling efficiency. We
onclude with some remarks in Section 5.

. COUPLING EFFICIENCY OF STOCHASTIC
LECTROMAGNETIC BEAMS
ight guided inside optical fibers can be decomposed into
set of modes that are linearly polarized in the weakly

uiding approximation [19]. Each mode in an optical fiber
s twofold degenerate. These two modes have the same
ransverse distribution and the same propagation con-
tant, with the only difference being that they are polar-
zed along two orthogonal directions, which we choose to
oincide with the x and y axes of a Cartesian coordinate
ystem. The optical fiber modes also have longitudinal
omponents in the z direction, but their values are known
o be small relative to the transverse components of the
odes. In our analysis we ignore the longitudinal compo-

ents because they are related to the transverse compo-
ents through Maxwell’s equations and can be found eas-

ly by using them.
We consider the arrangement shown in Fig. 1, used

ypically to couple the incident beam into an optical fiber
y means of a lens of focal length f. The fiber supports
ultiple modes, and the field distributions at plane B (the

ntrance plane) of the mth mode in the two orthogonal di-
ections x and y are given by FmxB and FmyB. It is more
onvenient for us to use an equivalent field distribution of
he mode at plane A (the aperture plane), as this step sim-
lifies the following analysis. The field distribution of the
ber modes at plane A can be determined with a back-
ropagation technique [20]. Let us assume that the com-
onents of the field distribution of the mode at plane A in
wo orthogonal direction are given as FmxA and FmyA. In
iew of the linear nature of the coupling process, we focus
n one Fourier component of the electromagnetic beam in-
ident on plane A and write it in the form

E��,�� = Ex��,��x̂ + Ey��,��ŷ, �1�

here � is the angular frequency, � is a two-dimensional
ransverse vector in plane A and x̂ and ŷ are unit vectors
long the two transverse directions.
When an electromagnetic field is coupled into the opti-

al fiber, it excites both the guided and the radiation
odes of this fiber. Since these modes form a complete

et, we can use the following expansion to express the
lectric field at any transverse position � of the aperture
lane A:

E��,�� = �
m

�CmxAFmxA��,��x̂ + CmyAFmyA��,��ŷ�, �2�

here CmxA and CmyA are the coupling coefficients for the
th mode polarized along the x and y directions, respec-

ively. The summation in Eq. (1) extends over all the
uided modes and a continuum of radiation modes. Using
qs. (1) and (2), we can write

Ej��,�� = �
m

CmjAFmjA��,�� �j = x,y�. �3�

quation (3) can be used to express the components of the
ross-spectral density matrix of the incident beam in
erms of the mode-field distributions,

Wij��1,�2,�� = �Ei
*��1,��Ej��2,���

= �
m

�
n

�CmiA
* CnjA�FmiA

* ��1,��FnjA��2,��,

�4�

here i and j take values x or y and the angle brackets
enote ensemble averaging. Noting that fiber modes are
rthogonal to each other, we obtain from Eq. (4),

�CmiA
* CnjA� =��Wij��1,�2,��FmiA��1,��FnjA

*

���2,��d2�1d2�2. �5�

n deriving Eq. (5) we used the following orthogonality re-
ation for the fiber modes:

ig. 1. Schematic and notation relating to the coupling of a sto-
hastic electromagnetic beam into an optical fiber.
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� Fmi
* ��,��Fnj��,��d2� = �nm�ij. �6�

The power coupled into a specific mode can be obtained
y setting m=n in Eq. (5) and summing over the two val-
es of i and j. Writing the resulting expression in a matrix
orm, the power coupled into the m mode of the fiber is
iven by

Pcm =�� Tr�W��1,�2,�� · FmA
† ��1,�2,���d2�1d2�2, �7�

here a dagger denotes the Hermitian adjoint and the
atrix FmA depends on the transverse profiles of the mth
ode at plane A as

FmA��1,�2,��

= 	FmxA
* ��1,��FmxA��2,�� FmxA

* ��1,��FmyA��2,��

FmyA
* ��1,��FmxA��2,�� FmyA

* ��1,��FmyA��2,��
 .

�8�

he coupling efficiency is the fraction of the incident
ower that gets coupled into a specific fiber mode and is
btained by dividing Eq. (7) by the total power of the in-
ident beam. With this normalization, the coupling effi-
iency can be expressed as follows:

�cm =
�� Tr�W��1,�2,�� · FmA

† ��1,�2,���d2�1d2�2

2� Tr�W��,�,���d2�

. �9�

quation (9) constitutes our main result, and it reduces to
similar expression obtained previously in [13] in the

calar case, except for some notational differences. This
quation shows explicitly the relationship between the
oupling efficiency and the cross-spectral density matrix,
hich defines the coherence and polarization properties of

he incident beam. In the next section we apply Eq. (9) to
specific situation in which the incident beam belongs to
class of stochastic beams, the so-called electromagnetic
SM, and the Gaussian approximation is used to repre-

ent the field distribution of a single-mode fiber.

