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Abstract—A model suitable for analyzing the nonlinear interac-
tion between signal and noise, mediated by the Kerr effect in op-
tical communication systems, is presented. This model treats sep-
arately signal and noise and permits analysis of the symbols’ cen-
tral time position and frequency evolution. It is shown that this
nonlinear interaction between signal and noise leads to symbols’
random frequency shifts, which induce timing jitter in all types of
systems. We also discuss the problem of estimating timing jitter for
a signal embedded in noise.

Index Terms—Optical fiber communication, optical Kerr effect,
optical noise, timing jitter.

I. INTRODUCTION

IGNAL and noise interact in optical fibers through the

Kerr effect, which is responsible for the intensity de-
pendence of the modal refractive index. This interaction has
mostly been studied in the context of soliton communication
systems [1]-[3]. Based on the particle-like nature of solitons, a
perturbation theory was developed [4] that allows the treatment
of the signal separately from the noise, considering the effect of
the nonlinear interaction between signal and noise. This soliton
and noise interaction mediated by the Kerr effect is generally
referred as the Gordon—Haus effect [2] and leads to a type of
timing jitter that grows cubically with the distance. Timing
jitter growing cubically with the distance was also found in
linear communication systems [5], even though the origin of
this jitter is not the Gordon—Haus effect, because signal and
noise do not interact along the transmission channel in the
absence of nonlinear effects.

A linear model is not able to describe accurately modern high-
bit-rate optical communication systems, and these systems are
not necessarily soliton communication systems. Consequently,
the perturbation theory developed for solitons cannot also be ap-
plied. Therefore, the study of the nonlinear interaction between
signal and noise in nonsoliton systems is an open issue. Such
a study has not advanced further due to the lack of an accu-
rate mathematical model that allows one to separate the signal
from the noise but still accounts for the nonlinear interaction
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between the two, as perturbation theory does for the particular
case of soliton communications systems. In [6], we addressed
this problem considering that the noise propagates over a linear
channel. However, a more accurate model can be obtained if the
effects of the signal on the noise, mediated by the Kerr effect,
are considered.

In this paper, we present a model that is able to treat separately
the signal and noise but still accounts for the nonlinear interac-
tion between the two. Using this model, we prove that indeed
the signal and noise interaction, mediated by the Kerr effect in
optical fibers, causes random shifts in the symbols’ central fre-
quency in virtually all types of systems, and these shifts lead
to timing jitter. This is not a particular characteristic of soliton
communication systems, and only idealized linear transmission
systems do not suffer from this effect.

This paper is organized as follows. In Section II, we present
the new mathematical model proposed to study the interaction
between signal and noise in optical communication systems.
Results related with the extensive validation of the model are
presented in Section III. We analyze, in Section IV, the symbols’
random frequency shifts. The several contributions to timing
jitter are numerically estimated in Section V. Comparisons are
made between the solutions obtained using the proposed model
and the results obtained with the standard model based on the
resolution of the nonlinear Schodinger (NLS) equation. The
main conclusions of this paper are presented in Section VI.

1. MATHEMATICAL MODEL

The propagation of an electromagnetic field through an op-
tical fiber can be modeled using the NLS equation [7]
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where A(z,t) is the complex amplitude of the electric field, nor-
malized such that | A(z, #)|? equals the optical power. The inde-
pendent variables z and ¢ represent, respectively, the propaga-
tion distance, measured from the beginning of the system, and
the time measured in a reference frame that moves at the speed
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where the first derivative of the propagation constant F(w) is
evaluated at a given frequency w,(0), which we choose to co-
incide with the signal’s central frequency at the system input
z = 0. The parameter (3 is the second derivative of 3(w) evalu-
ated at ws(0) and accounts for the group velocity dispersion, «
accounts for the optical attenuation, and ~y accounts for the Kerr
effect.

