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Nonlinear interaction of two or more similaritons
in loss- and dispersion-managed fibers
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We study the nonlinear interaction of two or more fundamental and higher-order similaritons. In particular,
we consider the bright similaritons, propagating in nonlinear fibers whose gain–loss and anomalous dispersion
vary along the fiber. We first focus on the situation such that the similaritons propagate with the same velocity
but are spaced closely enough to overlap. Similar to the soliton case, the similariton interaction occurs through
cross-phase modulation; the similaritons attract or repel each other depending on their relative phase differ-
ence. The main difference from the soliton case is that the similariton width, chirp, and the amplitude scale
upon the interaction and the subsequent propagation along the fiber. We have found evidence of a substantial
energy transfer between two similaritons when their relative phase lies between 0 and �. We also consider the
case of three higher-order similaritons moving with different velocities and colliding inside the fiber. We show
that the nonlinear interaction of closely spaced similaritons exhibits a variety of interesting features that are
different from those typical of the soliton case. © 2008 Optical Society of America
OCIS codes: 190.5530, 060.4370, 190.4370.
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. INTRODUCTION
ptical solitons, the waves keeping their structure and

inear dimensions intact on propagation inside nonlinear
edia, have been studied in a number of settings [1–5].
ecently, a more general class of shape-preserving waves,
nown as similaritons, has attracted considerable atten-
ion [6–13]. The envelopes of such self-similar waves
aintain their overall shape, but the field amplitude,
idth, and a phase chirp evolve on propagation inside
onlinear media [14]. Although temporal similaritons
ave so far attracted more attention, spatial similaritons
ave also been discovered in graded-index waveguide am-
lifiers [13,15]. Mathematically, all these cases are de-
cribed by the inhomogeneous nonlinear Schrödinger
NLS) equation. The same equation governs the dynamics
f Bose–Einstein condensates in atomic traps [16].

An interesting aspect of soliton physics is related to the
onlinear interaction of two or more solitons occurring
hen they are so close to each other that their tails begin

o overlap [17–23]. An essential property of solitons is
hat two solitons propagating with different velocities re-
ain intact upon a collision, acquiring only a small shift

n their central positions [17]. Another interesting inter-
ction scenario is that of the two closely spaced overlap-
ing solitons propagating parallel to each other. In this
ase, the two solitons interact through cross-phase modu-
ation (XPM) and they attract or repel each their depend-
ng on their relative phase difference [18]. In the case of
n-phase solitons, two solitons close in on each other, col-
ide, and move apart until their trajectories start bending
oward each other again. The whole scenario then repeats
tself in a periodic fashion. In contrast, the spacing be-
ween the solitons increases monotonically when their
0740-3224/08/060983-7/$15.00 © 2
hases differ by 180°. The situation becomes more com-
lex whenever more than two solitons interact nonlin-
arly [22].

Since similaritons are related to solitons through a
ather complicated transformation [12], we expect the
imilariton collisions to display an even more intricate be-
avior. Indeed, we have recently shown that two similari-
ons moving with the opposite velocities can form a mol-
culelike bound state upon collision [12]. In this paper, we
onsider the case of two or more closely spaced similari-
ons. Similar to interacting solitons the closely spaced
imilaritons interact with each other through XPM and
xperience attractive and repulsive forces depending on
heir relative phases. However, due to a phase chirp the
imilariton evolution exhibits a variety of interesting fea-
ures that can be quite different from the soliton case.
ur similaritons form and propagate in the anomalous-
ispersion regime of a fiber amplifier. We notice that
arabolically shaped similaritons that can form asymp-
otically in the case of normal dispersion are not consid-
red in this paper.

. SIMILARITON SOLUTIONS
he evolution of similaritons inside a dispersion-managed
ber amplifier is governed by the generic inhomogeneous
LS equation in the form

i
�U

�z
−

��z�

2

�2U

��2 + ��z��U�2U = i
g�z�

2
U, �1�

here g�z�, ��z�, and ��z� are distributed gain, dispersion,
nd nonlinearity of the amplifier, respectively. Equation
008 Optical Society of America
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1) is known to have similariton solutions [7,9,12] pro-
ided a certain relation exists among g�z�, ��z�, and ��z�.

