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Abstract: Finite-difference time-domain (FDTD) simulations of any
electromagnetic problem require truncation of an often-unbounded physical
region by an electromagnetically bounded region by deploying an artificial
construct known as the perfectly matched layer (PML). As it is not possible
to construct a universal PML that is non-reflective for different materials,
PMLs that are tailored to a specific problem are required. For example,
depending on the number of dispersive materials being truncated at the
boundaries of a simulation region, an FDTD code may contain multiple
sets of update equations for PML implementations. However, such an
approach is prone to introducing coding errors. It also makes it extremely
difficult to maintain and upgrade an existing FDTD code. In this paper,
we solve this problem by developing a new, unified PML algorithm that
can effectively truncate all types of linearly dispersive materials. The
unification of the algorithm is achieved by employing a general form of
the medium permittivity that includes three types of dielectric response
functions, known as the Debye, Lorentz, and Drude response functions, as
particular cases. We demonstrate the versatility and flexibility of the new
formulation by implementing a single FDTD code to simulate absorption
of electromagnetic pulse inside a medium that is adjacent to dispersive
materials described by different dispersion models. The proposed algorithm
can also be used for simulations of optical phenomena in metamaterials and
materials exhibiting negative refractive indices.
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1. Introduction

Contemporary optical problems often require full-blown, three-dimensional numerical simula-
tions carried out using the finite-difference time-domain (FDTD) technique [1,2]. Since all real
materials exhibit dispersion (frequency dependence) of their optical properties, physical mod-
els adequately representing their response to electromagnetic fields have to be incorporated
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into FDTD simulators. In any FDTD code, one often needs to make an important tradeoff be-
tween numerical stability and computational cost [3, 4]. Consequently, different compromises
result in different variants of FDTD formulations for a particular model of material dispersion.
Among the widely used variants are: the recursive convolution (RC) method [5], the piece-
wise linear recursive convolution (PLRC) method [6], the auxiliary differential equation (ADE)
method [7], and the Z-transform method [8]. Unfortunately, none of these methods is flexible
enough to provide optimum accuracy for arbitrarily dispersive materials, and they demand a
tailor-made implementation for each specific case. For example, in the ADE method, FDTD
formulations for the Debye and Lorentz models of dielectric response are different, thus requir-
ing re-derivation of update equations whenever materials with complex dispersion models need
to be simulated [9, 10]. Obviously, such formulations are inefficient since they may inadver-
tently introduce errors into an existing FDTD code.

Recently, Han et al. showed that dispersive materials described by the Debye and Lorentz
models can be represented by a generic expression template consisting of complex-conjugate
pairs of simple residues [11]. Adoption of this novel representation enables one to create a
single FDTD code for all practically useful media and eliminate the deficiencies associated
with multiple formulations. However, most of these simulations require truncation of an un-
bounded FDTD simulation region by an electromagnetically bounded region, which can only
be achieved by having perfectly-matched layers (PMLs) tailor-made for the dispersive mate-
rials of interest. Therefore, depending on the number of dispersive materials being truncated
at boundaries of a simulation region, the corresponding FDTD code may contain multiple sets
of update equations for implementing PMLs. Such a tailor-made implementation, and its sub-
sequent integration with the existing FDTD code, is prone to introduce coding errors and also
makes the maintenance and upgrading of the code extremely difficult. In this paper, for the first
time to the best of our knowledge, we derive an algorithm for a unified PML and demonstrate
its practical importance through a number of numerical simulations. In contrast to previously
reported algorithms, based on different auxiliary equations for each type of media [12], the
new approach allows us to create a single FDTD code that can be used for a variety of optical
simulations requiring suppression of reflections from the grid boundaries.

This paper is organized as follows. We start in Section 2 by introducing the generalized ex-
pression for relative permittivity of an arbitrary linear optical media. Using the methodology
of complex-frequency-shifted PML, we then derive the relevant update equations for auxiliary
functions which are independent of the PML parameters. These parameters are included in the
FDTD implementation by restoring the electromagnetic field from auxiliary functions in the
PML region. The restoration procedure and the steps required to update the values of electro-
magnetic field on the FDTD grid are given at the end of Section 2. In Section 3, we illustrate
the flexibility of an FDTD code based on the proposed algorithm by applying it to a number of
realistic situations. We summarize our results and conclude the paper in Section 4.

