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Abstract—Short-pulse propagation in semiconductor optical
amplifiers (SOAs) has been widely studied for applications in
optical signal processing and optical communications areas. Even
though it is possible to integrate differential equations numeri-
cally, such implementations may not provide adequate insight into
the device operation. We propose a systematic way to construct
analytical solutions for the gain-recovery dynamics of SOAs and
show excellent agreement with numerically integrated results. Our
approach makes use of the multiple-scale technique. The main
contribution of this work is to put earlier heuristic approaches into
a firm theoretical base so that approximate analytical solutions for
carrier-recovery dynamics can be systematically constructed for
different variants of SOA models. We derive analytical solutions
for the signal gain and pulse-energy gain at an arbitrary point
with the SOA waveguide. Surpassing previous work in this area,
we also show that it is possible to obtain analytical solutions when
waveguide attenuation is not negligible.

Index Terms—Approximation methods, gain recovery dynamics,
multiple-scales method, semiconductor optical amplifiers.

I. INTRODUCTION

SEMICONDUCTOR optical amplifiers (SOAs) are increas-
ingly used for optical signal processing applications in all-

optical integrated circuitry [1]–[3]. The effectiveness of SOAs
in such integrated circuits results from their high gain coeffi-
cient and a relatively low saturation power [4], [5]. In addition,
SOAs are widely used for constructing functional devices such
as nonlinear optical loop mirrors [6], [7], clock-recovery circuits
[8], [9], pulse-delay discriminators [10]–[12] and logic elements
[13], [14]. Device engineering and performance optimization re-
quire a good quantitative understanding of active SOAs used in
such functional blocks. Also, most of the engineering optimiza-
tion methods require the ability to repeatedly estimate the op-
eration of a device when small parametric changes are made in
functional blocks. All this reasoning justifies having simple but
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quantitatively accurate models for SOAs with the ability to cap-
ture significant spatial and temporal features.

Pulse amplification in two-level media has been studied
extensively in the past [15], [16]. Frantz and Nodvik [17]
pioneered the description of pulse amplification in two level
systems based on the energy of input pulses. They used rate
equations to calculate the amplifier gain for a given input
pulse energy without taking into account details of the pulse
shape. Their technique relies on the assumption that the stim-
ulated-emission-induced gain depletion by a short pulse (i.e.,
a pulse whose full width at half maximum (FWHM) is much
smaller than the carrier lifetime) can be considered instan-
taneous. Just after the pulse-induced gain depletion, carriers
replenish themselves to the initial steady-state population
through carrier injection, with a rate related to the carrier-re-
covery lifetime. Siegman [18] showed how these results can be
recast in terms of output pulse energies and derived a transcen-
dental equation relating the input and output pulse energies.
Premaratne et al. [11] have extended the Frantz–Nodvik tech-
nique [17] to describe counterpropagating short pulse trains
inside SOAs. Their simulations showed that spatial distribution
of the carrier density can also be described accurately for the
duration of pulse amplification and beyond. The impact on
amplified spontaneous emission (ASE) noise on gain-recovery
dynamics in SOAs within the Frantz–Nodvik framework [17]
has also been carried out for both polarization-sensitive and
polarization-insensitive SOAs [12], [19].

In this paper, we propose a systematic way to conduct a
Frantz–Nodvik type [17] analysis of gain-recovery dynamics
in SOAs using a multiple-scales technique [20]–[22]. The
main contribution of this work is to put heuristic arguments
onto a firm theoretical base so that approximate analytical
solutions for carrier-recovery dynamics can be systematically
constructed for different variants of SOA models. Surpassing
previous work in this area, we also show that it is possible to
find analytical solutions for describing gain-recovery dynamics
when waveguide loses are not negligible. In Section II, we de-
rive an integro-differential equation that governs gain-recovery
dynamics when a short optical pulse is amplified inside an SOA.
In Section III, we obtain an approximate analytical solution for
gain-recovery dynamics when waveguide losses are negligible.
This work is then extended in Section IV to the case of lossy
waveguides. A detailed analysis of the validity of the proposed
method in carried out in Section V by comparing analytical
results with those obtained through numerical integration. We
summarize the main results of this paper in Section VI.
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Fig. 1. Schematic of the SOA and the notation employed in the analysis.

II. INTEGRO-DIFFERENTIAL EQUATION GOVERNING

GAIN-RECOVERY DYNAMICS

In this section we show that the gain-recovery dynamics of an
SOA can be described completely using a single integro-differ-
ential equation. In our derivation, we include waveguide losses
but ignore carrier-dependent losses. Also, we limit the analysis
to pulses with FWHM in the picosecond range not exceeding
the carrier recovery time of the SOA medium. An implication
of this assumption is that we need not take into account car-
rier heating and intra-band relaxation processes, thereby simpli-
fying considerably the final solution. Therefore, current model
is not valid for pulses in the femtosecond range. Detailed exper-
imental measurements validating the approximate solution pro-
posed here for polarization sensitive SOAs can be found in [19].