The similariton solution is obtained by noting that a
imple self-similar transformation reduces Eq. (1) to the
tandard homogeneous NLS equation that is known to be
ntegrable by the inverse scattering method [17]. Such a
ransformation can be represented as [12]

U��,z� = A�z��� � − �c�z�

w�z�
,��z��exp�i���,z��. �2�

ere A�z�, w�z�, and �c�z� are the amplitude, the width,
nd the center similariton position, respectively, and ��z�
s an effective propagation distance, which is yet to be de-
ermined. For a similariton the phase front is parabolic
corresponding to a linearly chirped pulse) such that

���,z� = c�z��2/�2w0
2� + b�z�� + d�z�, �3�

here c�z� and b�z� specify the curvature and the position
f the center of the wavefront, respectively, and d�z� is in-
ependent of �. We have introduced w0 as an input pulse
idth parameter to make the chirp parameter c�z� dimen-

ionless. We stress that the chirp c�z� is not an essential
eature of similaritons—in fact, chirp-free similaritons
ith c=0 can exist.
The substitution from Eqs. (2) and (3) into the NLS

quation (1) results in a set of differential equations for
he parameters describing the evolution of the pulse such
hat � obeys the homogeneous NLS equation

i
��

��
±

1

2

�2�

��2 + ���2� = 0. �4�

ere the upper (lower) sign corresponds to the case of
nomalous (normal) dispersion, and the similarity vari-
ble is defined as

���,z� = �� − �c�z��/w�z�. �5�

The transformation of the inhomogeneous NLS equa-
ion into the homogeneous one is only possible if the pa-
ameters of the medium satisfy the condition [7,9,12]

g�z� = c�z�
��z�

w0
2 +

d

dz
ln���z�

��z�� . �6�

s long as condition (6) is satisfied, one obtains the fol-
owing expressions for the effective propagation distance,
he width, the amplitude, and the position of the pulse:

��z� = D�z��1 − c0D�z��−1, �7�

w�z� = w0�1 − c0D�z��, �8�

A�z� = w�z�−1����z��/��z��1/2, �9�

�c�z� = �0 − �c0�0 + b0�D�z�, �10�

here we have introduced a dimensionless parameter
�z� as
D�z� =
1

w0
2�

0

z

��z�dz. �11�

t represents the total dispersion accumulated over a fiber
ength z. The parameters related to the phase evolve with
as

c�z� =
c0

1 − c0D�z�
, b�z� =

b0

1 − c0D�z�
, �12�

d�z� = �b0
2/2�D�z��1 − c0D�z��−1. �13�

ere c0 is the input chirp parameter. It will be seen later
hat the value of c0 strongly affects the similariton inter-
ction scenario.
Equations (4)–(13) show that any soliton of the homog-

nous NLS equation is related to a similariton obeying
he inhomogeneous NLS equation with the compatibility
ondition given in Eq. (6). It follows from the exact inte-
rability of the NLS equation [1] that all such similari-
ons must be stable. They should survive mutual colli-
ions just as the solitons do, even though their width,
mplitude, and chirp will keep changing during and after
he collision. Further, higher-order solitons of the NLS
quation correspond to multisimilariton solutions of
q. (1).

. TWO-SIMILARITON INTERACTIONS
he similarity transformation, given by Eq. (2), can be
sed to study collisions of two closely spaced similaritons.
ur approach consists of solving the standard NLS
quation, Eq. (4), numerically with the split-step Fourier
ethod [5] using the following initial condition:

��0,�� = �1 + a0�sech�� + �0/2�exp�i	/2�

+ �1 − a0�sech�� − �0/2�exp�− i	/2�, �14�

here 	 is the initial phase difference between the two
imilaritons and a0 is a measure of their amplitude differ-
nce. When a0=0 and 	=0, the similaritons are initially
dentical in all respects as they have the same amplitude
nd phase but their center positions are �0 away from
ach other. As the similaritons propagate and interact
hrough XPM, their amplitudes, phases, and central posi-
ions change [18]. In this section, we fix the relative time
elay to be �0=3 but let a0 and 	 take on different values.
Our numerical solution provides the soliton field ��� ,��

t any distance � starting from its initial value ��0,��
iven in Eq. (14). We convert it into the corresponding
imilariton field U�z ,�� by inverting transformations
qs. (5) and (7) with the aid of the relations

D�z� = �/�1 + c0��, �15�

��z� = �c�z� + w�z���z�. �16�

o obtain an explicit expression for the distance z, we fo-
us on a fiber whose dispersion decreases exponentially
ith the length such that ��z�=�0e−
z. The parameter 


ontrols the rate of dispersion change inside the fiber. In
articular, the constant dispersion case can be treated by
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hoosing 
=0. In the case of a dispersion-decreasing fiber
DDF), we obtain

z = −
1



ln	1 −


LD�

1 + c0�

 , �17�

��z� = �c�z� + w0�1 + c0

�1 − e−
z�


LD
���z�, �18�

here LD=w0
2 / ��0� is the dispersion length. It follows from

hese relations that 
 is simply a scaling factor for the
unctions z��� and ��z�. In the specific cases of 
=0 and
0=0, we recover the soliton case because g=0 from
q. (6) and the fiber has constant dispersion. In this
pecific case, z=LD� and �=�c+w0�, as expected.

An interesting special case is of chirped similaritons,
ropagating inside a fiber with constant anomalous dis-
ersion. This case was first studied in [6] and it leads to a
imple compatibility condition

g�z� = −
c0/LD

1 + c0z/LD
. �19�

he gain is needed when c0�0. Thus, a fiber amplifier
hose gain increases along the fiber length, as indicated
bove, supports bright similaritons whose width de-
reases with propagation. In contrast, when c0�0 simi-
aritons exist if fiber losses decrease with z and the simi-
ariton width increases continuously. It is remarkable
hat stable similaritons can form in a lossy, constant-
ispersion fiber.
Figure 1 shows the nonlinear interaction of two identi-

al similaritons (the same amplitude and phase, a0=	=0)
nside a fiber with constant dispersion. The top part
hows the case of two positively chirped similaritons �c0
0.1� propagating inside a lossy fiber. As expected, simi-

aritons spread as they “breathe” in a periodic manner. In
ontrast, when c0=−0.1 and the fiber has a suitable gain
rofile, the two similaritons compress as they interact
hrough XPM and breathe periodically. In a sense, such

ig. 1. (Color online) Nonlinear interaction of two identical
imilaritons inside a fiber with constant anomalous dispersion.
he initial chirp is positive �c0=0.1� in the top image but is
hanged to a negative value c =−0.1 in the bottom one.
0
igher-order similaritons are reminiscent of the well-
nown soliton breathers [19].
As in the case of standard solitons, the relative phase of

wo similaritons has an enormous impact on the XPM-
nduced nonlinear coupling between them. As an ex-
mple, Fig. 2 shows the evolution of two similaritons of
he same amplitude �a0=0� when their relative phase dif-
erence is changed from 	=� /2 (top) to 	=� (bottom). The
ositive chirp of c0=0.1 corresponds to propagation inside
lossy fiber. When the two similaritons are out of phase

	=��, they move away from each other without any en-
rgy transfer. In contrast, when 	=� /2 the energy is
ransferred from one similariton to another. The direction
f the energy transfer depends on the sign of 	 and a mir-
or image of that seen in the top part of Fig. 2 is obtained
or 	=−� /2. Such a behavior is reminiscent of a fiber cou-
ler in which a linear evanescent-wave coupling leads to
he energy transfer.