In order to compensate for optical losses, modern lightwave
telecommunications systems use optical amplification. Optical
amplifiers restore the power of the signal but also add noise that
copropagates with the signal. The effect of amplifiers can be
considered by using the following boundary condition in the
resolution of (1):

A(z =nLl,t) = \/G,A(z =nL;,t)+ N,(0,t) (4)

where z = nL; and z = nL] are the locations immediately be-
fore and after the nth amplifier and G,, and N,,(0, t) are the nth
amplifier gain and the complex amplitude of the amplified spon-
taneous emission noise added by the nth amplifier, respectively.
Consequently, at any point of an optical communication system,
the electric field can be written as the sum of a signal S(z, t) that
conveys the information and noise N (z, t) that limits our ability
to extract information from the signal. Therefore, without loss
of generality, we can write

A(z,t) = S(z,t) + N(z,t) 5)

with A(z,t) satisfying (1). The signal S(z,t) is a collection
of symbols, each transporting a given amount of information,
typically, a single bit.

Equation (1) has been used to assess the performance of op-
tical telecommunication systems, but its use to study the inter-
action between signal and noise in the transmission channel is
limited. For instance, it is not possible to obtain from (1) either
the evolution of the symbols’ central position or the evolution
of the symbols’ central frequency.

We can define the central position of the field intensity profile
within a given time window T}, in the usual way as

1 +Ty, /2 )
ti(z) = T(z)/_mz t|A(z, ) 2dt (6)
where
+Tw/2
Ey(z) = /T B |S(z,t)|dt (7

with T, chosen in such a way that

+o0
B~ [ ISl ®
However, it is important to stress that ¢;(z) should not be con-
fused with the symbol’s central position, even in the case where
there is a single symbol in the time window T,,, which is the case
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that we always assume in this paper. Indeed, by substituting (5)
in (6), we can see that

t(z) = ts(2) + tn(2) + tsn(2) )
where
1 ATy /2 ,
to(z) = 1S (2, t)|2dt 10
D=5 ) 5, 1560 (10)
1 +Tw/2 2d
tn(2) = — t|N (2, 1)[2dt 11
=5 Ly, WP D
and
1 +Tw/2
tsn(z) = B.0) /_Tw/2 tS(z,t)N*(z,t)dt
1 4T /2
+E—(Z) /_T 12 tN(Z,t)S*(Z,t)dt (12)

with N(z,t) assumed to be bandlimited in the spectral domain
in order to guarantee that the integral in (11) converges. From
(9), we see that ¢,(z) is the sum of three terms: the first one is
the symbols’ central position ¢4(z), the second one is the noise’s
central position ¢,,(z) within the time window T, and the third
one has its origin in the signal-to-noise beating ¢, (z). Using
(1), we can estimate ¢;(z) but cannot determine ¢,(z) because
we do not know t,,(2) nor ¢5,,(z). An analogous situation hap-
pens for the symbols’ central frequency. We can define

1 +Qw/2 ~
—_— / w|A(z, w)|*dw

13
B() o, o (13

wi(z) =

but, again, w;(z) should not be confused with the symbol’s cen-
tral frequency. Indeed, wy(2) is given by

wi(2) = ws(2) + wn(2) + wsn(2) (14)
where
1 +9./2 ,
ws(z) = £.0) ./—Qw/z w|S(z,w)|"dw (15)
1 Q.72 ,
wn(z) = F.(0) /_Qw/2 w|N(z,w)| dw (16)
and
1 +0./2 }
wsn(z) = F.(0) ./_Qw/2 wS(z,w)N*(z,w)dw

1 +92,/2
+—/ wN(z,w)S8*(z,w)dw (17)
Ey(2) J a,/2 SR

with €, being the noise spectral bandwidth, assumed to be
much broader than the signal spectrum. A(z,w), S(z,w), and
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N(z,w) represent the Fourier transforms of the field, signal,
and noise, respectively. The three terms in (14) are the symbol’s
central frequency, ws(z), the noise’s central frequency, wy,(z),
and wy, (z), which has its origin in the signal-to-noise beating.
They can be evaluated using (15)—(17), respectively, as long as
the signal and noise spectrum evolution along the transmission
channel are known. Unfortunately, this cannot be obtained from
(1) due to the nonlinear nature of the NLS equation.

