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Nonlinear interaction of two or more similaritons
in loss- and dispersion-managed fibers
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We study the nonlinear interaction of two or more fundamental and higher-order similaritons. In particular,
we consider the bright similaritons, propagating in nonlinear fibers whose gain—loss and anomalous dispersion
vary along the fiber. We first focus on the situation such that the similaritons propagate with the same velocity
but are spaced closely enough to overlap. Similar to the soliton case, the similariton interaction occurs through
cross-phase modulation; the similaritons attract or repel each other depending on their relative phase differ-
ence. The main difference from the soliton case is that the similariton width, chirp, and the amplitude scale
upon the interaction and the subsequent propagation along the fiber. We have found evidence of a substantial
energy transfer between two similaritons when their relative phase lies between 0 and 7. We also consider the
case of three higher-order similaritons moving with different velocities and colliding inside the fiber. We show
that the nonlinear interaction of closely spaced similaritons exhibits a variety of interesting features that are
different from those typical of the soliton case. © 2008 Optical Society of America

OCIS codes: 190.5530, 060.4370, 190.4370.

1. INTRODUCTION

Optical solitons, the waves keeping their structure and
linear dimensions intact on propagation inside nonlinear
media, have been studied in a number of settings [1-5].
Recently, a more general class of shape-preserving waves,
known as similaritons, has attracted considerable atten-
tion [6-13]. The envelopes of such self-similar waves
maintain their overall shape, but the field amplitude,
width, and a phase chirp evolve on propagation inside
nonlinear media [14]. Although temporal similaritons
have so far attracted more attention, spatial similaritons
have also been discovered in graded-index waveguide am-
plifiers [13,15]. Mathematically, all these cases are de-
scribed by the inhomogeneous nonlinear Schrodinger
(NLS) equation. The same equation governs the dynamics
of Bose—Einstein condensates in atomic traps [16].

An interesting aspect of soliton physics is related to the
nonlinear interaction of two or more solitons occurring
when they are so close to each other that their tails begin
to overlap [17-23]. An essential property of solitons is
that two solitons propagating with different velocities re-
main intact upon a collision, acquiring only a small shift
in their central positions [17]. Another interesting inter-
action scenario is that of the two closely spaced overlap-
ping solitons propagating parallel to each other. In this
case, the two solitons interact through cross-phase modu-
lation (XPM) and they attract or repel each their depend-
ing on their relative phase difference [18]. In the case of
in-phase solitons, two solitons close in on each other, col-
lide, and move apart until their trajectories start bending
toward each other again. The whole scenario then repeats
itself in a periodic fashion. In contrast, the spacing be-
tween the solitons increases monotonically when their
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phases differ by 180°. The situation becomes more com-
plex whenever more than two solitons interact nonlin-
early [22].

Since similaritons are related to solitons through a
rather complicated transformation [12], we expect the
similariton collisions to display an even more intricate be-
havior. Indeed, we have recently shown that two similari-
tons moving with the opposite velocities can form a mol-
eculelike bound state upon collision [12]. In this paper, we
consider the case of two or more closely spaced similari-
tons. Similar to interacting solitons the closely spaced
similaritons interact with each other through XPM and
experience attractive and repulsive forces depending on
their relative phases. However, due to a phase chirp the
similariton evolution exhibits a variety of interesting fea-
tures that can be quite different from the soliton case.
Our similaritons form and propagate in the anomalous-
dispersion regime of a fiber amplifier. We notice that
parabolically shaped similaritons that can form asymp-
totically in the case of normal dispersion are not consid-
ered in this paper.