Fig. 1 shows a schematic of the SOA studied in this paper. The
coordinate axis is along the direction in which pulses prop-
agate with its origin at the left facet of the SOA. The length
of SOA is given by , and carriers are injected into the active
region with a carrier-injection density . We do not con-
sider any back propagating waves along the SOA resulting either
from partial reflections or ASE. Even though this approximation
limits somewhat the accuracy of our analysis, decades of re-
search have shown that relaxing it only introduces second-order
effects [12], [19].

If is the intensity profile of an input pulse with arbitrary
shape but with a FWHM of , its energy is given by

(1)

where is the effective mode area of the SOA active region.
When the pulse width is much shorter than the carrier life-
time of the semiconductor medium, the amplification process
within the SOA is governed by the following two nonlinear
equations [4]:

(2)

(3)

where is time, is distance measured from the left facet,
is the intensity of the optical signal along the SOA, is
the carrier density, is the loss coefficient, is the current-
injection density, is the operating wavelength, is the speed
of light in vacuum, and is Planck’s constant.

The gain coefficient is related to the carrier density as
, where is the mode confinement

factor, is the differential gain coefficient, and is the carrier
density required at transparency. To make subsequent analysis

easier, we make the coordinate transformations and
so that we are in a reference plane that moves

with the forward propagating pulse. The transformed equations
take the form

(4)

(5)

Solving (4) as an initial-value problem results in

(6)

It is clear from the structure of (6) that subsequent calculations
can be simplified by introducing a new variable with the
definition

(7)

where lies in the interval and the normalized time,
is defined as where is the transit
time through the SOA. Substitution of (7) into (5) gives us a
single integro-differential equation describing the gain recovery
dynamics of a SOA

(8)

where and

(9)

This integro-differential equation can be integrated numerically
using well-known techniques [23]. However, such a numerical
analysis does not provide physical insight into device opera-
tion because essential dynamical features are not readily evi-
dent. Even though it is not possible to solve (8) analytically, we
seek an approximate solution capturing all essential features that
govern the dynamics of gain recovery.

III. GAIN-RECOVERY DYNAMICS WHEN WAVEGUIDE LOSS

IS NEGLIGIBLE

When losses are negligible compared with the gain, we can
set in (8) and obtain

(10)
As stated earlier, we employ a multiple-scale technique for
solving this equation approximately. The impetus for such an
approach stems from the observation that stimulated emission
and carrier recovery have two distinct time scales: fast stim-
ulated transitions occurring on the pulse time scale
and carrier recovery occurring on a much slower time scale

. The underlying idea in the method of multiple
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scales is to formulate the original problem in terms of these
two timescales from the outset and then to treat the physical
quantities as a function of two variables. Even though and
are interdependent, we treat them as two independent variables
and seek an asymptotic solution in the two dimensional space

. The resulting solution is more general than the solution
of the original problem but contains the original solution as a
special case. This aspect can be understood by noting that be-
cause such an asymptotic solution is valid in a two-dimensional
region, it should also be valid along any and every path in this
region.

Since in the multiple-scale descrip-
tion, the partial derivative in (10) is replaced with

(11)

Substitution this expression into (10) we obtain

(12)

Assuming that is a small parameter (i.e., ), we seek an
asymptotic solution of the preceding equation as a power series
expansion

(13)

Substituting (13) into (12) and noting that

(14)
we obtain a partial differential equation as a power series expan-
sion in terms of . Because each term in this expansion needs to
be identically equal to zero, we obtain an infinite set of equa-
tions. The lowest term (i.e., ) results in

(15)

and equating the first-order term (i.e., ), we obtain

(16)

We find a solution for in the plane by
seeking a solution that satisfies (15) and (16) simultaneously.

It is useful to note that, by adding correction terms of higher
orders in , we could successively improve the accuracy of the
approximation. However, due to the algebraic complexity of the
resulting terms, a simple intuitive solution amenable to clear
physical interpretation may not be possible. Estimating non-
strict upper bounds of (13), one may show that it is possible to
come arbitrary close to the exact solution. However, such a rig-
orous proof is beyond the scope of this paper. Instead, we resort
to numerical simulations to show the matching of approximate

analytic results to the exact solution in the range of parameters
applicable to typical commercially available SOAs.

A. Initial Conditions

We assume that the initial conditions for is inde-
pendent of the small-parameter . This is a reasonable assump-
tion because carrier recovery rate will not affect the initial state
of the SOA. If is the initial profile of , the
initial conditions become

(17)

B. Analytical Solution of (15)

Differential equation (15) can be solved by multiplying it with
the integrating factor . The resulting equation
takes the form

(18)
This equation can be easily integrated to obtain the solution

(19)

where is an arbitrary function depending on the slow-time
scale and is defined as

(20)

The logarithm of is proportional to the energy of the
pulse seen by the gain medium up to the time .