. APPLICATION TO ELECTROMAGNETIC
AUSSIAN SCHELL-MODEL BEAMS
hen the incident beam belongs to a class of electromag-

etic GSM beams [21], the elements of the cross-spectral
ensity matrix have the form

Wij��1,�2;�� = �Si��1;���Sj��2;���ij��2 − �1;��

�i = x,y; j = x,y�, �10�

here Si and Sj are the spectral densities of the i and j
omponents of the electric field and �ij denotes the degree
f correlation between the two components. Moreover, in
his model the spectral densities Sx and Sy, as well as the
pectral degree of correlation �xy, are Gaussian functions
f positions, i.e.,
Sj��;�� = Aj
2 exp�−

�2

2�j
2 �j = x,y�, �11a�

�ij��2 − �1;�� = Bij exp�−
��2 − �1�2

2�ij
2 

�i = x,y; j = x,y�. �11b�

he parameters Aj, Bij, �j, and �ij are assumed to be in-
ependent of position but may depend on frequency.
Assuming a single-mode fiber with a circular or ellipti-

al cross section, the field distribution of this mode can be
pproximated by a Gaussian function [22–24]. The field
istribution of the mode polarized along the j direction is
hen given by (in plane B)

FjB = �2/�wj
−1 exp�− ��2/wj

2� �j = x,y�, �12�

here �� is a transverse position vector in the fiber plane
nd wj is a measure of the mode width. The field distri-
ution of the mode at the aperture plane A is found by us-
ng the backpropagation technique and is given by

FjA = �2/�wjA
−1 exp�− �2/wjA

2 �, �13�

here wjA is the effective mode width at the aperture
lane and is given by

wjA =
	f

�wj
. �14�

n Eqs. (13) and (14), 	 is the wavelength of the incident
eam and f is the focal length of the coupling lens.
Using Eq. (13) in Eq. (9), we can write the coupling ef-

ciency as

�C =
�

i,j=x,y
PCij

2� �
j=x,y

Pincjj . �15�

n Eq. (15) PCij
represents the power coupled from the

omponent Wij into the fiber and is given by the expres-
ion

PCij
=��

D

Wij��1,�2,��FiA��1�FjA
* ��2�d2�1d2�2,

�i,j� = �x,y�. �16�

incjj
in Eq. (15) represents the power of the incident beam

n the jth component,

Pincjj
=�

D

Wjj��,�,��d2� �j = x,y�. �17�

The symbol D in Eqs. (16) and (17) indicates that the
ntegration extends over the area of the aperture of the
oupling optics. In practice, it is a hard aperture of diam-
ter D. To simplify the integration, following [25], we ap-
roximate this diameter by a Gaussian aperture of radius

related to the aperture diameter as
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W2 = D2/8. �18�

ore specifically, we multiply the integrands on Eqs. (16)
nd (17) by the exponential cutoff factor exp�−��1

2

�2
2� /W2�, extend the integration limits to infinity, and

rite them in the forms

Pcij =��
W

Wij��1,�2,��FiA
* ��1�FjA��2�

�exp�−
�1

2 + �2
2

W2 d2�1d2�2, �19�

Pincjj
=�

W

Wii��,�,��exp�−
2�2

W2d2�. �20�

With the Gaussian approximation given in Eq. (12) for
he fundamental mode of a single-mode fiber with Eqs.
10) and (11) for a GSM beam, Eqs. (19) and (20) can be
ritten in the following forms:

PCij
= 	 2

	f

2��

W

BijAiAj exp�−
�1

2

4�i
2

�exp�−
�2

2

4�j
2exp�−

��2 − �1�2

2�ij
2 exp	−

�1
2

�ig
2 


�exp	−
�2

2

�jg
2 
exp�−

�1
2 + �2

2

W2 d2�1d2�2, �21�

Pincjj
=�

W

Ai
2 exp�−

�2

2�i
2exp�−

2�2

W2d2� �i = x,y�.