2. Construction of unified PML for arbitrary dispersive media

To develop a unified PML capable of truncating different dispersive media, we need to repre-
sent the dielectric permittivities of these media in a generalized form. Since the optical media
are nonmagnetic in most situations, we neglect dispersion of the magnetic permeability, μ ,
throughout this study. According to Han et al. [11], the frequency dependence of relative per-
mittivity of any dielectric medium can be expanded using a set of complex parameters ap and
cp as follows:

ε̃(ω) = ε∞ +
P

∑
p=0

(
cp

iω −ap
+

c∗p
iω −a∗p

)
, (1)
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Table 1. Poles and their residues for CCPR media corresponding to Debye, Lorentz, and
Drude models of the dielectric response

Model type ε̃(ω)− ε∞ Equivalent poles and residues

Debyea iσ0

ωε0
+

P

∑
p=1

Δεp

1− iωτp
c0 = − σ0

2ε0
, a0 = 0, cp =

−Δεp

2τp
, ap =

1
τp

Lorentzb iσ0

ωε0
+

P

∑
p=1

Δεpω2
p

ω2
p −2iωδp −ω2 cp =

− iΔεpω2
p/2

(ω2
p −δ 2

p)1/2
, ap = δp + i

√
ω2

p −δ 2
p

Drudec − ω2
pl

ω(ω + iωc)
c0 = − ω2

pl

2ωc
, a0 = 0; c1 =

ω2
pl

2ωc
, a1 = ωc

aΔεp is the weight of the pth pole and τp is the carrier relaxation time.
bωp is the resonance frequency and δp is the damping parameter; parameters a0 and c0 are the same as
for Debye model.
cωpl and ωc are the plasma and collision frequencies, respectively.

where ε∞ is the real-valued, high-frequency permittivity, P is a positive integer, and an asterisk
denotes complex conjugation. Hereafter, we use a tilde above a time-domain function to denote
its Fourier transform in the frequency domain, i.e.,

Ã(ω) =
+∞∫

−∞

A(t)exp(iωt)dt.

The values of poles, ap, and residues, cp, entering Eq. (1) depend on a particular model
of dispersive media. For generality of this treatment, we refer to materials that are described
by Eq. (1) as complex-conjugate-pole residue (CCPR) medium from here onwards. Table 1
provides expressions of permittivities and summarizes values of the parameters ap and cp for
three widely used models of dielectric response from dispersive media [2, 13]. In the case of
Debye and Lorentz models, we have explicitly included the static electrical conductivity σ0 =
− iε0 limω→0 ωε̃(ω) into the expressions of dielectric permittivities. The Drude model does not
require this modification as it accounts for σ0 = ε0ω2

plω
−1
c automatically.

2.1. Synthesis of PML for CCPR media

Let Ẽ(r,ω) and H̃(r,ω) be the electric and magnetic fields inside a CCPR medium. In the
absence of external sources, the evolution of these fields (in the frequency domain) is governed
by the Maxwell equations,

∇× Ẽ = iωμ0μH̃, (2a)

−∇× H̃ = iωε0ε̃(ω)Ẽ, (2b)

where μ0 and ε0 are the magnetic and dielectric permittivities of free space. An absorbing PML
that is perfectly impedance-matched to its adjacent media, can be created by introducing a
specific transformation of the Cartesian coordinates (for details see [14, 15]). With this trans-
formation, in the PML region Eqs. (2) take the form

∇′ × Ẽ = iωμ0μΓ̃H̃, (3a)

−∇′ × H̃ = iωε0ε̃(ω)Γ̃Ẽ, (3b)

#117620 - $15.00 USD Received 23 Sep 2009; revised 23 Oct 2009; accepted 4 Nov 2009; published 6 Nov 2009

(C) 2009 OSA 9 November 2009 / Vol. 17, No. 23 / OPTICS EXPRESS 21182



where ∇′ is the transformed operator and the PML material tensor is given by

Γ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

sysz

sx
0 0

0
sxsz

sy
0

0 0
sxsy

sz

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The presence of material tensor Γ̃ on the right-hand side of Eqs. (3) is equivalent to filling of
PML by an artificial absorbing material with anisotropic permittivity ε̃(ω)Γ̃ and anisotropic
permeability μΓ̃. Clearly, for any choice of the stretching coefficients s j ( j = x,y,z), the
impedances of CCPR medium and PML are equal with the value η =

