
2072 OPTICS LETTERS / Vol. 34, No. 13 / July 1, 2009
Effects of higher-order dispersion on resonant
dispersive waves emitted by solitons
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Dispersive waves (DW) are generated owing to perturbation of solitons by higher-order dispersion (HOD)
and nonlinearity during supercontinuum (SC) generation. The frequencies of these waves are governed by a
phase-matching condition in the form of a polynomial whose coefficients depend on the numerical values of
the properly normalized third- and HOD parameters. Our extensive numerical solutions show that all odd
HOD terms generate a single peak on the blue or the red side of the carrier frequency, depending on the sign
of the corresponding term. In contrast, positive even HOD terms create conjugate DW peaks, in both the
blue and red sides. No radiation is observed for negative values of these parameters. The combination of all
even and odd HOD coefficients may generate more than two DW peaks for some specific choice of param-
eters. The results predicted by the phase-matching condition agree well with extensive numerical simula-
tions revealing interesting facts of SC generation. © 2009 Optical Society of America

OCIS codes: 190.4370, 190.5530, 190.5650.
A higher-order soliton (HOS) breaks into its funda-
mental components through fission process [1]. Each
individual soliton component emits resonant disper-
sive waves (DWs) (sometimes call nonsolitonic radia-
tion) [2–4] that are of particular importance for blue-
shifted supercontinuum (SC) generation. A special
phase-matching (PM) condition between the propa-
gating solitons and DWs determines the specific fre-
quencies of these waves [3]. In this Letter, we study
the influence of individual and collective higher-order
dispersion (HOD) terms in generating DWs based on
normalized PM condition. It is demonstrated that all
positive even order dispersion (OD) terms (i.e., 4OD,
6OD, 8OD, etc.) emit conjugate radiations. No such
radiation is observed when the numeric sign of the
even OD coefficients is set to negative. It is also pre-
dicted that all positive odd OD terms (i.e., 3OD, 5OD,
7OD, etc.) are capable of generating blue radiation.
The radiation falls on the red side when the sign of
odd dispersion coefficient is reversed. A detailed
analysis based on a numerical solution of the gener-
alized nonlinear Schrödinger equation (GNLSE) con-
firms these features associated with DWs. The range
of dispersion values that are used in our study are
obtained from designs of realistic photonic crystal fi-
bers (PCFs), indicating tremendous flexibility in dis-
persion tailoring.

Generally a DW is not phase matched with a fun-
damental soliton because the soliton’s wavenumber
lies in a range forbidden for a linear DW. The pres-
ence of HOD terms, however, leads to a PM situation
in which energy is transferred from the soliton to a
DW at specific frequencies. In the SC generation pro-
cess by a HOS, HOD and intrapulse Raman scatter-
ing (IPRS) act as perturbations that split the
Nth-order soliton into N fundamental solitons of dif-
ferent widths and amplitudes. The shortest and most
energetic soliton, having a width �2N−1� times

smaller than the input pulse width T0 and a peak
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power larger by a factor of �2N−1�2 /N2 [5], is prima-
rily responsible for generating resonant DWs. In a di-
mensionless notation, the frequencies of DWs can be
calculated by using a relatively simple PM condition,
which arises from the equality of the soliton and ra-
diation propagation constant [3],
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and �d are the carrier frequencies associated with the
soliton and the DW, respectively. Here the mth OD
coefficient is represented by �m.

The real solutions of x for the polynomial in Eq. (1)
can readily predict the exact frequencies of all radi-
ated DWs. The number of real roots and their posi-
tion depends critically on the relative values of di-
mensionless dispersion coefficients �m and their
algebraic signs. To capture the impact of HOD effects
on the DW generation in realistic condition, we use
the GNLSE written in the following normalized form
[6]:

�U

��
=

i

2

�2U

��2 + �
m�3

�

im+1�m

�mU

��m + iN2�1 + is
�

��
�

	�U��,���
−


�

R�� − ����U��,����2d��� , �2�

where the field amplitude U�� ,�� is normalized such
that U�0,0�=1 and the other dimensionless variables
are defined as

� = z/LD, � = �t − z/vg�/T0, N = ��P0LD.