In summary, (1) does not provide a separate description of
the signal and noise evolution along the transmission channel. It
only describes the evolution of the entire field. A major purpose
of this paper is to present a new model that describes separately
the signal and noise evolution along the transmission channel
but still considers the nonlinear interaction between the two.
To achieve that, we start by replacing (5) in (1). After that, the
right-hand side of (1) consists of six terms. By using physical
reasoning, we found that (1) can indeed be split in two equa-
tions: one equation for the signal, which includes two of these
six terms, and another for the noise, which includes the other
four terms, i.e.,

S 9S8 « e )
— i —— 4+ =8 =iy|S|2S +i2v|N|?S 1
5, Tig gz T35 = 0ISIS +i2y|N| (18)
and
ON (2 9’N  « N ‘ )
E” 4 N = NI|*N 2 N
5 "o ez T iy|N|"N +i27|S]
+iySN*S +iyNS*N. (19)

To see that (18) and (19) make sense from a physical point of
view, consider first the linear case. If we place v equal to zero
in both equations, we obtain two independent equations: one
for the signal and another for the noise. This is the expected
result, as signal and noise propagate independently in a linear
channel. In fact, our model can be derived exactly from (1),
without any approximation or assumption for the linear case.
Consider now the nonlinear case v # 0: if either the signal or
the noise is absent, we end up with (1) in both cases, as expected.
When both signal and noise are present, the only extra term that
appears in the signal equation is that related to the cross-phase
modulation produced on the signal by the noise. An equivalent
term appears in the noise equation, so if we neglect the last two
terms in the noise equation, these equations are identical. The
only difference arises from the four-wave-mixing terms, which
enhance the noise by transferring energy between the signal and
the noise. In the first four-wave mixing term of (19), the signal
acts as a pump and noise is amplified. In the second term, noise
acts as a pump and the signal is amplified. But because noise
fluctuates, extra noise is added to the signal in both cases. Thus,
the four-wave mixing terms always give rise to excess noise.
This is the reason why both four-wave mixing terms appear in
the noise equation and not in the signal equation.

III. VALIDATION OF THE MODEL

From the discussion in the previous section, we see that ¢4(z)
can be calculated from (9) if (1) is used to obtain ¢;(z) and
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(18) and (19) are used to calculate t,,(z) and ts,(2), respec-
tively. However, if (18) and (19) describe accurately the signal
and noise evolution, it should also be possible to obtain ¢4(z)
from the symbol’s group velocity v, (ws(z)) evolution along the
transmission channel

[ d¢ B z
OB vy R
Because 1/v, = [31, we can write
L) = [ Bl - o)z ey
and by considering
Bi(ws(€)) = P1(ws(0)) + B2 (¢) [ws(¢) —ws(0)]  (22)
we obtain
Lo = [ B0k -wOld @

The ¢ dependence of 2 in (22) and (23) allow for the possi-
bility of using fibers with different group velocity dispersion
values along the transmission channel, for instance, to achieve
dispersion compensation. Note that w,(¢) in (23) can be evalu-
ated using (15) together with (18) and (19).

From (23), it is also clear that t5(z) tends to be small if the
average value of the group velocity dispersion approaches zero.
This leads to systems with low timing jitter, as was shown ex-
perimentally, for example, in [8].

In order to validate our model, we compare the values of ¢(z)
obtained using (9) with those obtained using (23), for different
propagation regimes.

Previously, we have shown that our model is exact for the
linear case. Now we investigate how well it performs in a highly
nonlinear case. We consider a 10-Gb/s average soliton commu-
nication system. The signal after the booster amplifier is given
by S(z,0) = +/(Py)sech (t/Ty), with Py and Ty the soliton
peak power and pulse width, respectively. We assume that the
system operates over fibers with losses of 0.2 dB/km, group ve-
locity dispersion of —2 ps? /km, and a nonlinear coefficient of
1.3 W=!/km. The soliton temporal width T was adjusted to
be 1/5 of the bit period, i.e., 20 ps, which leads to a dispersion
length Lp = T¢/|B2| of 200 km. The soliton peak power P is
approximately 18 mW, and the signal is amplified every 100 km.
The gain of the amplifiers equals 20 dB with a noise spontaneous
emission factor [7], nsyp, of 1.0. The soliton and noise copropa-
gate during ten dispersion lengths (2000 km).

