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We investigate the propagation characteristics of ultrafast pulses inside silicon waveguides considering
frequency chirp associated with each input pulse. Effects of linear losses, two-photon absorption, and
free-carrier dynamics are included analytically within the framework of a modified variational formalism
and the results are validated by comparing them with full numerical simulations. It is found that an initial
chirp helps in maintaining the pulse shape and spectrum in the anomalous-dispersion regime, thereby
resulting in soliton-like propagation of ultrashort optical pulses.
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1. Introduction

Silicon photonics has attracted a great deal of attention in the
recent years because of its broad application domain covering
optoelectronic integration to biosensing [1,2]. Silicon has excellent
linear and nonlinear properties in the mid-infrared spectral region
that are useful for variety of applications related to emerging pho-
tonics devices. The optical mode inside a silicon-on-insulator (SOI)
waveguides is tightly confined to a rib-like structure because of the
high refractive index of silicon (�3.45) compared to the air or silica
acting as a clad. The high values of the Kerr coefficient (nearly 100
times larger than that of silica glass) and Raman gain coefficient
(nearly 1000 times larger than that of silica glass) lead to efficient
nonlinear interaction with optical fields at relatively low power
levels [3,4]. For this reason, SOI waveguides have been used to pro-
duce broadband amplifier and tunable lasers exploiting the nonlin-
ear effects such as Raman amplification [5–7] and four-wave
mixing [8]. They have also been used for spectral broadening of
ultrashort optical pulses through self phase modulation [9] and
supercontinuum generation [10]. The possibility of forming a sta-
ble optical soliton inside a SOI waveguide is also being investigated
because the pulse width can then be maintained close to its input
value [11,12]. Experimentally, it is observed that solitons can be
formed inside a 5 mm long SOI waveguide by launching femtosec-
ond pulses with sub-picojoule energy [12]. However, the linear
loss, two-photon absorption (TPA), and free-carrier absorption
(FCA) influence the pulse shape and spectrum significantly [11]. In-
deed, these loss mechanisms are considered to be a major obstacle
for soliton formation in SOI waveguides.
ll rights reserved.

).
The modeling of pulse propagation inside SOI waveguides re-
quires numerical solution of a generalized nonlinear Schrödinger
equation. Although a numerical scheme is eventually necessary
for validating the experimental data, its exclusive use often limits
physical insight into the nonlinear processes that govern the prop-
agation process. In the present paper, we exploit the variational
formalism for studying the parametric effects on a femtosecond
pulse inside a SOI waveguide. The main limitation of the varia-
tional technique is that it requires the functional form of the pulse
shape to remain the same even though the parameters of the pulse
such as its amplitude, width, phase, and chirp are allowed to
change during propagation. In the case of soliton-like propagation,
the pulse dynamics can well be treated with the help of a varia-
tional process since the pulse shape is expected to remain close
to that of the input pulse during propagation. An advantage of this
method is that, the perturbing effects of linear loss, TPA, and FCA
can be treated by introducing Rayleigh’s dissipation function
(RDF) [13–15]. Such a semi-analytical approach leads to a set of or-
dinary differential equations for the pulse parameters such as
amplitude, width, phase, and chirp. We stress that the time-depen-
dent free-carrier dynamics is included in our derivation to the var-
iational equations. These equations not only provide considerable
physical insight, they can also be solved rapidly over a large range
of the parameter space. We find the regime of validity of the vari-
ational technique by comparing its predictions with the numerical
solution obtained by solving the generalized nonlinear Schrödinger
equation with the standard split-step algorithm [16].

2. Theoretical model

The propagation of an optical pulse through a SOI waveguide is
governed by the extended nonlinear Schrödinger equation [11] gi-
ven by
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Table 1
Values of the parameters used for numerical calculation

Parameter name Symbol Value

Waveguide length L 1 cm
Linear loss al 22 dB/m
Effective area aeff 0.38 lm2

Group velocity dispersion b2 ±0.56 ps2/m
Nonlinear coefficient c 47 m�1 W�1

Nonlinear loss C 6.5 m�1 W�1

Wavelength k0 1550 nm
Input peak power P0 4.76 Watt
Pulse width t0(0) 50 fs
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where u; b2; b3; c; C; al; r, and NC represent the slowly varying
field amplitude, second-order dispersion coefficient, third-order
dispersion coefficient, nonlinear Kerr coefficient, TPA coefficient,
linear loss parameter, FCA coefficient, and free carrier density,
respectively. Since the TPA-induced free-carrier density NC has a
profound effect on the pulse amplitude, the dynamic nature of NC

is included by solving the rate equation [3],
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where sC is the carrier life time, hm0 is the photon energy at the inci-
dent wavelength, aeff is the effective mode area, and bTPA ¼ 2Caeff is
the usual TPA parameter.

