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Coupling of stochastic electromagnetic beams
into optical fibers
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We derive a general analytic expression for the coupling efficiency when a partially coherent, partially po-
larized beam is coupled into a multimode optical fiber. We adopt the Gaussian–Schell model for incident
electromagnetic beams and use our general result to discuss the effects of the partial coherence and partial
polarization on the coupling efficiency of an optical beam focused onto a step-index, single-mode fiber with a
lens. Our results should be useful for any application requiring coupling of partially coherent beams into
optical fibers. © 2009 Optical Society of America
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Optical fibers are routinely employed for a variety of
applications, ranging from telecommunications to
biomedical engineering. An important issue in all
cases is the efficiency with which light can be coupled
into an optical fiber. The coupling efficiency of com-
pletely coherent or completely incoherent light is by
now well understood [1,2]. However, the incident
light in practice may be partially coherent. The cou-
pling of such electromagnetic beams is often studied
within the scalar approximation that bypasses the
polarization issue completely [3–6]. Recent work has
shown that the coherence and the polarization prop-
erties of electromagnetic beams are intimately re-
lated, and both must be considered within a unified
theoretical framework [7,8]. This Letter addresses
the issue of coupling efficiency by using such a uni-
fied theory.

It is well known that optical fibers guide light
through a set of optical modes that are linearly polar-
ized within a weakly guiding approximation [9] that
holds well for practical glass fibers in which the re-
fractive indexes of the core and cladding materials
differ by less than 1%. Each spatial mode in such fi-
bers is twofold degenerate in the sense that the same
transverse shape occurs for two orthogonally polar-
ized modes that are linearly polarized along two di-
rections that can be chosen to coincide with the x and
y axes of a Cartesian coordinate system. Each of
these modes also has electric and magnetic field com-
ponents in the z direction, coinciding with the fiber
axis. However, these components are relatively
small, and they are also related to the transverse
components through Maxwell’s equations. We do not
consider them further here.

Consider a multimode fiber whose input end is lo-
cated in the plane z=0. In view of the linear nature of
the coupling process, we focus on one Fourier compo-
nent of the incident electromagnetic beam at the an-
gular frequency � and write its electric field in the
form E�� ,��=Ex�� ,��x̂+Ey�� ,��ŷ, where � is a two-
dimensional vector with components x and y, and x̂
and ŷ are unit vectors along the two transverse direc-

tions. The coupling of this electromagnetic beam into
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the fiber excites both the guided and the radiation
modes of this fiber. Since these modes form a com-
plete set, we can use the expansion

E��,�� = �
m

�CmxFmx��,��x̂ + CmyFmy��,��ŷ�, �1�

where Fmx�� ,�� and Fmy�� ,�� are the mode distribu-
tions and Cmx and Cmy are the coupling coefficients
for the mth mode polarized along the x and y direc-
tions, respectively. To simplify the notation, the sum
extends over both the guided modes and a continuum
of radiation modes [9]. It follows from Eq. (1) that the
x and y components of the electromagnetic beam are
coupled into the fiber modes polarized orthogonally
such that

E���,�� = �
m

Cm�Fm���,��, �� = x,y�. �2�

We use the preceding relation to calculate the compo-
nents of the cross-spectral density matrix (see for ex-
ample [8]) and obtain

W����1,�2,�� = �E
�
* ��1,��E���2,���

= �
m

�
n

�Cm�
* Cn��Fm�

* ��1,��Fn���2,��,

�3�

where � and � take values x or y. Equation (3) can be
inverted to obtain �Cm�

* Cn�� by noting that the fiber
modes satisfy the orthogonality relation

� Fm�
* ��,��Fn���,��d2� = �nm���. �4�

The result is given by

�Cm�
* Cn��

=� � W����1,�2,��Fm���1,��Fn�
* ��2,��d2�1d2�2.
�5�
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The power coupled into a specific mode (or the
mode-power weight) is obtained by setting m=n in
Eq. (5) while summing over � and � to account for
both polarization components. The final results can
be written as

Pcm =� � Tr�W��1,�2,�� . Fm
† ��1,�2,���d2�1d2�2,

�6�

where a dagger denotes the Hermitian adjoint, and
we have introduced a matrix Fm that takes into ac-
count the transverse profiles of the mth mode,

Fm��1,�2,��

= 	Fmx
* ��1,��Fmx��2,�� Fmx

* ��1,��Fmy��2,��

Fmy
* ��1,��Fmx��2,�� Fmy

* ��1,��Fmy��2,��
 . �7�

The coupling efficiency can be obtained by normal-
izing Eq. (6) with the incident power and is given by

�cm =
� � Tr�W��1,�2,�� . Fm

† ��1,�2,���d2�1d2�2

2� Tr�W��,�,���d2�

.

�8�

Equation (8) constitutes our main result. It applies to
the general case of a multimode fiber and shows how
the coupling efficiency depends on the coherence and
polarization properties of the incident electromag-
netic beam governed by the cross-spectral density
matrix W��1 ,�2 ,��.