Fig. 1(a) shows the evolution of the soliton center position
along the transmission line for five different realizations of the
noise. Solid lines are obtained from t5(z) = t:(z) — tn(z) —
tsn(2) [see (9)], with ¢,(z) being evaluated using the NLS equa-
tion [see (1)] and ¢, (2) and ts,(2) calculated using (11) and
(12), respectively. Filled circles are obtained using (23), with
ws(z) obtained from (15). S(z,t) and N(z,t) are calculated
from (18) and (19), respectively. We can see a good agreement
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Fig. 1. Pulse central position evolution for (a) soliton and (b) nonsoliton com-
munication system. In each case five different noise realizations are considered.
Solid lines are obtained using (9) together with (1), (11), and (12). Filled circles
are obtained from (23) jointly with (15), (18), and (19).

for the soliton’s central position evolution, which proves that
our model describes accurately the soliton’s central position and
frequency evolution.

In Fig. 1(b), a nonsoliton system is considered. We consider
a Gaussian-shape pulse, with 20 ps of root-mean-square (rms)
pulse temporal width and a peak power of 5 mW after the
booster amplifier. In order to manage the chromatic dispersion,
each span is composed of 80 km of standard single-mode fiber,
with group velocity dispersion of —2 p52 /km and a dispersion
compensation fiber of 20 km, with group velocity dispersion of
8 ps? /km. We assume that both fibers have losses of 0.2 dB/km
and a nonlinear coefficient of 1.3 W~!/km. The amplifiers
have 20 dB of gain and n,, of 1.0. Again, we can see a good
agreement between the values for the pulses’ central position
evolution calculated using (9) and those obtained from (23).

We perform a similar test for several systems with different
degrees of nonlinearities and with different dispersion manage-
ment techniques. For all the considered systems, a very accu-
rate description of the pulses’ central position evolution is ver-
ified. These results clearly show that the new proposed model
describes accurately the signal and noise evolution in a separate

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 13, JULY 1, 2008

way, even for highly nonlinear systems, as in the case of soliton
communication systems.

IV. RANDOM FREQUENCY SHIFTS

In the preceding section, we showed how the symbols’ cen-
tral position evolves along the transmission channel. We also
pointed out that this temporal evolution is directly related with
the evolution of the symbols’ central frequency. In this section,
we analyze how the symbols’ central frequency evolves.

It is worth noting that in direct detection receivers, phase
is lost during the detection process. For this type of receiver
the symbols’ temporal position tends to be the critical aspect,
as its random fluctuations lead to suboptimum operation of
the decision circuit. However, if homodyne or heterodyne
detection is employed, the stability of the symbols’ central fre-
quency becomes a relevant issue, as large fluctuations can lead
to strong deterioration of the receiver performance. Modern
semiconductor lasers have spectral linewidths of less than
10 MHz. However, frequency fluctuations due to signal and
noise nonlinear interaction in optical fibers can easily become
larger than that. Therefore, this aspect must be considered
in the design of homodyne and heterodyne receivers. Large
fluctuations in the symbols’ central frequency also preclude the
use of narrow optical filters and lead to a less efficient use of
the optical spectrum.

Fig. 2(a) and (b) shows the evolution of the pulses’ central
frequency along the transmission channel for a soliton and a
nonsoliton communication system. The (a) soliton and (b) non-
soliton communication systems considered are the same de-
scribed in detail in the preceding section.

There are several features worth noting in the results pre-
sented in Fig. 2. First, comparing the results presented in Fig. 1
with those presented in Fig. 2, we can observe that the curves
for the evolution of symbols’ central position are smoother than
those for the symbols’ central frequency evolution. This hap-
pens because the symbol’s central position and frequency are
related by the integral presented in (23). Other aspect is that
shifts in the central frequency tend to occur immediately after
an amplifier. Note that amplifiers are placed 100 km apart. That
should be no surprise, as these shifts have their origin in the non-
linear interaction between signal and noise, and thus they tend
to occur where the nonlinear effects are stronger, i.e., right after
the amplifiers where signal and noise powers are highest. How-
ever, frequency shifts do not occur instantaneously after ampli-
fiers but occur progressively as the signal propagates. This is
an important point because, in the context of soliton theory, it
is frequently assumed that shifts occur instantaneously, but this
is in fact an approximation, as our results show. Indeed, for a
pure soliton, i.e., assuming a lossless soliton system, shifts occur
throughout the transmission channel because nonlinear effects
remain strong over the whole system length. Another interesting
aspect is related to the direction of the shifts. It is quite clear
from Fig. 2 that the direction of the shifts remains strongly corre-
lated with the direction of the first shift for quite a long distance.
That feature is also observable in Fig. 1, as we see that in most
cases the symbols’ center position evolves without changing di-
rection. It means that the effect of the noise added by the first
amplifier plays a dominant role. This effect eventually vanishes
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Fig. 2. Pulses’ central frequency evolution along a 2000-km-long system.
(a) Soliton and (b) nonsoliton communication system are considered. An am-
plifier is placed every 100 km to compensate for fiber losses. Large frequency
shifts tend to occur right after the amplifiers, where the signal and noise powers
are highest.

