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We study analytically and numerically how the radiation emitted by fundamental solitons in the form of
dispersive waves is affected by the third and fourth-order dispersions when a higher-order soliton under-
goes the fission process inside an optical fiber. Our results show that two dispersive wave sidebands
appear in the output spectrum on opposite sides of the input spectrum. The frequencies of these side-
bands are set by the relative magnitudes of the third- and fourth-order dispersion parameters, but are
not affected much by the Raman process. A well defined phase-matching condition accurately predicts
these conjugate frequencies of dispersive wave. The relative amplitudes of these two sidebands are not
equal because of the asymmetry induced by the third-order dispersion and higher-order nonlinearities.
It is found that with increasing fourth-order dispersion the amplitude of both spectral components even-
tually saturate and the relative power level associated with one of the components can exceed 10% of the
launched power under suitable conditions. This component is the one that will form even in the absence
of fourth-order dispersion and its wavelength may lie on the red or the blue side of the launched wave-
length depending on the sign of the dispersion slope at this wavelength. It is also observed that soliton
order itself significantly influence the peak amplitude of the radiation and play a minor role in determin-
ing radiation frequencies. We believe, these results should be of relevance for applications requiring an
ultrabroadband optical source and understanding the interesting facts of supercontinuum generation.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that, under ideal conditions, higher-order soli-
tons forming inside optical fibers exhibit periodic evolution such
that the optical pulse recovers its input shape after a distance
known as the soliton period [1–3]. Such a stable propagation of
higher-order optical soliton ceases to occur in the presence of high-
er-order dispersive effects. Typically, a higher-order soliton disin-
tegrates into its constituent fundamental solitons in the presence
of such perturbations, a phenomenon referred to as the soliton-fis-
sion [2]. The inverse scattering method shows that the power and
width of the kth soliton are related to the soliton order N as [1,2],
Pk ¼ P0ð2N þ 1� 2kÞ2=N2 and Tk ¼ T0=ð2N þ 1� 2kÞ, where P0 and
T0 are the input power and pulse width, respectively. The most
energetic soliton (k = 1), which has the shortest temporal width,
is termed the Raman soliton, and it is primarily responsible for
the non-solitonic radiation (NSR). Right after the fission process,
higher-order dispersive effects transfer a part of the soliton energy
in the form of a dispersive wave (DW) at a specific frequency set by
the phase-matching condition [4]. The emission of NSR in the form
of dispersive waves is of particular importance for supercontinuum
generation [5–9]. After an early numerical work in 1986 identified
ll rights reserved.

).
the NSR [4], a considerable research activity has established the
essential role played by the third-order dispersion (TOD) in gener-
ating the NSR [10–14]. Although it was pointed out in a 1995 study
that the fourth-order dispersion (FOD) should generate two NSR
peaks on the red and blue sides of the original pulse spectrum
[13], except for a recent experimental confirmation [15], little
attention has been paid to the role of FOD in forming the supercon-
tinuum inside optical fibers.

At this point, it should be mentioned that the appearance of
two zero-dispersion wavelengths (ZDW) in some fibers is con-
nected with the dominance of FOD term that leads to the conju-
gate radiations on both side of the input spectrum. Properly
designed microstructured fibers may possess this special disper-
sion characteristic. Soliton spectral tunneling (SST) is another
interesting phenomenon [16,17] that occurs with this kind of
dispersion behavior when two anomalous dispersion regions
are separated by an intermediate normal-dispersion zone. Phys-
ically, a soliton formed in one anomalous dispersion region
transfers its energy to a linear wave at a resonance frequency
near the other zero-dispersion point. This sharp switching of sol-
iton frequency from one anomalous dispersion domain to the
other is interpreted by analogy with quantum mechanical tun-
neling through a potential barrier [18]. Apart from the SST effect,
supercontinuum (SC) generation in a photonic crystal fiber (PCF)
with two ZDWs has been studied extensively in [19–21], where
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issues related to dual pumping [19], soliton-pair generation [20],
etc., are considered but not explicitly the issues related to DW
generation.