√
μ0μ/(ε0ε̃). Atten-

uation properties of the PML in the directions of the spatial coordinates can be controlled by
choosing the coefficients s j appropriately. In the present paper, we use the following defini-
tion [16, 17]:

s j = κ j +
σ j

γ − iωε0
. (4)

Such a PML is referred to as a complex-frequency-shifted (CFS) PML and is renowned for
its improved absorption efficiency as compared to other PML models [19, 18]. The impact of
parameters σ j > 0, κ j > 1, and γ > 0 on the attenuation properties of CFS PML is thoroughly
analyzed in Refs. [19, 21, 20]. From a physical point of view, σ j resembles the conductivity
profile of PML and provides attenuation of propagating waves in the jth direction, whereas κ j

and γ absorb evanescent waves. To avoid numerical reflections from the PML boundaries, the
parameters σ j and κ j need to be smoothly varied in space. One choice of these parameters and
the guidelines for the coefficients involved can be found in [22]:

σ j = σmax(k/δ j)m+n, κ j = 1+(κmax −1)(k/δ j)n,

where k ≤ δ j, δ j is the PML depth in the jth direction, m ∈ [−3,3] and n ∈ [2,6] are the
user-defined integers meeting the condition m + n > 1, κmax ∈ (1,10], σmax = −cε0(m + n +
1) lnR0/(2δ j), c is the speed of light in vacuum, and R0 ∈ [10−12,10−2].

2.2. Derivation of FDTD update equations

Implementation of Eqs. (2) and (3) using the FDTD algorithm requires discretization of the
electric and magnetic fields on the FDTD grid and derivation of the update equations for them.
It is desirable that update equations do not depend on the exact form of PML material tensor be-
cause such a dependance requires their modification for each specific choice of the attenuation
parameters s j. This can be realized by rewriting the update equations in terms of two auxiliary
functions,

R̃E = Γ̃Ẽ, R̃H = Γ̃H̃. (5)

Once values of these functions are found in the time domain, they are used to calculate the real
fields, E(r, t) and H(r, t).

The update equations for RE and RH can be derived as follows. Substituting Eq. (1) into
Eq. (3b) and omitting the dash sign for convenience, we are led to the equation

− ∇× H̃ = iωε0ε∞R̃E +
P

∑
p=0

(J̃p + K̃p), (6)
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where

J̃p =
iωε0cp

iω −ap
R̃E , K̃p =

iωε0c∗p
iω −a∗p

R̃E . (7)

Discretizing Eqs. (7) in the time domain on the FDTD grid, we obtain

Jn+1
p = αpJn

p +βp(Rn+1
E −Rn

E), Kn
p = (Jn

p)
∗, (8)

where

αp =
1−apΔt/2
1+apΔt/2

, βp =
ε0cp

1+apΔt/2
.

Using Eqs. (8), we can write the discrete time-domain version of Eq. (6) in the form

− ∇×Hn = −ε0ε∞
Rn+1/2

E −Rn−1/2
E

Δt

+
P

∑
p=0

ℜ
[
(1+αp)J

n−1/2
p

]
+(Rn+1/2

E −Rn−1/2
E )

P

∑
p=0

ℜ(βp),

where ℜ sign stands for real part of a complex number. From this equation, we find the follow-
ing update equation for RE :

Rn+1/2
E = Rn−1/2

E +
∇×Hn +∑ℜ

[
(1+αp)J

n−1/2
p

]
ε0ε∞/Δt −∑ℜ(βp)

. (9)

Similarly, using Eq. (3a), it is easy to show that the update equation for RH is:

Rn+1
H = Rn

H − ∇×En+1/2

μ0μ/Δt
. (10)

2.3. Restoration of the electromagnetic field inside PML

In order to restore the electric and magnetic fields from auxiliary functions, we need to find the
relationships between them in discrete time-domain. This can be done by converting Eqs. (5)
to continuous time-domain using the Fourier operator pair − iω ↔ ∂/∂ t and discretizing the
resulting differential equations with appropriate difference operators. This procedure, however,
is quite tedious in our case and becomes even harder for more complicated forms of the coeffi-
cients s j (e.g., for negative-index-materials [23] or higher-order PMLs [20]). The inconvenience
associated with discretizing of a high-order differential equation can be avoided by employing
the Z-transform technique [24, 8]. We use this technique in the following formulation.