2. SIMILARITON SOLUTIONS

The evolution of similaritons inside a dispersion-managed
fiber amplifier is governed by the generic inhomogeneous
NLS equation in the form

ij @&2_[] UZU—‘@U 1
laz_2a¢2+y(z)|| e )

where g(z), B(z), and y(z) are distributed gain, dispersion,
and nonlinearity of the amplifier, respectively. Equation
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(1) is known to have similariton solutions [7,9,12] pro-
vided a certain relation exists among g(z), B(z), and y(z).
The similariton solution is obtained by noting that a
simple self-similar transformation reduces Eq. (1) to the
standard homogeneous NLS equation that is known to be
integrable by the inverse scattering method [17]. Such a
transformation can be represented as [12]

7- 7(2)

w(z)

U(rz) =A(2)‘I’[ ,4”(2)} exp[i®P(7,2)]. (2)

Here A(z), w(z), and 7,(z) are the amplitude, the width,
and the center similariton position, respectively, and {(z)
is an effective propagation distance, which is yet to be de-
termined. For a similariton the phase front is parabolic
(corresponding to a linearly chirped pulse) such that

d(7,2) = c(2)72/(2w(2)) +b(z)T+d(2), (3)

where c(z) and b(z) specify the curvature and the position
of the center of the wavefront, respectively, and d(z) is in-
dependent of 7. We have introduced w as an input pulse
width parameter to make the chirp parameter c¢(z) dimen-
sionless. We stress that the chirp c(z) is not an essential
feature of similaritons—in fact, chirp-free similaritons
with ¢=0 can exist.

The substitution from Egs. (2) and (3) into the NLS
equation (1) results in a set of differential equations for
the parameters describing the evolution of the pulse such
that ¥ obeys the homogeneous NLS equation

A W )
I—+ ——— +[W[¥ =0. (4)
al 2 dx

Here the upper (lower) sign corresponds to the case of
anomalous (normal) dispersion, and the similarity vari-
able is defined as

x(1,2) =[7- 7.(2) Jw(2). (5)

The transformation of the inhomogeneous NLS equa-
tion into the homogeneous one is only possible if the pa-
rameters of the medium satisfy the condition [7,9,12]

B) d V@}
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—1
wy dz
As long as condition (6) is satisfied, one obtains the fol-

lowing expressions for the effective propagation distance,
the width, the amplitude, and the position of the pulse:

{(2) =D()[1-ceD()]™, (7)
w(z) =we[1-ceD()], (8)
Al2) =w@ MBI, 9)
7.(2) = 79— (como + bo)D(2), (10)

where we have introduced a dimensionless parameter
D(z) as
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1 Z
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It represents the total dispersion accumulated over a fiber
length z. The parameters related to the phase evolve with
z as

Co bo
c(z) = m, b(z) = T.D(z)’ (12)
d(z) = (b3/2)D(2)[1 - coD(2)] ™. (13)

Here ¢ is the input chirp parameter. It will be seen later
that the value of ¢ strongly affects the similariton inter-
action scenario.

Equations (4)—(13) show that any soliton of the homog-
enous NLS equation is related to a similariton obeying
the inhomogeneous NLS equation with the compatibility
condition given in Eq. (6). It follows from the exact inte-
grability of the NLS equation [1] that all such similari-
tons must be stable. They should survive mutual colli-
sions just as the solitons do, even though their width,
amplitude, and chirp will keep changing during and after
the collision. Further, higher-order solitons of the NLS
equation correspond to multisimilariton solutions of
Eq. (D).

3. TWO-SIMILARITON INTERACTIONS

The similarity transformation, given by Eq. (2), can be
used to study collisions of two closely spaced similaritons.
Our approach consists of solving the standard NLS
equation, Eq. (4), numerically with the split-step Fourier
method [5] using the following initial condition:

W (0,x) = (1 +ag)sech(y + xo/2)exp(i 0/2)
+ (1 -ag)sech(y — xo/2)exp(-i0/2), (14)

where 6 is the initial phase difference between the two
similaritons and a is a measure of their amplitude differ-
ence. When a(y=0 and 6=0, the similaritons are initially
identical in all respects as they have the same amplitude
and phase but their center positions are y, away from
each other. As the similaritons propagate and interact
through XPM, their amplitudes, phases, and central posi-
tions change [18]. In this section, we fix the relative time
delay to be xo=3 but let ¢y and 6 take on different values.