In this work, we focus on a systematic study of the growth of
dual-frequency NSR as recently observed [15,21]. We concentrate
on the role of FOD which is primarily responsible for the simulta-
neous generation of two DWs. Of course, we should not consider
FOD without including TOD because, in most practical cases, both
types of dispersions are present simultaneously. Moreover, we
should also include a higher-order nonlinear effect known as intra-
pulse Raman scattering (IPRS) [3] because it is essential for super-
continuum generation [9]. With this in mind, we study numerically
the propagation of higher-order solitons inside optical fibers under
the combined influence of FOD, TOD, and IPRS. We also generalize
the analysis of Akhmediev and Karlsson [13] for the case of higher-
order solitons and derive analytical expressions for the frequencies
of the NSR peaks in the output spectrum due to the combined
influence of FOD and TOD. Starting from a simple propagation
equation we eventually solve the most general nonlinear Schrö-
dinger equation in order to capture the role of all higher-order dis-
persion and nonlinear terms in generating dispersive waves. The
study reveals a clear picture of the growth of dispersive waves dur-
ing SC generation process. The frequencies of the radiation is ob-
tained by the phase-matching condition in the form of a
polynomial whose coefficients depend on the numerical values of
properly normalized third and higher-order dispersion parameters.
It is observed that amplitude and frequency of the dispersive wave
critically depends on the relative values of dispersion coefficients.
We perform extensive numerical simulations to verify the analyt-
ical prediction of radiation frequencies. The results reveal several
valuable features related to the growth of NSR that should be of
relevance for the study of supercontinuum.

2. Frequencies of two NSR peaks

As is known from previous work [13,14], it is much more
useful to employ a normalized form of the nonlinear Schrödinger
equation (NLSE) that makes use of the so-called soliton units.
Since solitons require anomalous dispersion, we assume that
the second-order dispersion parameter b2 is negative at the car-
rier frequency x0 of the input pulse so that the pulse experi-
ences anomalous dispersion inside the optical fiber. After
including both the TOD and FOD terms, the normalized NLSE
takes the following form [1],

i
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where the field amplitude U(n, s) is normalized such that U(0, 0) = 1
and the other dimensionless variables are defined as [1]
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Here, T0 and P0 are related to the width and the peak power of
the ultrashort pulse launched into the fiber, LD ¼ T2

0=jb2j is the dis-
persion length, vg is the group velocity, c is nonlinear parameter, b2

is the second-order dispersion parameter, and b3 and b4 are respec-
tively the TOD and FOD coefficients of the fiber. The dimensionless
quantity N is the soliton order defined such that N = 1 for a funda-
mental soliton [1]. In the absence of TOD (d3 = 0) and FOD (d4 = 0),
Eq. (1) predicts that an input pulse, launched with the amplitude
U(0,s) = sech(s) and a peak power such that N = 1, propagates as
the fundamental soliton with the general solution U(n,s) = sech
(s)exp(in/2). Such an input pulse maintains its shape and width
perfectly. This scenario ceases to occur when a fundamental soliton
is perturbed by the TOD (d3 – 0) or/and FOD (d4 – 0) during its
propagation inside the fiber.

In general, both terms on the right side of Eq. (1) act as a pertur-
bation and generate NSR. From the previous study in Ref. [13] it is
known that the NSR occurs at one specific frequency when d3 acts
alone (d4 = 0) and at two frequencies located symmetrically on the
opposite side of x0 when d4 acts alone (d3 = 0). We can use the
same method to find the NSR frequencies when both the TOD
and FOD terms are present simultaneously and a higher-order sol-
iton is launched into the fiber. As it is already mentioned, the Nth-
order soliton splits into N first-order solitons of different widths
and peak powers through the fission process [2], and subsequently
each fundamental soliton radiates a part of this energy to create
the NSR at a few specific frequencies because of perturbations in-
duced by TOD and FOD. Since the shortest soliton with a width
Ts = T0/(2N � 1) is perturbed the most, we focus on this specific
soliton in the following analysis. This soliton has a width Ts that
is (2N – 1) times smaller than the input pulse width T0 and its peak
power is larger by a factor of (2N – 1)2/N2 [2]. In our notation, the
NSR frequencies are calculated by using the following phase-
matching condition [13]:

d4f 4 þ d3f 3 � 1
2

f 2 ¼ 1
2
ð2N � 1Þ2; ð3Þ

where the normalized frequency f is given by f ¼ 2pðmd � msÞT0 and
ms and md are the carrier frequencies associated with the soliton and
the dispersive wave, respectively. The quadratic polynomial in Eq.
(3) has 4 solutions, not all of them may be real. It turns out that only
two solutions are real in practice, indicating that NSR will lead to
the formation of two NSR peaks located on opposite sides of the sol-
iton frequency ms.
3. Intrapulse Raman scattering (simple model)

In a simple model, the IPRS is included approximately by adding
an additional term to the right side of Eq. (1). Resulting in the fol-
lowing modified NLSE [1]:

i
@U
@ n
þ 1

2
@2U
@s2 þ N2jUj2U ¼ id3

@3U
@s3 � d4

@4U
@s4 þ isR
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where sR = TR/T0 and TR is the IPRS coefficient with a value of about 3
fs. This model assumes that the pulse bandwidth is a small fraction
of the Raman shift (about 13.2 THz for silica fibers) and is thus valid
for pulses longer than 1 ps or so. The case of femtosecond pulses is
discussed in the following section.