For a short optical pulse (t0� sC), one can ignore sC, as carriers
do not have enough time to recombine over the pulse duration. In
this situation, it is possible to solve Eq. (2) analytically for a given
optical field. We assume that the sech-type shape of the input
pulse remains unchanged during propagation but allows its
parameter to evolve with the propagation distance z. In this case,
a suitable form of the optical field is
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where A, t0, u, and C represent the amplitude, width, phase, and
chirp, respectively, and all of them vary with z. For this pulse shape,
we can solve Eq. (2) analytically, and the carrier density is found to
be
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To solve Eq. (1) with the variational technique, we first find the
Lagrangian and the RDF associated with it. They are given by

L ¼ 1
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The reduced form of Lagrangian and RDF is obtained by integrating
them over time [14]:

Lg ¼
Z 1

�1
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Z 1
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With the help of Eqs. (3)–(7), we obtain the following explicit
expressions of Lg and Rg:
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The final step is to employ the Euler–Lagrange equation in the form

d
dt

oLg
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where q = A, t0, u or C and the suffix z indicates the corresponding
derivatives. For each q, we obtain an ordinary differential equation,
resulting in the following set of four coupled equations:
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The variational Eqs. (11)–(14) show clearly how the pulse parame-
ters change during the propagation inside a SOI waveguide and how
they are coupled with each other. More to the point, they show
which linear and nonlinear process affect a particular pulse param-
eter. Considerable physical insight is gained by noting that the pulse
width in Eq. (12) is affected directly not only by the dispersion
parameter (as expected) but also by the TPA (somewhat unex-
pected). Moreover, whereas dispersion may lead to pulse broaden-
ing or compression depending on the sign of b2, TPA always leads to
the pulse broadening. It may be noted that b3 does not appear in
Eqs. (11)–(14). It is well known [16] thatb3 introduces a relatively
small temporal shift of the pulse center that we ignore here. Also,
if the carrier frequency of the pulse shifts, it changes the effective
value of b2. Since no such frequency shift occurs in our case, b3 does
not affect the major pulse parameters.

Eq. (12) shows that waveguide dispersion can introduce pulse
compression when the pulse is suitably chirped. More specifically,
pulse compression occurs if the condition b2C < 0 is maintained
throughout the propagation distance. Similarly, as expected, the
pulse amplitude in Eq. (11) is affected by the three loss mecha-
nisms (linear loss, TPA, and FCA). However, somewhat surprisingly,
it is also affected by dispersion when pulse is chirped. The chirp it-
self is affected by the Kerr nonlinearity, waveguide dispersion, and
by the TPA process. In the next section we discuss the effect of in-
put chirping on pulse evolution and show that an initial chirp of
the pulse can help in propagating it as a soliton. We ignore the
phase equation in the following discussion because the optical
phase does not affect the three most relevant pulse parameters
(A, t0, and C).

3. Results and discussion

To investigate the possibility of soliton formation, we begin by
focusing on femtosecond pulses propagating in the anomalous-dis-
persion region of a silicon waveguide. Table 1 shows the values of
device and pulse parameters employed in our study. We solve the
set of three coupled equations, Eqs. (11)–(13), using Matlab soft-
ware and compare in Fig. 1a the results for input pulses that are
either initially unchirped (dashed lines) or chirped suitably (solid
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Fig. 1. (a) Evolution of pulse, width, chirp, amplitude, and energy for initially chirped (solid line) and unchirped (dashed line) pulses. (b) Effect of normal (dashed lines) and
anomalous (solid lines) dispersion on pulse parameters. Input pulses are chirped in both cases such that b2C < 0. The used chirp values are 0.14 (solid lines) and �0.14 (dashed
lines), respectively.
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lines) to ensure that its width nearly remains unchanged at the
output end. The important point to note is that the pulse width in-
creases monotonically for unchirped pulses because of the ampli-
tude decay resulting from linear and nonlinear losses. In contrast,
when the input pulse is slightly chirped (C = 0.14), the width first
decreases before increasing such that the output pulse width is
nearly equal to its input value. These results suggest that soliton-
like propagation in a SOI waveguide can be realized in spite of
losses by optimizing the input chirp.