One may ask what happens when the amplitudes of
wo similaritons are different. Figure 3 shows the evolu-
ion of two similaritons with different initial amplitudes
f 1.2 and 0.8 �a0=0.2� when their relative phase differ-
nce is changed from 0 (top image) to � /2 (bottom image).
he other parameters are identical to those used for Fig.
. To see the impact of amplitude mismatch, Fig. 3(a)
hould be compared with that in Fig. 1(a), while Fig. 3(b)
hould be compared with that in Fig. 2(a). In the in-phase
ase, periodic collisions still occur but only a part of the
ulse energy of the weaker pulse is transferred to the in-
ense similariton during each partial collision. When the
wo input similaritons also differ in phase by � /2, they re-
el each other but some energy is still transferred from
he weaker to the stronger pulse before they separate far
part. Because of this energy loss the weaker pulse
preads rapidly because it is not able to maintain its simi-
aritonlike nature. The stronger pulse also spreads and
cquires a finite upward velocity, resulting in a continu-
us vertical shift in its position.

Let us now consider similariton interactions inside the
DFs. The main feature of such fibers is that the accu-

ig. 2. (Color online) Nonlinear interaction of two identical
hirped similaritons �c0=0.1� inside a fiber with constant anoma-
ous dispersion. The relative phase difference between them is
/2 in the top image but is changed to � in the bottom one.
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ulated dispersion D�z� asymptotically approaches a con-
tant value of �
LD�−1. The width of each similariton may
ncrease, decrease, or remain constant depending on the
nitial chirp. A chirp-free similariton can exist inside a
DF. As seen from Eq. (13), the pulse width does not

hange for chirp-free similaritons. The compatibility con-
ition (6) yields g�z�=−
, i.e., such similaritons form in
bers with a constant loss. Figure 4(a) shows the
PM-induced attraction between two such similaritons

or 
=0.1. If a small chirp is initially imposed, the two
imilaritons may expand or compress as they collide,
epending on whether c0 is initially positive or negative.
igure 4(b) shows the case of compressing similaritons
ith c0=−0.1. The two similaritons are in phase in both

ases. The interaction dynamics are similar to those
hown in Fig. 2 when two similaritons have different
hases.

ig. 3. (Color online) Nonlinear interaction of two chirped simi-
aritons �c0=0.1� with different amplitudes �a0=0.2� inside a fiber
ith constant dispersion. The relative phase difference between

hem is 0 in the top image but is changed to � /2 in the bottom
ne.

ig. 4. (Color online) Nonlinear interaction of two identical in-
hase similaritons inside a DDF with 
=0.1. The initial chirp is
ero �c0=0� in the top image but is changed to c0=−0.1 in the
ottom one.
. THREE-SIMILARITON INTERACTIONS
e next focus on the interaction of three closely spaced

imilaritons. This case is studied by solving the standard
LS equation (4) with the following initial condition:

��0,�� = sech�� + �0�exp�i	� + sech���

+ sech�� − �0�exp�− i	�, �20�

igure 5 (top image) shows the XPM-induced attraction
etween three chirp-free similaritons inside a DDF using
=0.1, �0=2.5, and 	=0. As mentioned earlier the width
f each similariton does not change under such condi-
ions. The three similaritons first merge into two similari-
ons that are shifted half-way from the original positions.
hese two then merge to form a single intense pulse
hich subsequently separates into two and then into

hree original similaritons. The whole scenario then re-
eats in a periodic fashion. In the chirped case, the colli-
ion scenario remains unchanged except that individual
imilaritons spread for positive values of the chirp and
ompress for negative values of the chirp. Figure 5
bottom image) shows the case of three positively chirped
c0=0.1� expanding similaritons.

The effect of different relative phases for three chirped
imilaritons �c0=0.1� is shown in Fig. 6. In the top image,
he relative phase difference is 	=� /2 whereas it is � in
he bottom image. All other parameters are identical to
hose used in Fig. 5. The width of each positively chirped
imilariton increases. As expected, the three similaritons
epel when they are out of phase �	=��. The repulsion
akes place even for 	=� /2, but the energy is asymmetri-
ally redistributed among the similaritons.