We used a standard split-step Fourier method [1] to solve Eq. (4)
numerically. The results shown in Fig. 1 correspond to a total prop-
agation distance of four dispersion lengths and assume that the in-
put pulse is launched such that it propagates as a second-order
soliton (N = 2). Fig. 1a shows the idealized situation in which only
the FOD term acts as a perturbation (d4 = 0.001), i.e., we set d3 = 0
and sR = 0. As expected from the theory given in Ref. [13], the
FOD creates two spectral peaks located symmetrically on the red
and blue side of the input carrier frequency. Fig. 1b shows how
these NSR peaks are affected by the presence of TOD (d3 = 0.01).
As one would expect, the presence of TOD destroys the symmetric
nature of the NSR peaks. At the same time, the amplitude of the blue
peak increases while that of the red peak decreases. The frequency
changes, induced by a finite value of the TOD parameter, are ex-
pected from the phase-matching condition given in Eq. (3). It
should be noted that, being dimensionless quantities, one can get
the same values of d3, d4, and N for many different combinations
of the pulse parameters T0 and P0 and fiber parameters b2; b3; and
b4. Our results indicate that the resulting output spectrum will be
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Fig. 1. Output spectra after four dispersion length for four different combinations of d3; d4 and sR. Input pulse excites a second-order soliton that splits into two fundamental
solitons soon after the pulse is launched inside an optical fiber.
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the same in all cases as long as the dimensionless parameters d3, d4,
and N have the same values.

We study next how the amplitudes and the frequencies of the
two NSR peaks are affected by the IPRS, a process that transfers
part of the pulse energy toward longer wavelengths. Fig. 1c
shows the influence of IPRS on the output pulse spectrum in
the presence of FOD alone (d3 = 0). As one may expect, the spec-
trum becomes asymmetric because of a continuous transfer of
energy from high frequencies to low frequencies [3]. However,
notice that neither the positions nor the amplitudes of the NSR
peaks are affected much by the IPRS process. This feature indi-
cates that the dispersive waves are generated right after the sol-
iton-fission process and their frequencies and amplitudes are not
affected by the subsequent energy transfer induced by IPRS. In
Fig. 1d we include the effects of the TOD and IPRS effects simul-
taneously and obtain the output spectrum under a more general
and realistic situation. The spectrum is changed significantly
from that seen in Fig. 1c. In particular, we find that the blue side
of the pulse spectrum contains more pulse energy compared
with the red side. This is related to the fact that that TOD by it-
self creates an NSR peak on the blue side of the spectrum when
d3 > 0. Even though a single peak occurs on the blue side in the
presence of both TOD and FOD, its amplitude is enhanced as
both perturbations contribute to it. The results shown in Fig. 1
indicate that a symmetric NSR spectrum similar to that shown
in plot (a) is unlikely to be observed because of the influence
of TOD and IPRS both of which are likely to be present. Indeed,
the blue NSR peak was found to be more intense than the red
one in a recent experiment [15].
4. Intrapulse Raman scattering (comprehensive model)

The simple IPRS model based on Eq. (4) is reasonably accurate
for picosecond pulses but should not be used for pulses whose
widths are close to 100 fs or shorter. From the recent work on
supercontinuum generation [9] it is known that the following gen-
eralized NLSE is quite adequate for numerical simulations under
such conditions:
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Here, s ¼ ðx0T0Þ�1 is the self-steepening parameter and RðsÞ is the
nonlinear response function of an optical fiber in the form

RðsÞ ¼ ð1� fRÞdðsÞ þ fRhRðsÞ; ð6Þ

where the first and the second terms correspond to the electronic
and Raman responses, respectively. As discussed in Ref. [22], a suit-
able form of the Raman response function is of the form

hRðsÞ ¼ ðfa þ fcÞhaðsÞ þ fbhbðsÞ; ð7Þ

where the functions haðsÞ and hbðsÞ are defined as
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Various parameters governing the Raman response are obtained
by fitting the experimentally observed Raman gain spectrum and
are found to be fR = 0.245, fa = 0.75, fb = 0.21, and fc = 0.04. The three
time intervals s1; s2 and sb have values of 12, 32 and 96 fs, respec-
tively. In our notation, they have been normalized by the input
pulse width T0.