We compare in Fig. 1b the parametric evolution of a chirped
pulse in the normal and anomalous dispersion regions. In both
cases, the pulse is suitably chirped so that the condition b2C < 0
is valid at z = 0. Since b2C < 0 initially, the pulse begins to compress,
as evident from the width plot. However, this condition is violated
soon after for pulses propagating in the normal-dispersion regime
and their width begins to increase rapidly. In contrast, pulse con-
tinues to compress until z exceeds 5 mm in the case of anomalous
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Fig. 2. Comparison of input (dotted curve) and output pulse shape (a) and spec
dispersion. As a result, the pulse width is nearly the same as that of
the input pulse when it exits the waveguide. This difference is a
consequence of the fact that the SPM-induced chirp adds to the
dispersion-induced chirp in the case of normal dispersion but sub-
tracts when dispersion is anomalous [16] and is behind of soliton
formation in the latter case. This conclusion is also supported by
Fig. 2 where we compare the temporal and spectral profiles of
the input (dotted curves) and output (solid curves) pulses in the re-
gime of anomalous dispersion. As seen there, in the case of chirped
input pulses, both the pulse shapes and spectra almost coincide. In
contrast, when input pulses are unchirped, the output pulse
(dashed curve) broadens considerably because of linear and non-
linear losses.

We next investigate how trustworthy is the variational ap-
proach used in obtaining the results shown in Figs. 1 and 2. For this
purpose, we solve the original nonlinear Schrödinger equation gi-
ven in Eq. (1) with the split-step Fourier method [16] and compare
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Fig. 3. (a) Evolution of the normalized amplitude for input pulses with and without an initial chirp. The solid lines represent the variational solution whereas the open circles
are the corresponding numerical data. (b) Comparison of the output pulse shape; the dashed and solid curves represent the numerical and variational solutions, respectively.

Fig. 4. (a) Soliton-like propagation nature of an initially chirped pulse and (b) the dynamic evolution of the free carrier density over the propagation distance.
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the results with those obtained using the variation Eqs. (11)–(13).
Fig. 3 shows the comparison in the case of anomalous dispersion
for both the chirped and unchirped input pulses. The peak intensity
of the pulse displayed in Fig. 3a shows that the pulse amplitude in
all cases is reduced considerably because of linear loss and nonlin-
ear losses resulting from TPA and FCA. The important point to note
is that the variational results agree with the numerical data to
within a few percent. The predicted output pulse in the two cases
is compared in Fig. 3b. Again, the numerical output (dashed curve)
agrees well with the variational prediction (solid curve).

As mentioned earlier, we were able to include the temporal
variations of the TPA-generated carrier density NC through the ana-
lytic expression given in Eq. (4). Of course, NC also varies with z be-
cause it depends on the local value of the pulse intensity. Fig. 4
shows the soliton-like propagation of a chirped pulse together with
the corresponding changes in the carrier density. As expected, the
carrier density builds up continuously over the pulse duration and
acquires its maximum value nearing the trailing edge of the pulse.
The maximum value of carrier density does not remain constant
along the waveguide length but decays gradually with increasing
distance. As is evident from Eq. (4), the generation of carrier den-
sity is mainly governed by the intensity of the propagating pulse
which itself decays with distance owing to linear and nonlinear
losses. However, the pulse maintains its shape and width in spite
of its reduced peak amplitude because of chirp-induced pulse
compression.

In conclusion, the propagation dynamics of ultrashort optical
pulses inside a silicon waveguide can be described reasonably well
in the soliton regime with a modified variational technique. The
resulting set of dynamic equations can be solved relatively easily
to study the evolution of important pulse parameters such as the
width, chirp, and peak intensity. Our procedure is capable of
including the carrier density dynamics quite accurately. We have
shown that the input chirp plays an impotent role in maintaining
the pulse shape and spectrum and is useful for realizing soliton-
like propagation of optical pulses. We have employed the split-
step Fourier method to solve the extended nonlinear Schrödinger
equation directly and to verify the accuracy of the variational
results.
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