We briefly consider the case of three identical similari-
ons moving with different velocities and interacting in-
ide a DDF with 
=0.1. The standard NLS equation in
his case is solved with the initial condition

��0,�� = sech�� + �0�exp�iv�� + sech���

+ sech�� − �0�exp�− iv��, �21�

here v is the initial velocity and �0 is the initial separa-

ig. 5. (Color online) Nonlinear interaction of three identical in-
hase similaritons inside a DDF with 
=0.1. The initial chirp is
ero �c0=0� in the top image but is changed to c0=0.1 in the
ottom one.
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ion of each similariton from its neighbor. Figure 7 (top)
hows the case of positively chirped similaritons with c0
0.1 using �0=8 and v=3. In this case, each pulse spreads
pon propagation. After the collision, each pulse acceler-
tes away from the others. The case of negatively chirped
imilaritons compressing similaritons �c0=−0.1� is shown
n Fig. 7(b). Notice that each pulse now decelerates as it

oves away from the others after the collision and the
imilaritons appear to be moving at nearly the same
peeds.

. DIFFERENCES BETWEEN SIMILARITON
ND SOLITON COLLISIONS

n this section we focus on the main differences between
oliton and similariton collisions by focusing on three
ulses moving with different velocities such that they col-

ig. 6. (Color online) Nonlinear interaction of three identical
hirped similaritons �c0=0.1� inside a DDF with 
=0.1. The rela-
ive phase 	 is � /2 in the top image but is changed to � in the
ottom one.

ig. 7. (Color online) Nonlinear interaction of three identical
imilaritons moving at different speeds �v=3� and colliding in-
ide a DDF with 
=0.1. The initial chirp is positive �c0=0.1� in
he top image but is changed to a negative value of c0=−0.1 for
he bottom one.
ide at a certain point within the fiber. In both cases, we
se the initial condition given in Eq. (21) and assume fi-
er dispersion to be anomalous with a constant value.
hus the only difference is that pulses are chirped in the
imilariton case but c0=0 in the soliton case.

The top part in Fig. 8 shows the soliton case �c0=0� us-
ng �0=5 and v=2. In the bottom part, the chirp is intro-
uced using c0=0.1 but all other parameters remain the
ame. One can clearly see the similarities as well as dif-
erences between soliton and similariton collisions. The
ain differences are that the similaritons collide sooner,

heir widths change continuously, and their trajectories
urve after collision so much that collisions are far from
eing symmetric. An interesting feature worth comment-
ng is that collision of even three solitons does not exhibit

perfect symmetry as one may have expected naively.

ig. 8. (Color online) Nonlinear interaction of three identical
olitons (top) and similaritons (bottom) moving at different
peeds �v=2� and colliding inside a constant-dispersion fiber. The
nitial chirp is zero in the soliton case but c0=0.1 in the similari-
on case.

ig. 9. (Color online) Nonlinear interaction of three third-order
olitons (top) and similaritons (bottom) moving at different
peeds �v=2� and colliding inside a constant-dispersion fiber. The
nitial chirp is zero in the soliton case but c0=0.1 in the similari-
on case.
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Finally, we consider the case of three higher-order simi-
aritons moving with different velocities and colliding to-
ether inside a constant-dispersion fiber. Figure 9 shows
he soliton (top) and similariton (bottom) collisions when
oliton order N=3. Except for changing the soliton order,
e keep all other parameters identical to those used in
ig. 8. To the best of our knowledge, these kinds of colli-
ions have not attracted much attention in the past. As
ne would expect, each third-order soliton or similariton
ompresses, splits into two pulses, and then recovers its
nitial shape as it approaches the other solitons. After
heir nonlinear interaction during the collision, only the
enter soliton (or similariton) survives nearly intact. The
ther two are perturbed enough that they separate into
hree individual pulses, as dictated by the inverse scatter-
ng theory. Other difference between the soliton and simi-
ariton collisions are similar to the N=1 case in the sense
hat similaritons collide sooner, their widths change con-
inuously, and their trajectories curve after collision.