Here, P0 is related to the peak power of the ul-
trashort pulse launched into the fiber, LD=T0

2 / ��2� is

the dispersion length, vg is the group velocity, and �
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is the nonlinear parameter of the fiber. s= �2��sT0�−1

is the self-steepening parameter and R��� is the non-
linear response function of the optical fiber in the
form

R��� = �1 − fR����� + fRhR���, �3�

where fR=0.245 and the first and the second terms
correspond to the electronic and the Raman re-
sponses, respectively. The Raman response function
can be expressed in the form [7]

hR��� = �fa + fc�ha��� + fbhb���, �4�

where the functions ha��� and hb��� are defined as
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and the coefficients fa=0.75, fb=0.21, and fc=0.04
quantify the relative contributions of the isotropic
and the anisotropic parts of the Raman response. In
Eq. (5), �1, �2, and �b have values of 12, 32, and 96 fs,
respectively. In our notation, they have been normal-
ized by T0.

We employ the standard split-step Fourier method
[6] to solve the GNLSE numerically. The input sech-
shape pulses are assumed to have a carrier wave-
length of 835 nm and a width such that T0=50 fs
(FWHM of about 88 fs). Their peak power is chosen
such that the soliton order N takes the value of 2. In
the following simulations, the fiber length corre-
sponds to two dispersion lengths (� varies from 0 to
2). We stress that the self-steepening effects are neg-

Fig. 1. (Color online) Contour and output spectra of a
second-order soliton �N=2� at two dispersion lengths. The
PM curve is plotted simultaneously. The dimensionless dis-
persion coefficients used in the plots are (a) �3=0.01, �4
=0.015/10, �5=0, �6=0; (b) �3=0.01, �4=0.015/10, �5
=0.01/100, �6=0; (c) �3=0.01, �4=0.04/10, �5=0.01/100,

�6=0; and (d) �3=0.01, �4=0.04/10, �5=0.015/100, �6=0.
ligible in our simulations, because s�0.01 for T0
=50 fs. Thus, IPRS is the major higher-order nonlin-
ear process affecting the launched pulse.

The PM condition gives two real solutions for posi-
tive 4OD such that one DW frequency falls on the red
side ��d��s� and the other on the blue side ��d
�s� of
the input spectrum. Dispersion tailoring of a PCF can
produce two zero-dispersion wavelengths (ZDWs)
that lead to conjugate radiations as a result of domi-
nant 4OD [8,9]. A recent experiment [10] revealed the
4OD-mediated dual radiation in a specially designed
hollow-core PCF. Physically, a soliton formed in the
anomalous dispersion regime approaches ZDW by
shifting its frequency through IPRS and subse-
quently transfers its energy to a linear wave at reso-
nance frequency near other ZDW. This interesting
phenomenon of soliton spectral tunneling has been
discussed in [11] but it is not directly related to the
objective of this Letter.

In Fig. 1(a) we represent the output spectrum of a
launched second-order soliton �N=2� for �3=0.01 and
�4=0.0015 with the other HOD terms set to zero. Two
distinct DW peaks on the blue and the red sides are
observed under such conditions. The PM condition
predicts the exact frequencies as shown in the bottom
plot for the same set of parameters. The asymmetry
in two resonant frequencies arises mainly owing to
3OD. We have verified that in the absence of 3OD
and other nonlinear terms, 4OD always generates
symmetric DW peaks. The most striking feature is
observed in Fig. 1(b), where in the presence of 5OD
��5=0.0001�, the red peak generated by �4 disappears
altogether and the blue peak shifts toward the cen-
tral frequency with an enhanced power level.