Our numerical solution provides the soliton field ¥(¢Z, x)
at any distance { starting from its initial value ¥(0,y)
given in Eq. (14). We convert it into the corresponding
similariton field U(z,7) by inverting transformations
Eqgs. (5) and (7) with the aid of the relations

D(z) = U1 +cod), (15)

mz) = 7.(2) + w(2)x(2). (16)

To obtain an explicit expression for the distance z, we fo-
cus on a fiber whose dispersion decreases exponentially
with the length such that B(z)=Bye . The parameter o
controls the rate of dispersion change inside the fiber. In
particular, the constant dispersion case can be treated by
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choosing 0=0. In the case of a dispersion-decreasing fiber
(DDF), we obtain

1 ( ULD§>
z=——1In|1- ) (17)

a 1+col

(1-e)

(z) = 7,(2) + wo{ 1+ C()T
oLp

}X(Z), (18)
where L D:w%/ | Bol is the dispersion length. It follows from
these relations that o is simply a scaling factor for the
functions z({) and 7(z). In the specific cases of 0=0 and
cp=0, we recover the soliton case because g=0 from
Eq. (6) and the fiber has constant dispersion. In this
specific case, z=Lp{ and 7=7,+wgY, as expected.

An interesting special case is of chirped similaritons,
propagating inside a fiber with constant anomalous dis-
persion. This case was first studied in [6] and it leads to a
simple compatibility condition

co/Lp

S E— (19)
1+ C()Z/LD

8lz)=-

The gain is needed when c¢y<0. Thus, a fiber amplifier
whose gain increases along the fiber length, as indicated
above, supports bright similaritons whose width de-
creases with propagation. In contrast, when cy>0 simi-
laritons exist if fiber losses decrease with z and the simi-
lariton width increases continuously. It is remarkable
that stable similaritons can form in a lossy, constant-
dispersion fiber.

Figure 1 shows the nonlinear interaction of two identi-
cal similaritons (the same amplitude and phase, a¢=6=0)
inside a fiber with constant dispersion. The top part
shows the case of two positively chirped similaritons (c
=0.1) propagating inside a lossy fiber. As expected, simi-
laritons spread as they “breathe” in a periodic manner. In
contrast, when c¢y=-0.1 and the fiber has a suitable gain
profile, the two similaritons compress as they interact
through XPM and breathe periodically. In a sense, such
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Fig. 1. (Color online) Nonlinear interaction of two identical
similaritons inside a fiber with constant anomalous dispersion.
The initial chirp is positive (¢y=0.1) in the top image but is
changed to a negative value ¢;=-0.1 in the bottom one.
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higher-order similaritons are reminiscent of the well-
known soliton breathers [19].

As in the case of standard solitons, the relative phase of
two similaritons has an enormous impact on the XPM-
induced nonlinear coupling between them. As an ex-
ample, Fig. 2 shows the evolution of two similaritons of
the same amplitude (¢(=0) when their relative phase dif-
ference is changed from 6=/2 (top) to 6= (bottom). The
positive chirp of ¢y=0.1 corresponds to propagation inside
a lossy fiber. When the two similaritons are out of phase
(6=1), they move away from each other without any en-
ergy transfer. In contrast, when 6=m/2 the energy is
transferred from one similariton to another. The direction
of the energy transfer depends on the sign of 6 and a mir-
ror image of that seen in the top part of Fig. 2 is obtained
for #=—-m/2. Such a behavior is reminiscent of a fiber cou-
pler in which a linear evanescent-wave coupling leads to
the energy transfer.

One may ask what happens when the amplitudes of
two similaritons are different. Figure 3 shows the evolu-
tion of two similaritons with different initial amplitudes
of 1.2 and 0.8 (a¢y=0.2) when their relative phase differ-
ence is changed from 0 (top image) to /2 (bottom image).
The other parameters are identical to those used for Fig.
2. To see the impact of amplitude mismatch, Fig. 3(a)
should be compared with that in Fig. 1(a), while Fig. 3(b)
should be compared with that in Fig. 2(a). In the in-phase
case, periodic collisions still occur but only a part of the
pulse energy of the weaker pulse is transferred to the in-
tense similariton during each partial collision. When the
two input similaritons also differ in phase by 7/2, they re-
pel each other but some energy is still transferred from
the weaker to the stronger pulse before they separate far
apart. Because of this energy loss the weaker pulse
spreads rapidly because it is not able to maintain its simi-
laritonlike nature. The stronger pulse also spreads and
acquires a finite upward velocity, resulting in a continu-
ous vertical shift in its position.