but, as can be seen, it could last several amplification stages. An-
other feature that can be observed in Fig. 2 is that the absolute
value of the frequency shifts tends to increase with the distance;
this is a direct consequence of the accumulation of amplified
spontaneous emission noise with the propagation distance.

V. TIMING JITTER

Experimentally, we do not measure individual symbol’s cen-
tral position or frequency. Usually, we have to rely on a few
averaging quantities. Typically, in an experimental setup, it is
possible to obtain the first two moments of the electrical pulse
position using, for instance, a digital oscilloscope [9], [10]. We
can express these two moments, in a given time window, as

i(z) =ts(2) + tn(z) + t'sn(2) (24)

and

t’?(z) = [t's(2) + t'n(z) + t/sn(z)]z (25)
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with
1 4T /2
t’s(z):ES(Z) /_Tw/2 1S’ (z,t)|?dt (26)
, 1 +Tw /2 , )
t.(2) = F.07) /_Tw/2 t|N'(z,t)|dt (27)
and

() = 7 /m/Q S'(z,)N"(z,t)d
U, (2) = =—— t S (z,t)N"™(z,t)dt
Eq(2) —T,/2

1 +Tw/2 ’ /
+_/ EN'(2,8)S™ (2.t dt - (28)
ES(Z) —Tw/2 ( ) ( )

where S’(z,t) and N'(z,t) are the filtered signal and noise,
respectively, at the photodetector input. We are assuming that
a narrow-band optical filter is placed before the photodetector.
Typically, the bandwidth of this filter is larger than the signal
bandwidth. Therefore this filter does not produce major changes
on the signal but removes most of the noise that is outside of the
signal bandwidth.

The photocurrent generated by the photodetector due to the
incident field is usually further amplified and filtered. The pur-
pose of this electrical processing is to rescale and reshape the
signal before the decision circuit in order to minimize the bit
error rate of the transmission system. Typically, this electrical
processing does not have a major impact on the timing jitter;
therefore it is not formally addressed in this paper. Indeed, we
run the simulations with and without a matched filter after the
photodetector and the results are mostly unaffected as long as a
narrow optical filter is placed before the photodetector in order
to eliminate most of the out-of-band noise.

Placing a narrow-band optical filter before the photodetector
reduces substantially the impact of the noise-to-noise beating. If
we also choose a time window T, on the order of the bit period,
the absolute value of ], (2) tends to be quite small comparatively
with the values of t.(z) and t/,, (2).

In order to increase the system reach, we decrease the dis-
tance between amplifiers to 40 km. With this new configuration,
the peak power required to generate and maintain the funda-
mental soliton is reduced to 8.3 mW. We consider several sys-
tems up to 3800 km. We do not extend the system reach be-
hind 3800 km because modulation instabilities start to appear in
the soliton communication system, which would require some
sort of in-line control to preserve the solitons. In the soliton
communication system, chromatic dispersion is balanced by the
Kerr effect. In the nonsoliton system, we use 32 km of standard
single-mode fiber followed by 8 km of dispersion compensation
fiber per span to balance the chromatic dispersion. The group ve-
locity dispersion assumes the value of —2 and 8 ps?/km for the
standard and dispersion compensation fiber, respectively. Apart
from these modifications, the systems configuration is identical
to those presented previously.