�22�

he multidimensional integrals in Eqs. (21) and (22) can
e performed analytically, and the mathematical details
re given in Appendix A. With the results from Appendix
, the analytical expressions for PCij

are given by

PCij
=

�2Iij

Cji�Cji −
1

4Cji�ij
4 , �23�

here

Cij =
1

4�i
2 +

1

2�ij
2 +

1

�ig
2 +

1

W2 , �24�

Iij =
4

�	f�2BijAiAj. �25�

he analytical expression for the denominator of Eq. (15)
s

Pincii
=

�Ai
2

� 1

2�i
2 +

1

W2 . �26�

sing Eqs. (23) through (26) and some algebra, we find
he following analytical expression for the coupling effi-
iency in Eq. (15):

�C =
�

i=x,y
�wi

2 �
j=x,y

BijAiAj�CijCji − �1/4�ij
4��−1

�	fW�2 �
i=x,y

Ai
2�i

2�W2 + 2�i
2�−1

. �27�

In the next section we use this expression to present
ome specific numerical examples and to discuss the ef-
ects of coherence and polarization on the coupling effi-
iency of an electromagnetic GSM beams into the funda-
ental mode of an optical fiber with a circular cross

ection.

. RESULTS AND DISCUSSION
n this section we consider variations in the coupling effi-
iency of stochastic electromagnetic beams for different
tates of coherence and polarization with changes in the
umerical aperture, NA=D /2f, of the coupling optics. To
e specific, we consider an optical fiber with a circular
ore of radius a=5 �m. We assume that the fiber is
eakly guiding with the refractive index profile

n���� = �n1�1 − 2	��

a 

g1/2

n2 = n1�1 − 
�
� , �28�

here n1 is the peak value of the refractive index of fiber
t the core center, n2 is the refractive index of the clad-
ing, and 
��n1−n2� /n1. The normalized frequency or
he V parameter of the fiber is defined as

V = n1ka�2
�1/2, �29�

here k=� /c is the wavenumber. Assuming V=2.4 and
=2, we find the radius of the mode field of the fundamen-
al propagating mode, by using the empirical formula
iven in [22], to be wx=wy=5.15 �m. In all cases, we as-
ume that the focal length f=10 cm and that the wave-
ength 	=1550 nm. Even though we focus on a graded-
ndex fiber, our analysis can be applied for step-index
bers as well �g=�� [26].
We begin our investigations by checking the effects of

he degree of the correlations on the coupling efficiency of
stochastic beam. For this purpose, we consider the cou-

ling of an unpolarized electromagnetic GSM beam into
he optical fiber. We assume that the beam is circularly
ymmetric with �x=�y=1 cm, Ax=Ay=1, and Bxy=Byx=0.
igure 2 shows how the coupling efficiency varies with
A for three different values of �xx=�yy. As the degree of

he correlations decreases, the coupling efficiency de-
reases as a result of the mismatch between the incident
eam and the distribution of the mode field. One can note
lso that the maximum coupling efficiency occurs at a
maller numerical aperture as the degree of the correla-
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ions decreases; hence, matching between the incident
eam and the mode field will exist only for a smaller area
n this case. Finally, we note that the coupling efficiency
as a maximum value of 0.5 in this unpolarized-beam
ase because of the absence of any off-diagonal correla-
ions.

Next we consider the effects of asymmetry of the beam
n the coupling efficiency. For this purpose, we assume
hat the incident beam is still an unpolarized, asymmetric
SM beam but has different widths in the two directions
f polarization. We use �x=1 cm, Ax=Ay=1, Bxy=Byx=0,
nd �xx=�yy=� and vary �y. Figure 3 shows how the cou-
ling efficiency varies with NA for three different values
f �y. As one can see in Fig. 3, the coupling efficiency var-
es with changes in the ratio �y /�x. The reason is basically
hat the power coupled from one correlation is different
rom the other in each case. Also, we can see that maxi-
um coupling occurs in the �y=5 mm case because of the

ominance of one of the correlations to the coupled power
n that case.

ig. 2. (Color online) Variation of the coupling efficiency with
umerical aperture for different correlation conditions. The pa-
ameters of the optical fiber are given within the text. The inci-
ent beam is assumed to be symmetric with the parameters
x=�y=1 cm, Ax=Ay=1, Bxy=Byx=0.

ig. 3. (Color online) Variation of the coupling efficiency with
umerical aperture for three values of �y. The parameters of the
ptical fiber are given within the text. The incident beam is as-
umed to be asymmetric with parameters �x=1 cm, Ax=Ay=1,

=B =0.
xy yx
In Fig. 4 we show that changes in the degree of corre-
ations affect the coupling efficiency of a fully polarized
eam. We assume that the beam is symmetric with that
arameter values �x=�y=1 cm, Ax=Ay=1, and Bxy=Byx
1. We also assumed that �xx=�yy=�xy and considered

hree values of the resulting single parameter. As ex-
ected, the coupling efficiency is larger in this polarized
ase, but the qualitative behavior is similar to the unpo-
arized case seen in Fig. 2. As before, the coupling effi-
iency decreases with a decrease in the degree of the cor-
elations. The only difference is that the coupling
fficiency can reach a value of 100%, as all four correla-
ions contribute to it.