Let us now consider similariton interactions inside the
DDFs. The main feature of such fibers is that the accu-

-5

Normalized Time
o

”

0 0.5 1 15 2 25 3 3.5 4 45
Normalized Distance

Normalized Time

0 0.5 1 15 2 25 3 3.5 4 4.5
Normalized Distance

Fig. 2. (Color online) Nonlinear interaction of two identical
chirped similaritons (cy=0.1) inside a fiber with constant anoma-
lous dispersion. The relative phase difference between them is
/2 in the top image but is changed to 7 in the bottom one.
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Fig. 3. (Color online) Nonlinear interaction of two chirped simi-
laritons (cy=0.1) with different amplitudes (a¢(,=0.2) inside a fiber
with constant dispersion. The relative phase difference between
them is 0 in the top image but is changed to #/2 in the bottom
one.

mulated dispersion D(z) asymptotically approaches a con-
stant value of (¢Lp)~!. The width of each similariton may
increase, decrease, or remain constant depending on the
initial chirp. A chirp-free similariton can exist inside a
DDF. As seen from Eq. (13), the pulse width does not
change for chirp-free similaritons. The compatibility con-
dition (6) yields g(z)=-o, i.e., such similaritons form in
fibers with a constant loss. Figure 4(a) shows the
XPM-induced attraction between two such similaritons
for 0=0.1. If a small chirp is initially imposed, the two
similaritons may expand or compress as they collide,
depending on whether ¢ is initially positive or negative.
Figure 4(b) shows the case of compressing similaritons
with ¢qg=-0.1. The two similaritons are in phase in both
cases. The interaction dynamics are similar to those
shown in Fig. 2 when two similaritons have different
phases.
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Fig. 4. (Color online) Nonlinear interaction of two identical in-
phase similaritons inside a DDF with ¢=0.1. The initial chirp is
zero (cp=0) in the top image but is changed to cy=-0.1 in the
bottom one.
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4. THREE-SIMILARITON INTERACTIONS

We next focus on the interaction of three closely spaced
similaritons. This case is studied by solving the standard
NLS equation (4) with the following initial condition:

(0, x) = sech(x + xo)exp(i6) + sech(y)
+ sech(x — xo)exp(-i6), (20)

Figure 5 (top image) shows the XPM-induced attraction
between three chirp-free similaritons inside a DDF using
0=0.1, xo=2.5, and #=0. As mentioned earlier the width
of each similariton does not change under such condi-
tions. The three similaritons first merge into two similari-
tons that are shifted half-way from the original positions.
These two then merge to form a single intense pulse
which subsequently separates into two and then into
three original similaritons. The whole scenario then re-
peats in a periodic fashion. In the chirped case, the colli-
sion scenario remains unchanged except that individual
similaritons spread for positive values of the chirp and
compress for negative values of the chirp. Figure 5
(bottom image) shows the case of three positively chirped
(cp=0.1) expanding similaritons.

The effect of different relative phases for three chirped
similaritons (cy=0.1) is shown in Fig. 6. In the top image,
the relative phase difference is 6=7/2 whereas it is 7 in
the bottom image. All other parameters are identical to
those used in Fig. 5. The width of each positively chirped
similariton increases. As expected, the three similaritons
repel when they are out of phase (#=m). The repulsion
takes place even for 6=m/2, but the energy is asymmetri-
cally redistributed among the similaritons.