. CONCLUSIONS
n summary, we have studied in detail the nonlinear in-
eraction of two or more similaritons occurring when they
re so close to each other that their fields overlap. Our ap-
roach makes use of a similarity transformation that es-
ablishes a one-to-one correspondence between the simi-
aritons that are solutions of an inhomogeneous NLS
quation and the standard solitons that are solutions of
he standard homogeneous NLS equation, provided a cer-
ain comparability condition is satisfied. This correspon-
ence shows that similaritons can form in lossy fibers as
ell as inside fiber amplifiers with the main difference be-

ng that in the latter case the similaritons are often
hirped. If fiber dispersion is allowed to change with dis-
ance, similaritons can also be chirp-free. In this paper,
e have assumed that anomalous dispersion of the fiber
nd focused exclusively on bright similaritons. In general,
henever the similaritons are chirped, their initial chirp

0 plays an important role. If the chirp is negative, the ex-
stence of similaritons requires gain (i.e., they form inside

fiber amplifier), and the similariton width decreases
ith propagation. In contrast, if c0 is positive similaritons

an form even in a lossy fiber, but they spread on propa-
ation along the fiber.

In this paper we have chiefly focused on the situation in
hich similaritons propagate with the same velocity but
re spaced close enough to overlap. Similar to the case of
tandard solitons the similariton interaction is attractive
r repulsive depending on their relative phase difference.
n the case of two in-phase similaritons, they mover
loser, collide, and then separate from each other in a pe-
iodic fashion. In contrast, the similariton spacing in-
reases monotonically when their phases differ by �. The
ain difference from the soliton case is that the width,

hirp, and amplitude of such similaritons scale on propa-
ation. We have found the evidence of a substantial en-
rgy transfer between the two similaritons when their
elative phase lies between 0 and �.

We have also studied the nonlinear interaction of three
losely spaced similaritons inside a DDF and have found
ome interesting features. In the in-phase case, three
ulses are first transformed into two pulses, followed by
heir merger into a single intense pulse. The process then
everses itself, resulting in the formation of three sepa-
ate similaritons. The whole scenario repeats periodically.
n the chirp-free case, the similariton width does not
hange. However, if the initial chirp is positive, the pulse
idth increases monotonically. Whenever the phases of

hree similaritons are not the same, the similaritons re-
istribute energy among themselves and scatter away
pon collision.
We have also studied the case of three similaritons,

hich are initially separated far apart and move with dif-
erent velocities as they collide inside the fiber. Although,
rior to collision, the energy transfer among three pulses
till occurs, a substantial part of the energy resides in the
utermost pulses and a single intense pulse never forms.
n even more interesting behavior occurs when the initial
eak powers of the pulses are large enough for higher-
rder similaritons to form. In the case of third-soliton
imilaritons, each similariton undergoes a periodic se-
uence of compression and splitting into. However, after
he collision is over, the two outer solitons as well as simi-
aritons are perturbed enough that each splits into three
rst-order components in accordance with the inverse
cattering theory. The main point to note is that the non-
inear interaction of closely spaced similaritons exhibits a
ariety of interesting features that can be different from
he soliton case.

Since the formation of similaritons hinges crucially on
he compatibility condition given in Eq. (6), we discuss
riefly how practical it is to satisfy this condition. Two ap-
roaches can be used for this purpose. If the fiber param-
ters �2 and � remain constant along the fiber length, the
ast term in Eq. (6) vanishes, and this equation can be
atisfied by doping the fiber such that the dopant concen-
ration varies along the fiber in a prescribed manner. By
umping the doped fiber suitably, it is possible to realize
n axially varying gain g�z� such that Eq. (6) is satisfied.
e stress that fiber does not have to provide a net gain for

imilaritons to form but the loss should vary with z to en-
ure that the compatibility condition is satisfied. The sec-
nd approach makes use of DDFs in which the core diam-
ter of the fiber is changed along its length such that the
agnitude of the dispersion parameter decreases expo-
entially [24]. In this case Eq. (6) can be satisfied even in
assive fibers with constant loss. Such fibers have been
abricated [25] and employed recently to observe the for-
ation of parabolically shaped similaritons [26–28]. An

xponential dispersion profile can also be realized
pproximately by using several fibers exhibiting constant
ut different dispersion characteristics [29].
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