As before, we employ the standard split-step Fourier method [1]
to solve Eq. (5) numerically for values of d4 in the range of 0.001–
0.01 at a set of fixed values of d3. The input ‘‘sech” pulses are as-
sumed to have a carrier wavelength of 835 nm and a width such
that T0 = 50 fs (full width at half maximum of about 88 fs). Their
peak power is chosen such that the soliton order N takes the value
2. In the following simulations, the fiber length corresponds to one
dispersion length (n varies from 0 to 1). The physical fiber length
depends on the value of b2 and would be 2.5 m for b2 = 1 ps2/
km. We stress that the self-steepening effects are negligible in
our simulations because s < 0.01 for T0 = 50 fs. Thus, IPRS is the ma-
jor higher-order nonlinear process affecting the following numeri-
cal simulations performed by varying d4 in the range of 0.001–0.01.
The phase-matching condition in Eq. (3) gives two real solutions in
all cases investigated. The NSR wavelength falls on the red side
(md < ms) of the input spectrum for one of them and on the blue side
(md > ms) for the other one.

Fig. 2 shows the output pulse spectrum under for different dis-
persion conditions. The case d3 = 0 (no TOD) shown in Fig. 2a ap-
plies to a special dispersion-flattened fiber in which the
dispersion slope vanishes at the input wavelength of 835 nm. As
before, the FOD creates two peaks on red and blue side of the input
spectrum. The peak on the red side is more intense than the blue
one because of the IPRS effects. A noteworthy feature is that both
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Fig. 2. Output spectra after one dispersion length for different combinations of d3 and d4.
pulse with T0 = 50 fs.
the frequencies and amplitudes of the two NSR peaks change sig-
nificantly with changes in the value of d4. More specifically, the
two peaks move closer as d4 increases and their peak powers im-
prove radically with increasing d4, reaching close to 10% of the in-
put peak power for d4 = 0.004. The addition of even a relatively
small amount of TOD in Fig. 2b and c changes the spectrum signif-
icantly. The amplitude of the blue peak increases with increasing d3

and its frequency shifts toward the input frequency. In contrast,
the red peak generated only by FOD, shifts more and more toward
the red side and its amplitude decreases drastically.

The spectra shown in Fig. 2c for d3 = 0.02 reveal the competition
between the TOD and FOD effects. When d4 has a relatively small
value of 0.001, the blue NSR peak dominates while the red peak
has almost disappeared (its amplitude is below �85 dB), both fea-
tures indicating that the TOD perturbation dominates compared
with the FOD one. However, when d4 has a relatively large value
of 0.005, the blue and red NSR peaks have large and comparable
magnitudes, a feature indicating that the FOD perturbation domi-
nates in this case. To provide further evidence of the competition
between the TOD and FOD perturbations, we show in Fig. 2d the
output spectra for three different values of d4 such that the ratio
of d3 and d4 is fixed at 10. Under such conditions, both perturba-
tions contribute to the NSR generation process such that the blue
peak is stronger than the red one (because of the TOD effects).
However, as d3 and d4 increase (with their ratio fixed at 10), the
two peaks move closer and eventually begin to merge with the
central part of the pulse spectrum.

Next, we investigate how well the analytical prediction for the
frequencies of the NSR peaks based on Eq. (3) agrees with the full
numerical solutions based on Eq. (5). Fig. 3a shows the predicted
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The generalized NLSE given in Eq. (5) is solved numerically for a femtosecond input
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and numerically calculated frequencies of the red and blue NSR
peaks as a function of d4 for the second-order soliton (N = 2). We
used three different values of d3 during the simulations (d3 = 0,
0.01 and 0.02) for this comparison. Open circles represent the
numerical values and the solid lines depict the corresponding ana-
lytical prediction obtained by solving the quadratic polynomial gi-
ven in Eq. (3). The close agreement justifies the use of the phase-
matching condition given in Eq. (3) and indicates that the IPRS pro-
cess does not affect the NSR frequencies. The results also show that
the NSR frequencies (both for the blue and red peaks) move closer
with increasing values of d4 and their relative spacing eventually
becomes constant. In the presence of TOD, the blue peak shifts to-
wards the central frequency with increasing d3, while the red peak
shifts away from the central frequency.