We briefly consider the case of three identical similari-
tons moving with different velocities and interacting in-
side a DDF with 0=0.1. The standard NLS equation in
this case is solved with the initial condition

W(0, x) = sech(x + xo)exp(ivy) + sech(x)
+ sech(x — xo)exp(-ivy), (21)

where v is the initial velocity and yq is the initial separa-
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Fig. 5. (Color online) Nonlinear interaction of three identical in-
phase similaritons inside a DDF with ¢=0.1. The initial chirp is
zero (cp=0) in the top image but is changed to c¢y=0.1 in the
bottom one.
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Fig. 6. (Color online) Nonlinear interaction of three identical
chirped similaritons (cy=0.1) inside a DDF with ¢=0.1. The rela-
tive phase 0 is 7/2 in the top image but is changed to 7 in the
bottom one.

tion of each similariton from its neighbor. Figure 7 (top)
shows the case of positively chirped similaritons with ¢
=0.1 using xp=8 and v=3. In this case, each pulse spreads
upon propagation. After the collision, each pulse acceler-
ates away from the others. The case of negatively chirped
similaritons compressing similaritons (cy=-0.1) is shown
in Fig. 7(b). Notice that each pulse now decelerates as it
moves away from the others after the collision and the
similaritons appear to be moving at nearly the same
speeds.

5. DIFFERENCES BETWEEN SIMILARITON
AND SOLITON COLLISIONS

In this section we focus on the main differences between
soliton and similariton collisions by focusing on three
pulses moving with different velocities such that they col-
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Fig. 7. (Color online) Nonlinear interaction of three identical
similaritons moving at different speeds (v=3) and colliding in-
side a DDF with o=0.1. The initial chirp is positive (cy=0.1) in
the top image but is changed to a negative value of ¢y=-0.1 for
the bottom one.
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Fig. 8. (Color online) Nonlinear interaction of three identical
solitons (top) and similaritons (bottom) moving at different
speeds (v=2) and colliding inside a constant-dispersion fiber. The
initial chirp is zero in the soliton case but ¢y=0.1 in the similari-
ton case.

lide at a certain point within the fiber. In both cases, we
use the initial condition given in Eq. (21) and assume fi-
ber dispersion to be anomalous with a constant value.
Thus the only difference is that pulses are chirped in the
similariton case but c¢o=0 in the soliton case.

The top part in Fig. 8 shows the soliton case (cg=0) us-
ing xo=5 and v=2. In the bottom part, the chirp is intro-
duced using ¢¢=0.1 but all other parameters remain the
same. One can clearly see the similarities as well as dif-
ferences between soliton and similariton collisions. The
main differences are that the similaritons collide sooner,
their widths change continuously, and their trajectories
curve after collision so much that collisions are far from
being symmetric. An interesting feature worth comment-
ing is that collision of even three solitons does not exhibit
a perfect symmetry as one may have expected naively.
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Fig. 9. (Color online) Nonlinear interaction of three third-order
solitons (top) and similaritons (bottom) moving at different
speeds (v=2) and colliding inside a constant-dispersion fiber. The
initial chirp is zero in the soliton case but ¢y=0.1 in the similari-
ton case.
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Finally, we consider the case of three higher-order simi-
laritons moving with different velocities and colliding to-
gether inside a constant-dispersion fiber. Figure 9 shows
the soliton (top) and similariton (bottom) collisions when
soliton order N=3. Except for changing the soliton order,
we keep all other parameters identical to those used in
Fig. 8. To the best of our knowledge, these kinds of colli-
sions have not attracted much attention in the past. As
one would expect, each third-order soliton or similariton
compresses, splits into two pulses, and then recovers its
initial shape as it approaches the other solitons. After
their nonlinear interaction during the collision, only the
center soliton (or similariton) survives nearly intact. The
other two are perturbed enough that they separate into
three individual pulses, as dictated by the inverse scatter-
ing theory. Other difference between the soliton and simi-
lariton collisions are similar to the N=1 case in the sense
that similaritons collide sooner, their widths change con-
tinuously, and their trajectories curve after collision.