As a simple application of our general result, we fo-
cus on the case of a step-index fiber that supports a
single guided mode and drop the subscript m in Eq.
(8). We further adopt the Gaussian–Schell model for
the incident electromagnetic beam and use [7]

Wij��1,�2;�� = �Si��1;���Sj��2;���ij��2 − �1;��,

�9�

where i and j take values x and y. The spectral den-
sities Si and Sj and the degree of correlation �ij be-
tween the i and the j components of the electric field
are taken to be Gaussian functions of the form

Sj��;�� = Aj
2 exp�−

�2

2�j
2, �j = x,y�, �10a�

�ij��2 − �1;�� = Bij exp�−
��2 − �1�2

2�ij
2 ,

�i = x,y; j = x,y�. �10b�

The parameters Aj, Bij, �j, and �ij may depend on the
frequency. The spatial distribution of the fiber mode
is also approximated by a Gaussian function [9,10],
Fj=�2/�wj

−1 exp�−��2 /wj
2�, where j=x or y and �� is a
transverse vector in the plane of the fiber tip.
One more practical issue should be addressed. In
practice, the incident electromagnetic beam is often
focused onto the input end of the fiber with a suitable
lens of focal length f (see Fig. 1). We account for such
a focusing geometry by backpropagating the fiber
mode from plane B to plane A, where the lens is lo-
cated. The backpropagated fiber mode is given by

FjA = �2/�wjA
−1 exp�− �2/wjA

2 �, �11�

where wjA=	f /�wj. The finite size of the lens is in-
cluded by replacing the hard aperture of diameter D
with a Gaussian aperture of radius W such that W2

=D2 /8 [11]. Because of our use of Gaussian functions,
all integrals in Eq. (8) can be performed analytically.
After considerable algebra, the coupling efficiency is
found to be

�C =
�

i=x,y
�wi

2 �
j=x,y

BijAiAj�CijCji − �1/4�ij
4��−1

�	fW�2 �
i=x,y

Ai
2�i

2�W2 + 2�i
2�−1

, �12�

where

Cij =
1

4�i
2 +

1

2�ij
2 +

1

wiA
2 +

1

W2 . �13�

Finally, we illustrate our results by calculating
how the coupling efficiency of stochastic electromag-
netic beams of different states of coherence and po-
larization into a single-mode fiber changes with the
NA of the coupling optics �NA=D /2f� for a lens of fo-
cal length f with aperture diameter D. We consider a
step-index fiber with a 5 �m core radius and assume
that the normalized frequency parameter, the V
number, of the fiber equals 2 at the operating wave-
length of 1550 nm. Using the empirical formulae
given in [12], the mode-field radius of the fiber is
found to be wx=wy=6.34 �m. We also assume that a
lens of focal length f=10 mm is employed to couple
light into the fiber.

Figure 2 shows the effects of changing the degree of
coherence of a fully polarized beam on the coupling
efficiency �C by using �x=�y=0.7 mm, Ax=Ay=1,
Bxy=Byx=1, and �xx=�yy=�xy. One can see that �C de-
creases as the launched beam becomes less coherent.

Fig. 1. Illustrating notation related to the coupling of sto-

chastic electromagnetic beam into an optical fiber.
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Note also that the coupling efficiency becomes maxi-
mum for an optimum NA and decreases with a fur-
ther increase in the NA.

In Fig. 3 we consider the impact of varying the
magnitude of cross correlations �Bxy=Byx�, which af-
fect the polarization properties of the beam. As a re-
minder, the degree of polarization (DOP) of the beam
at the source plane z=0 is given by [13] (assuming
�x=�y)

DOP =
��Ax

2 − Ay
2�2 + 4Ax

2Ay
2�Bxy�2

Ax
2 + Ay

2 . �14�

We take �x=�y=0.7 mm, Ax=Ay=1, and �xx=�yy=�xy
=
. As the DOP of the incident beam increases, the
coupling efficiency increases. The reason for increase
in the coupling efficiency can be explained as follows.
Since the deterministic part of the incident stochastic
beam increases as the DOP increases, the incident
beam can be matched better with the mode field,
leading to improved coupling into the mode. Changes
in the polarization properties of the beam do not af-
fect the NA that corresponds to the maximum cou-
pling efficiency.

In conclusion, we have derived a general analytic
expression for the coupling efficiency when a par-
tially coherent, partially polarized electromagnetic
beam is coupled into a multimode optical fiber. We
used it to discuss the effects of the partial coherence
and partial polarization on the coupling efficiency
into a step-index single-mode fiber by adopting the

Fig. 2. (Color online) Variation of the coupling efficiency
with the NA. The parameters of the single-mode fiber are
given in the text. The incident beam is assumed to be sym-
metric and has the following parameters: �x=�y=0.7 mm,
Ax=Ay=1, Bxy=Byx=1, and �xx=�yy=�xy and taking a differ-
ent value for each curve.
Gaussian–Schell model for the incident electromag-
netic beam. Our results should be useful for any ap-
plication requiring coupling of a partially coherent
beam into optical fibers.
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Fig. 3. (Color online) Effect of degree of polarization on
the coupling efficiency of a beam with �xx=�yy=�xy=
.
Other parameters are the same as in Fig. 2.