Without loss of generality, let us derive the difference equation for the x component of
the electric field using the definition, R̃E,x = Γ̃xẼx. Introducing new parameters, ξ j = ξ0 +
σ j/(κ jε0), ξ0 = γ/ε0, and utilizing Eq. (4), the relation between R̃E,x and Ẽx takes the form

κx

κyκz

R̃E,x

(ξy − iω)(ξz − iω)
=

Ẽx

(ξx − iω)(ξ0 − iω)
.

Recasting this equation into the Z-domain using the transform pair

1
ξ − iω

↔ 1

1− z−1e−ξ Δt
,
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we find

κx

κyκz

RE,x(z)
1− z−1(e−ξyΔt + e−ξzΔt)+ z−2e−(ξy+ξz)Δt

=
Ex(z)

1− z−1(e−ξxΔt + e−ξ0Δt)+ z−2e−(ξx+ξ0)Δt
.

This equation can be readily inverted to obtain its equivalent time-domain form suitable for
numerical implementation. Using the transform pair z−kAn(z) ↔ An−k, we get

En+1
x = En

x

(
e−ξyΔt + e−ξzΔt)−En−1

x e−(ξy+ξz)Δt

+
κx

κyκz

[
Rn+1

E,x −Rn
E,x

(
e−ξxΔt + e−ξ0Δt)+Rn−1

E,x e−(ξx+ξ0)Δt]. (11)

Analogous expressions can be obtained for the Ey and Ez components from Eq. (11) upon index
permutations x � y and x � z, respectively. The components Hn+1

j satisfy equations identical

to those for En+1
j if we use Rk

H, j in place of Rk
E, j.

2.4. Steps to update FDTD grid

The equations derived in the preceding subsection allow us to come up with an unified FDTD
algorithm for simulation of optical phenomena in a wide range of dispersive media truncated
by a perfectly matched absorbing boundary. The main steps of the algorithm for updating the
electromagnetic field in PML can be given as

1. Apply the update equation (9) and store Rn+1/2
E values. The back-stored values of Hn,

Jn−1/2
p , and Rn−1/2

E are required for this update.

2. Calculate and store the auxiliary variables Jn+1/2
p for each pole p using Eq. (8). The

value of Rn+1/2
E are then calculated for the current time step using the back-stored values

of Jn−1/2
p and Rn−1/2

E .

3. Use Eq. (11) and similar equations for y and z components to restore the electric field

En+1/2 from the back-stored values of En−1/2, En−3/2, Rn−1/2
E , and Rn−3/2

E as well as

from Rn+1/2
E calculated during the current time step.

4. Update Rn+1
H values using Eq. (10). The back-stored values of Rn

H and En+1/2 are re-
quired for this update.

5. Employ an analog of Eq. (11) to calculate Hn+1 using back-stored values of Hn, Hn−1,
Rn

H , and Rn−1
H as well as the value of Rn+1

H calculated during the current time step.

It is important to note that a simpler version of this algorithm can be adopted to update
the main FDTD grid encompassing the simulation region outside the PML. In this region, no
restoration of electric and magnetic fields is needed since the auxiliary functions are identically
equal to these fields. Hence, the steps 3 and 5 of the above algorithm should be omitted and the
functions Rn

E and Rn
H should be replaced by En and Hn in the other steps. We used these steps

to create an FDTD code for numerical simulations presented in the next section.

3. Numerical examples

In this section, we illustrate usefulness of the developed unified PML for several scenarios
of TM-wave propagation in a two-dimensional FDTD grid. As a measure of the effectiveness
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Table 2. Material parameters used in the simulations

Medium Material parameters
ε∞ = 4.3, τ−1

1 = 69 Hz, τ−1
2 = 43 kHz, τ−1

3 = 670 kHz,
Human muscles τ−1

4 = 230 MHz, τ−1
5 = 20 GHz, Δε1 = 8×105, Δε2 = 81900,

Δε3 = 11900, Δε4 = 32, Δε5 = 46, σ0 = 0.0762 S/m
ε∞ = 1, Δε1 = 0.4916, Δε2 = 0.54, ω1 = 1.74×1014 rad/s,

Fluoride glass ω2 = 9.145×1015 rad/s, δ1 = 4.96×1013 rad/s,
δ2 = 1.434×1015 rad/s, σ0 = 0