6. CONCLUSIONS

In summary, we have studied in detail the nonlinear in-
teraction of two or more similaritons occurring when they
are so close to each other that their fields overlap. Our ap-
proach makes use of a similarity transformation that es-
tablishes a one-to-one correspondence between the simi-
laritons that are solutions of an inhomogeneous NLS
equation and the standard solitons that are solutions of
the standard homogeneous NLS equation, provided a cer-
tain comparability condition is satisfied. This correspon-
dence shows that similaritons can form in lossy fibers as
well as inside fiber amplifiers with the main difference be-
ing that in the latter case the similaritons are often
chirped. If fiber dispersion is allowed to change with dis-
tance, similaritons can also be chirp-free. In this paper,
we have assumed that anomalous dispersion of the fiber
and focused exclusively on bright similaritons. In general,
whenever the similaritons are chirped, their initial chirp
¢o plays an important role. If the chirp is negative, the ex-
istence of similaritons requires gain (i.e., they form inside
a fiber amplifier), and the similariton width decreases
with propagation. In contrast, if ¢( is positive similaritons
can form even in a lossy fiber, but they spread on propa-
gation along the fiber.

In this paper we have chiefly focused on the situation in
which similaritons propagate with the same velocity but
are spaced close enough to overlap. Similar to the case of
standard solitons the similariton interaction is attractive
or repulsive depending on their relative phase difference.
In the case of two in-phase similaritons, they mover
closer, collide, and then separate from each other in a pe-
riodic fashion. In contrast, the similariton spacing in-
creases monotonically when their phases differ by 7. The
main difference from the soliton case is that the width,
chirp, and amplitude of such similaritons scale on propa-
gation. We have found the evidence of a substantial en-
ergy transfer between the two similaritons when their
relative phase lies between 0 and .

We have also studied the nonlinear interaction of three
closely spaced similaritons inside a DDF and have found
some interesting features. In the in-phase case, three
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pulses are first transformed into two pulses, followed by
their merger into a single intense pulse. The process then
reverses itself, resulting in the formation of three sepa-
rate similaritons. The whole scenario repeats periodically.
In the chirp-free case, the similariton width does not
change. However, if the initial chirp is positive, the pulse
width increases monotonically. Whenever the phases of
three similaritons are not the same, the similaritons re-
distribute energy among themselves and scatter away
upon collision.

We have also studied the case of three similaritons,
which are initially separated far apart and move with dif-
ferent velocities as they collide inside the fiber. Although,
prior to collision, the energy transfer among three pulses
still occurs, a substantial part of the energy resides in the
outermost pulses and a single intense pulse never forms.
An even more interesting behavior occurs when the initial
peak powers of the pulses are large enough for higher-
order similaritons to form. In the case of third-soliton
similaritons, each similariton undergoes a periodic se-
quence of compression and splitting into. However, after
the collision is over, the two outer solitons as well as simi-
laritons are perturbed enough that each splits into three
first-order components in accordance with the inverse
scattering theory. The main point to note is that the non-
linear interaction of closely spaced similaritons exhibits a
variety of interesting features that can be different from
the soliton case.

Since the formation of similaritons hinges crucially on
the compatibility condition given in Eq. (6), we discuss
briefly how practical it is to satisfy this condition. Two ap-
proaches can be used for this purpose. If the fiber param-
eters By and y remain constant along the fiber length, the
last term in Eq. (6) vanishes, and this equation can be
satisfied by doping the fiber such that the dopant concen-
tration varies along the fiber in a prescribed manner. By
pumping the doped fiber suitably, it is possible to realize
an axially varying gain g(z) such that Eq. (6) is satisfied.
We stress that fiber does not have to provide a net gain for
similaritons to form but the loss should vary with z to en-
sure that the compatibility condition is satisfied. The sec-
ond approach makes use of DDFs in which the core diam-
eter of the fiber is changed along its length such that the
magnitude of the dispersion parameter decreases expo-
nentially [24]. In this case Eq. (6) can be satisfied even in
passive fibers with constant loss. Such fibers have been
fabricated [25] and employed recently to observe the for-
mation of parabolically shaped similaritons [26-28]. An
exponential dispersion profile can also be realized
approximately by using several fibers exhibiting constant
but different dispersion characteristics [29].
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