For all of the considered systems, the absolute value of ¢, (z)
tends to be the larger one. Evolution with the distance of ¢’,(z),
tl(z), t.,,(z), and t}(2) is presented in Fig. 3 for a particular
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Fig. 3. Temporal deviation due to the signal-to-noise interaction mediated by
the Kerr effect (¢/, (=), dashed line), noise-to-noise beating (¢', (=), full line), and
signal-to-noise beating (¢’,,, (=), full line). The total central position deviation
t(z) obtained from the sum of the three contributions is presented as a dash-dot
line. The filled circles represent the values obtained using the NLS equation.
(a) Soliton and (b) nonsoliton system.

475 950

noise realization, and for (a) soliton and (b) nonsoliton com-
munication systems. Filled circles represent the values obtained
by solving the NLS equation directly. It is worth stressing that
using the NLS equation we can only estimate the total central
position evolution; it is not possible to estimate each contribu-
tion separately.

From (24) and (25), we can define the timing jitter as

ou(2) = \12(z) = ta(z)

Assuming that t/,(z), ¢/, (z), and ., (z) are independent random
variables, we obtain

(29)

07(2) = 02(2) + 00(2) + 05, (2) (30)

where
02(2) =t%(2) — ta(2) 31)
02(2) =t2(2) = ¥n(2) (32)
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Fig.4. Timing jitter evolution for (a) soliton and (b) nonsoliton communication
system. The total jitter is given by o, (dash-dot line), which has three contribu-
tions, o, (noise-to-noise beating), o, (signal-to-noise beating, full line), and
o, (signal and noise interaction due to the Kerr effect, dashed line). Filled cir-
cles represent the values obtained solving the NLS equation.

and

02%0(2) = U20(2) = Fan2) -

Using (18) and (19) in conjugation with (26)—(28) and
(31)—(33), it is possible to estimate separately the contribution
of each component to timing jitter.

In Fig. 4, we present results for the timing jitter for the same
systems considered in Fig. 3. From the results in Fig. 4, we can
see that the contribution of the noise-to-noise beating for the
timing jitter is quite small. Clearly, the major contribution came
from the signal-to-noise beating in the photodetector. The con-
tribution due to the signal and noise interaction mediated by the
Kerr effect assumes a significative contribution only for large
distances. This contribution is in the femtoseconds range for dis-
tances up to 1000 km, which is consistent with the results pre-
sented in [11]. We can also see that the results obtained solving
the NLS equation, circles in Fig. 4, agree well with the results
obtained by estimating each contribution for the timing jitter
separately and after using (30) to estimate the total timing jitter.
This good agreement proves again that (18) and (19) provide a

(33)
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good model to study the interaction between the signal and noise
mediated by the Kerr effect in optical fibers and also shows that
the previous assumption that ¢/ (z), ¢, (z), and t’,,(z) are inde-
pendent random variables is acceptable.

VI. CONCLUSION

We point out that the NLS equation cannot provide infor-
mation regarding central time position and frequency evolution
of symbols that copropagate with noise in optical fibers. This
happens because the NLS equation describes the combination
of signal and noise as one unit. We show that it is possible to
split the NLS equation in two equations: one describing the
signal propagation and another describing the noise propaga-
tion. Using this pair of equations, one can analyze the symbols’
central time position and frequency evolution. We prove that the
nonlinear interaction between the signal and noise mediated by
the Kerr effect leads to random frequency shifts in all kinds of
systems. These random frequency shifts occur during the trans-
mission and are more intense when signal and noise powers are
highest, typically right after each amplifier. The absolute value
of the central frequency deviation can easily be on the order of
some tens of megahertz and therefore must be considered at least
in systems using coherent detection. Using our model, it is also
possible to estimate the different contributions to timing jitter.
We use a realistic model for a direct detection optical receiver
in which a narrow-band optical filter is used to remove most of
the noise outside the signal spectrum. We found that the domi-
nant contribution to timing jitter tends to be the signal-to-noise
beating at the photodetector.

REFERENCES

[1] L. F. Mollenauer and J. P. Gordon, Solitons in Optical Fibers: Funda-
mental and Applications. New York: Academic, 2006.

[2] J. P. Gordon and H. A. Haus, “Random walk of coherently amplified
solitons in optical fiber transmission,” Opt. Lett., vol. 11, no. 10, pp.
665-667, 1986.