Cold plasma ε∞ = 1, ωpl = 9 GHz, ωc = 2×109 rad/s
ε∞ = 5.9673,

Gold ωpl = 2113.6 THz, ωc = 15.92 THz,
Δε1 = 1.09, ω1 = 650.07 THz, δ1 = 52.43 THz

of the PML, we use deviation of the electric field component Ez, calculated using a 50× 50-
cell grid truncated with a PML, from that calculated on a reference grid with 400× 400 cells.
Mathematically, this deviation may be characterized by the global error [12, 25]

χ2 =
50

∑
x=1

50

∑
y=1

[Ez(x,y)−Eref,z(x,y)]2.

The duration of simulations is chosen to ensure that electromagnetic waves do not experience
reflections from the boundaries of the reference grid. To excite the TM wave, we place a hard
electric source at the center of the simulation region and produce a Gaussian pulse with the
electric field

Ez(n) = exp

[
−

(
n−50

10

)2 ]
sin(2π fcnΔt), (12)

where n is the time-step number and fc is the carrier frequency.
The thickness of the PML is assumed to be equal in the x and y directions and its parameters

(see page 5) are empirically chosen to be m = 0, n = 4, κmax = 2, γ = 1, and R0 = 10−7. The
cell dimensions Δx = Δy = λmin/40, where λmin = c/(2.5 fc) is the wavelength of interest, and
the Courant factor S = cΔt/Δx = 0.1.

We examine the PML efficiency using several types of dispersive materials representing dif-
ferent models of dielectric response. More specifically, we consider a 6-pole Debye model
of human muscles [26, 27], a 2-pole Lorentz model of fluoride glass [28], and a 2-pole Drude
model of cold plasma [12]. It is also interesting to look at the material whose dielectric response
cannot be adequately described by these models and requires a more complex representation.
As an example of such medium, we consider gold. The Drude model of gold is known to be
unsuitable for energies greater than 1.8 eV. A more accurate dispersion of gold’s dielectric
permittivity is given by the Drude–Lorentz equation [29, 30]

ε̃(ω) = ε∞ − ω2
pl

ω(ω + iωc)
+

Δε1ω2
1

ω2
1 −2iωδ1 −ω2

. (13)

The material parameters characterizing the above four media are summarized in Table 2, and
the corresponding permittivity spectra are illustrated by Fig. 1.
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Fig. 1. Frequency dependence of the dielectric permittivity of four different materials using
(a) a 6-pole Debye, (b) a 2-pole Lorentz, (c) a 2-pole Drude, and (d) a 3-pole Drude–Lorentz
models. See Table 2 for material parameters.

The FDTD algorithm of Section 2 allows us to simulate electromagnetic pulse propagation
in all four media by employing a single FDTD code. To utilize this code, we calculate the
values of ap and cp using Tables 1 and 2. When only the experimental spectrum of dielectric
response function is known, one needs to employ curve fitting using Eq. (1). In the simulations,
we chose the carrier frequency of the excitation pulse to be 1 GHz for the Debye and Drude
media and 500 THz for the Lorentz and Drude–Lorentz media. Figure 2 shows evolution of
global error with time for sample media truncated by PMLs of different thicknesses. As seen
there, the global error is relatively small in the case of an 8-cell PML (blue curves) for all four
dispersive media. In particular, the maximum value of χ2 is at most ∼ 10−3, and can be ∼ 10−6

for the Drude model, signifying high efficiency of the PML (for comparison, see Ref. [12]).
Obviously, thinner PMLs (red and green curves) result in bigger global errors since the waves
are attenuated less if they travel a smaller distance within the PML. It should be also noted that
the time required for saturation of global error depends on the group velocity at the pulse carrier
frequency and, therefore, different for all four media.

In practice, one often needs to model propagation of optical waves through complicated
heterostructures containing different types of dispersive materials. If dimensions of the het-
erostructures exceed a computationally manageable grid, PMLs to each of the bulky materials
need to be employed to limit the simulation region. As explained earlier, the proposed algorithm
allows one to naturally include any number of different PMLs in one FDTD code by only set-
ting a proper map of material parameters. To illustrate this possibility, we consider penetration
of light from vacuum into two half-spaces filled up with fluoride glass on left and with gold on
right (for parameters, see Table 2). As before, an excitation pulse in the form of Eq. (12) with
fc = 500 THz is launched at the center of 380×380-cell grid surrounded by a 10-cell PML.