Finally, we focus on the effects of changing the polar-
zation of the incident beam on the coupling efficiency. We
onsidered two limiting cases in Figs. 2 and 4, where we
llustrate the cases of unpolarized and fully polarized
eams, respectively. The degree of polarization of an opti-
al beam increases as we increase the amplitudes of the
ross-correlations terms. For example, the degree of po-
arization DOP of the beam at the source plane z=0 is
iven by [21] (assuming �x=�y)

DOP =
��Ax

2 − Ay
2�2 + 4Ax

2Ay
2�Bxy�2

Ax
2 + Ay

2 . �30�

In Fig. 5 we show the coupling efficiency as a function
f NA for three values of DOP, using Bxy=Byx. We assume
hat the incident beam is symmetric with parameters �x
�y=1 cm, Ax=Ay=1, and �xx=�yy=�xy=� (spatially uni-

orm correlations). As one can see from Fig. 5, as the de-
ree of polarization of the incident beam increases, the
oupling efficiency increases too, mainly because match-
ng between the incident beam and the mode field im-
roves. Polarization changes do not affect the optimum
alue of the numerical aperture at which coupling effi-
iency becomes maximal, although this value varies with
he degree of correlations and the widths of the two polar-
zation components.

ig. 4. (Color online) Variation of the coupling efficiency with
umerical aperture under conditions identical to those of Fig. 2,
xcept that the input beam is taken to be fully polarized with

=B =1.
xy yx
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. CONCLUSIONS
n this paper we derived a general expression for the cou-
ling efficiency of stochastic electromagnetic beams into
ultimode optical fiber in terms of its cross-spectral den-

ity matrix. This expression involves multidimensional
patial integrations in the transverse plane containing
he coupling lens. We were able to derive an analytical ex-
ression for the coupling efficiency when the incident
eam satisfies an electromagnetic Gaussian Schell model
GSM) and the field distribution of the fundamental mode
f an optical fiber is approximated by a Gaussian func-
ion. We studied, through some numerical examples, the
ffects of the coherence and the polarization of the inci-
ent beam on the coupling efficiency. The results showed
hat both the value of the coupling efficiency and the
aximum numerical aperture vary considerably with

hanges in the incident beam parameters.

PPENDIX A
n this Appendix we provide mathematical details leading
o the analytical solution for the coupling efficiency of
lectromagnetic GSM beams into a single-mode optical fi-
er.
Let us start by evaluating the coupled power of the cor-

elation �� of an electromagnetic GSM beam into optical
ber, by using Eq. (21):

PC��
= 	 2

	f

2��

W

B��A�A� exp�−
�1

2

4��
2exp�−

�2
2

4��
2

�exp�−
��2 − �1�2

2���
2 exp	−

�1
2

��g
2 
exp	−

�2
2

��g
2 


�exp�−
�1

2 + �2
2

W2 d2�1d2�2. �A1�

y using the cylindrical coordinates, we can write Eq.
A1) as

ig. 5. (Color online) Variation of the coupling efficiency with
umerical aperture for three partially polarized beams. The pa-
ameters of the optical fiber are given within the text. The inci-
ent beam is assumed to be symmetric with parameters �x=�y
1 cm, Ax=Ay=1, �xx=�yy=�xy=�.
PC��
=�

2=0

2� �
1=0

2� �
�2=0

� �
�1=0

�

I�� exp�− C���1
2�exp�− C���2

2�

�exp�− �1�2 cos�1 − 2�

���
2 �1�2d�1d�2d1d2,

�A2�

here

I�� = 	 2

	f

2

B��A�A�, �A3�

C�� =
1
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et us perform the integration over 1:
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y using the identity in [27,28], we obtain
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here I0 is the modified Bessel function of zero order; the
ntegration over 1 gives
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he integration over 2 yields only a factor of 2�, result-
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owing two identities [29]:
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fter performing the integration over �2, we obtain
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inally, the integration over �1 can be performed by using
he identity [29]
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erforming this last integration over �1, we obtain the fi-
al result:
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Next we evaluate Pinc��
, given in Eq. (22) as
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