[3] A.N.Pinto, G. P. Agrawal, and J. F. da Rocha, “Effect of soliton inter-
action on timing jitter in communication systems,” J. Lightw. Technol.,
vol. 16, no. 4, pp. 515-519, 1998.

[4] T. Georges, “Perturbation theory for the assessment of soliton trans-
mission control,” Opt. Fiber Technol., vol. 1, no. 2, pp. 97-116, 1995.

[5] A.N.Pinto, J. F. da Rocha, Q. Lin, and G. P. Agrawal, “Optical versus
electrical dispersion compensation: Role of timing jitter,” J. Lightwave
Technol., vol. 24, pp. 387-395, 2006.

[6] A. N. Pinto and G. P. Agrawal, “Noise-induced spectral shifts in
pseudo-linear fiber-optic communication systems,” in Proc. Conf.
Lasers Electro-Opt., Baltimore, MD, 2007.

1853

[71 G.P. Agrawal, Lightwave Technology: Telecommunication Systems.
Hoboken, NJ: Wiley, 2005.

[8] H.Toda, K. Hamada, Y. Furukawa, Y. Kodama, and S. Seikai, “Experi-

mental evaluation of Gorsdon-Haus timing jitter of dispersion managed

solitons,” in Proc. 25th Eur. Conf. Opt. Commun., Nice, France, 1999,

vol. I, pp. 406-407.

R. Holzlohner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R.

Menyuk, “Experimental and theoretical characterization of a 40-Gb/s

long-haul single-channel transmission system,” J. Lightw. Technol.,

vol. 20, no. 7, pp. 1124-1131, 2002.

[10] H.Xu,J.Zweck, L. Yan, C.R. Menyuk, and G. M. Carter, “Quantitative
experimental study of intrachannel nonlinear timing jitter in a 10-Gb/s
terrestrial WDM return-to-zero system,” IEEE Photon. Technol. Lett.,
vol. 16, pp. 314-316, 2004.

[11] M. Westlund, H. Sunnerud, J. Li, J. Hansryd, M. Karlsson, and P. A.
Andrekson, “Measurement of ultralow Gordon-Haus timing jitter in
dispersion-managed soliton systems,” IEEE Photon. Technol. Lett., vol.
14, pp. 1097-1099, 2002.

[9

—

Armando N. Pinto (M’00-SM’06) received the
bachelor’s degree in electronic and telecommunica-
tions engineering and the Ph.D. degree in electrical
engineering from the University of Aveiro, Aveiro,
Portugal, in 1994 and 1999, respectively.

In 2000, he became an Assistant Professor in
the Electrical, Telecommunications and Informatics
Department, University of Aveiro, and a Researcher
with the Institute of Telecommunications, Aveiro.
During academic year of 2006-2007 he was a Vis-
iting Professor at the Institute of Optics, University
of Rochester, Rochester, NY. His main research interests focus on optical
communication systems, mainly in nonlinear, polarization, and quantum effects
in fiber optics. He has published more than 80 scientific papers in international
journals and conferences.

Dr. Pinto is a member of the Optical Society of America.

Govind P. Agrawal (M’83-SM’86-F96) received
the B.S. degree from the University of Lucknow,
India, in 1969 and the M.S. and Ph.D. degrees from
the Indian Institute of Technology, New Delhi, in
1971 and 1974, respectively.

After positions with the Ecole Polytechnique,
France, the City University of New York, New York,
and AT&T Bell Laboratories, Murray Hill, NJ, in
1989 he joined the Faculty of the Institute of Optics,
University of Rochester, Rochester, NY, where he is
a Professor of optics. His research interests focus on
optical communications, nonlinear optics, and laser physics. He is an author or
coauthor of more than 300 research papers, several book chapters and review
articles, and seven books, most recently Nonlinear Fiber Optics (Boston, MA:
Academic Press, 4th ed., 2007). He has participated in organizing multiple
technical conferences. He was General Cochair for the Quantum Electronics
and Laser Science Conference in 2001 and a member of the Program Com-
mittee for the Conference on Lasers and Electro-Optics in 2004 and 2005.

Dr. Agrawal is a Life Fellow of the Optical Society of India and a Fellow of
the Optical Society of America.