We also estimate numerically the peak power of the NSR peaks
as a function of d4 for three different values of d3, and the results
are shown in Fig. 3b. Both NSR peaks become more intense with
increasing d4 and their power saturates eventually. The difference
between the peak powers associated with the red and blue peaks
becomes large for high value of d3. In particular, TOD reduces the
amplitude of the red peak and enhances that of the blue peak. In
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Fig. 3. (a) Frequencies and (b) relative peak powers of the red and blue NSR peaks
plotted as a function of d4 for three values of d3. The blue, red and black lines are for
d3 = 0, d3 = 0.01 and d3 = 0.02, respectively. In figure (a) the open circles show the
numerical values and the solid lines represent the analytical prediction. In figure (b)
the solid lines and the dot-dashed lines represent the peak powers of the red and
blue NSR peaks, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
the absence of TOD [blue curves in Fig. 3b] the two peaks have al-
most the same power. A slight mismatch in powers occurring even
in the d3 = 0 case is due to the presence of IPRS.

So far we have discussed the growth of conjugate radiation
peaks for a second-order soliton (N = 2). The phase-matching equa-
tion given in (3), in principle, holds for all higher-order solitons. For
fixed values of d3 and d4 the radiation frequency changes only
slightly with changing N. It is observed that the radiation peaks
generated for N = 2 are smooth and distinctly positioned. This is
the main reason for taking N = 2 in our simulations. These distinct
peaks become distorted with increasing soliton order. In fact it is
really hard to identify the exact location of the radiation peaks in
spectral domain for N > 4. According to the observation of Cristiani
et al. [7], dispersive radiation occurs at spectral expansion and each
time the radiation frequency differ slightly from the previous one.
This process eventually generates some extra fringes around the
original radiation peak. Because of this, the DW peaks generated
by the Raman soliton lose their identity with increasing soliton or-
der, and measurements of the radiation frequency become errone-
ous. Here, we repeat the simulation for N = 3, and the results are
shown in Fig. 4a. Even in this case, we find a reasonable agreement
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web version of this article.)
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between the analytical and numerical results as expected Eq. (3).
Moreover, we also estimate the amplitude growth of the NSR with
increasing soliton order N. As seen in Fig. 4b, the amplitude of radi-
ation grows rapidly with N and eventually saturates.

As we discussed earlier, the competition between the TOD and
FOD effects is an important feature of our work, and both perturba-
tions contribute when the ratio of d3 and d4 is fixed at 10. Fig. 5a
shows the frequencies of the two NSR peaks as a function of d4,
with the ratio d3/d4 = 10. The corresponding peak amplitudes are
plotted in Fig. 5b. The most noteworthy feature in Fig. 5b is that,
although the amplitudes tend to saturate with increasing values
of d4, there is a significant difference in the two saturated values.
For the ratio d3/d4 = 10, the blue peak saturates at a level around
�8 dB whereas the red peak acquires its maximum amplitude
around �40 dB, and this amplitude gradually decreases with a fur-
ther increase in d4. The reason is that for a fixed ratio of d3 and d4,
the value of d3 increases with increasing d4, and eventually the ef-
fects of TOD begin to dominate over those of FOD.

5. Conclusions

Solitons forming inside optical fibers are perturbed by several
higher-order dispersive and nonlinear effects, especially when
ultrashort optical pulses are used to excite them. We study, both
analytically and numerically, how the radiation emitted by solitons
in the form of dispersive waves is affected by the FOD. We include
the effects of TOD as well because both types of dispersions are
present simultaneously in most practical cases. Moreover, we in-
clude the impact of IPRS because this process is essential for super-
continuum generation. Our results show that two dispersive wave
sidebands appear in the output spectrum on opposite sides of the
input spectrum. Their frequencies are set by the relative magni-
tudes of the third- and fourth-order dispersion parameters as well
as by the order of the soliton, but they are not affected much by the
IPRS process. A well defined phase-matching condition can predict
the exact location of radiation peaks in frequency domain. The rel-
ative amplitudes of conjugate sidebands are not equal because of
the asymmetry induced by the third-order dispersion. Although
the amplitude of both spectral components saturate eventually,
the relative power level associated with the high-frequency com-
ponent (for d3 > 0) on the blue side of the launched wavelength
may exceed 10% of the launched power under suitable conditions.
In a fiber with d3 < 0 it is the low-frequency component on the red
side of the launched wavelength that has such high power levels.
The effects of FOD have not attracted much attention so far except
for a recent experimental demonstration of the two NSR spectral
components. Our results reveal several interesting features that
should be of relevance for applications requiring an ultrabroad-
band optical source.
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