In Fig. 1(c) we show that the red peak reappears
when �4 is increased to 0.004 while keeping �5 fixed
at 0.0001. In fact, Eq. (1) predicts three real roots for
�4=0.004 corresponding to two red peaks and one
blue peak. A small peak is observed at the far end of
the red side whose frequency matches exactly with
one of the roots associated with the PM condition.
However, this red peak is highly sensitive to the 5OD
coefficient and again vanishes with a small incre-
ment of �5. Clearly, the relative values of �4 and �5
play a major role in determining the number of
peaks. It seems that a contest is inevitable between
4OD and 5OD for the generation of DWs. A positive
�4 always tries to generate blue and red peaks simul-
taneously, whereas �5 tends to suppress the red peak.
Observing this fact, we gradually increase the value
of �5, while keeping �4 fixed, and find a critical value
of �5 (roughly 0.000 15) beyond which both red peaks
vanish completely. At this inversion point, the spec-
trum broadens considerably even for N=2, indicating
the significance of this critical value in SC genera-
tion.

The signs of the dispersion coefficients represent
another critical factor in resonant DW generation. By
changing the sign of the 3OD coefficient, the resonant
frequency can be shifted from the blue to the red side
[3,12]. A similar effect is observed when we invert the
sign of the 5OD coefficient. Figure 2(a) shows a single

red peak, instead of the blue peak for negative �5
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complementing the PM solution. It turns out that
this feature remains unchanged for all odd higher-
order dispersion terms. More specifically, odd positive
dispersion terms always create blue radiation, and
inversion of their sign switches the radiation to the
red side. Another important observation is that all
positive even OD terms create two conjugate reso-
nant DWs. In principle, the frequencies of these radi-
ated waves will be symmetric around the carrier fre-
quency if they are generated solely from a single even
term. In practice, the DW peaks are located asym-
metrically because of the simultaneous presence of
odd HOD and higher-order nonlinear terms. Figure
2(b) shows, like 4OD, how 6OD generates two conju-
gate resonant DWs. Another striking feature we ob-
serve is that negative even HOD terms never create
any DWs. Since for negative even HOD terms there
are no real roots of Eq. (1), generation of DW is pro-
hibited in this condition. In Figs. 2(c) and 2(d) we
show this effect, respectively, for negative 4OD and
6OD terms, while setting the other parameters the
same. The spectra predicted through direct numeri-

Fig. 2. (Color online) Contour and output spectra of a
second-order soliton �N=2� at two dispersion length. The
PM curve is plotted simultaneously. The dimensionless dis-
persion coefficients used in the plots are (a) �3=0.01, �4
=0.015/10, �5=−0.01/100, �6=0; (b) �3=0.01, �4=0, �5
=0.01/100, �6=0.01/1000; (c) �3=0.01, �4=−0.015/10, �5
=0, �6=0; and (d) �3=0.01, �4=0, �5=0.01/100, �6=
−0.01/1000.
cal simulations of GNLSE also reciprocate positively
by exhibiting no DW peak generation under such con-
ditions.

The frequencies of the DW radiation is governed by
a PM condition in the form of a polynomial whose co-
efficients depend on the soliton order N and on the
numerical values of third-order and HOD param-
eters. Extensive numerical solutions reveal that all
odd HOD terms (i.e., 3OD, 5OD, etc.) generate a
single DW peak on the blue or the red side of the car-
rier frequency, depending on whether the odd OD has
a positive or negative sign. On the other hand, the
positive even HOD terms (i.e., 4OD, 6OD, etc.), cre-
ate conjugate DW peaks, one on the blue and other
on the red side. Interestingly, for negative values of
the even HOD coefficients, no real solution of the PM
equation is possible, and hence no DW radiation is
emitted under such conditions. The combination of
all even and odd HOD coefficients may generate more
than two DW peaks for some specific choice of param-
eters. We believe that the results and the conclusions
of this work will provide new insights for under-
standing the complex process of SC generation.
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