Figure 3 shows the snapshots of electric field in the whole grid at the time steps n = 2300
(left panel) and n = 3300 (right panel). One can see that reflections from all parts of the PML
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Fig. 2. Evolution of global error for four dispersive media shown in Fig. 1: (a) 5-pole Debye
medium; (b) 3-pole Lorentz medium; (c) 2-pole Drude medium; (d) 3-pole Drude-Lorentz
medium. The inset in panel (a) shows schematically three different PMLs surrounding the
simulation region. For simulation parameters, see the text.

are almost negligible for both the oblique and grazing waves. It should also be noted that the
PML provides efficient absorption for both the high-frequency (left panel) and low-frequency
(right panel) field components. These conclusions are supported by the evolution of global error
shown by the red curve in Fig. 4. Particularly, χ2 ≈ 3× 10−8 for the left panel in Fig. 3, but
it becomes ≈ 1.2×10−3 for the right panel in Fig. 3. As expected, the global error drastically
depends on the PML thickness, increasing by more than a factor of 20 for a 5-cell PML (green
curve in Fig. 4) and decreasing nearly by a factor of 6 for a 15-cell PML (blue curve in Fig. 4)
at n = 3300.

Even though preceding simulations were restricted to two-dimensional waves excited by
point sources, they can be easily repeated in a three-dimensional grid with other types of
sources, e.g., with a plane-wave source realized by the total-field-scattered-field technique [2].
These and other numerical examples indicate that the proposed algorithm of CFS PML provides
an efficient absorbing boundary for CCPR media, and therefore it is suitable for any dispersive
material exhibiting linear response to an optical field.

4. Conclusion

Owing to the simplicity and stability of the standard FDTD algorithm, it is widely used for sim-
ulating complex optical structures made of different dispersive materials. To reduce the compu-
tational time, it is common to limit the size of the FDTD grid using artificial, perfectly matched
layers. In this paper, we highlighted some of the existing strategies for devising PMLs for trun-
cating FDTD grids. However, each of these implementations add an added layer of complexity
that makes the coding and maintenance of the FDTD algorithm error prone and complex. To ad-
dress this issue, we presented in this paper a generalized algorithm for implementing a unified
PML model that can be applied to a variety of dispersive media widely used in practice. Based
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Fig. 3. Density plots of the electric field component, Ez, after 2300 (left panel) and 3300
(right panel) FDTD time-steps. A Gaussian pulse, emitted by a point source (cross) lo-
cated in vacuum (region C) illuminates region A containing fluoride glass and the region B
containing gold. The parts of a 10-cell PML marked as A′, B′, and C′ are matched to the
regions A, B, and C, respectively. For simulation parameters, see the text.
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Fig. 4. Evolution of global error with the time-step number during simulations shown in
Fig. 3 (red curve). For comparison, blue and green curves show error evolution for thicker
and thinner PMLs. All three curves are calculated for a 380×380 grid and compared to a
1000×1000 reference grid.

on this algorithm, we developed an optimized FDTD code suitable for simulations of infinite
and semi-infinite heterostructures containing any number of dispersive materials described by
the Debye, Lorentz, and Drude models, or any other model that could be expressed as a lin-
ear combination of these models (e.g., gold). We demonstrated the effectiveness of the unified
PML by applying it to several problems involving multiple materials with different dispersion
properties. We believe that the proposed algorithm will be beneficial for researches who use the
FDTD scheme for a direct solution of the electromagnetic field equations.

#117620 - $15.00 USD Received 23 Sep 2009; revised 23 Oct 2009; accepted 4 Nov 2009; published 6 Nov 2009

(C) 2009 OSA 9 November 2009 / Vol. 17, No. 23 / OPTICS EXPRESS 21189



Acknowledgments

This work was funded by the Australian Research Council through its Discovery Grant scheme
under grant DP0877232. The work of GPA is supported by the NSF award ECCS-0801772.

#117620 - $15.00 USD Received 23 Sep 2009; revised 23 Oct 2009; accepted 4 Nov 2009; published 6 Nov 2009

(C) 2009 OSA 9 November 2009 / Vol. 17, No. 23 / OPTICS EXPRESS 21190