C. Analytical Solution of (16)

If the SOA gain is monitored long time after an optical pulse
has left the amplifying medium, there cannot be any dependency
of the overall gain on the small parameter . This observation
leads to the condition that for .
Therefore, using (17), it is possible to show by substitution that
the general solution of (16) is given by

(21)

where is an arbitrary function depending on the fast-time
scale, . However, (21) must satisfy (15). Enforcing of this con-
straint enable us to obtain a specific functional form for
in the next subsection.

D. Final Solution for Signal Gain

Signal gain is related to by the simple relation

(22)

Expressions (19) and (21) for need to be identically
equal to each other in the space. Considering this, we
match the results at the origin . This could be most
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conveniently done by calculating . Equation (19) leads
to

(23)

and (21) leads to

(24)

Equations (23) and (24) match only if

(25)

Taking the exponential of both sides in (21) we obtain

(26)

Using (25), we obtain following expression for from
(19):

(27)

Substitution of this result into (26) gives us finally the following
expression for modal gain along the SOA:

(28)

To fully characterize the gain evolution we still need to find
the functional form of in (28). As described before, the un-
derlying idea in the method of multiple scales is to formulate the
original problem in the two-dimensional space such that
the resulting asymptotic solution encloses the original domain.
Such a solution is also valid along any path in the plane.
Therefore, to calculate the specific functional form of , we
seek a path in this plane where is identically zero. Along this
path, we evaluate the partial derivative of (28) to get

(29)

Substituting (29) and (28) into (15), we obtain the following
differential equation for the unknown variable

(30)

Multiplying (30) by and noting that

(31)

we obtain the following general solution for (30):

(32)

where is a constant that need to be determined using the initial
condition given in (25). Substitution of to
results in . Hence, we obtain the simple result

(33)

Its use leads to following final expression for the signal gain:

(34)

In the next subsection, we use this expression to calculate the
energy gain seen by the pulse as it propagates through the am-
plifier.

E. Energy Gain of SOA

One significant result of the analysis so far is that the signal
gain is not directly related to the pulse shape but to the partial
pulse energy within the gain medium up to time . This
energy is given by

(35)

As clearly seen in the signal-gain expression (34), the quantity
drives the evolution of signal gain within the SOA. It is

useful to have an alternative expression for (35) based on the
initial conditions of the material medium and the pulse (i.e.,

and ). Siegman [18] was the first to calculate such
an expression for the energy in the limiting case . We
generalize his results in this section by using a new strategy to
calculate for arbitrary values of . Our approach relies
on the self-consistent argument that the overall gain of an SOA
should be invariant if we introduce a fictitious internal boundary
at an arbitrary point inside the SOA.

Fig. 2 shows the SOA divided into two sections by intro-
ducing a fictitious boundary at . We name these two
sections as SOA1 and SOA2 and use subscripts 1 and 2 to rep-
resent all the relevant material parameters of SOA1 and SOA2,
respectively. Using (34), the total gain can
be written as

(36)
where and are signal
gains of SOA1 and SOA2, respectively. All three gains in (36)
can be obtained from (34). Using them, we find that the partial
pulse energy in SOA2 is related to that in SOA1 as

(37)
Combining (37) and (35), we obtain the following expression
for the energy gain at time and distance :

(38)
where and are defined in (17) and (20), respectively. It is
interesting to note that this expression clearly shows that the en-
ergy gain is independent of the shape of the pulse and the initial
state of the amplifier. Equation (38) is identical to that obtained
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Fig. 2. Introduction of a fictitious boundary at � � � to view the SOA as a
gain block made up of two cascaded gain blocks SOA1 and SOA2.

by Agrawal and Olsson [4] as well as by Siegman [18], except
for notational changes. However, we arrived at this result using
a self-consistency argument based on our approximate analytic
results derived in this section.

IV. GAIN RECOVERY DYNAMICS IN THE PRESENCE OF

WAVEGUIDE LOSSES

The situation becomes much more complicated when the
waveguide-loss parameter is not negligible. However, it
turns out that the multiple-scale method can still provide an
approximate expression for the time-dependent signal gain.
As seen in (8), the alpha term contains an integral over the
amplifier length. When this term is included in (12) and terms
containing various powers of are considered, the zeroth-order
equation appearing in (15) is modified as

(39)

Similarly, the first-order equation appearing in (16) assumes the
form

(40)

It is not possible to solve these two equations exactly owing
to the presence of integrals. However, if the signal gain is uni-
form along the SOA, we can replace with ,
where the average gain coefficient is independent of the
spatial coordinate . With this change, we can perform the inte-
gration in (39) as

(41)

Noting this relation, we introduce the following approximation
for the preceding integral when gain distribution is spatially
non-uniform:

(42)
where is calculated by (34)

(43)

As we verify later through numerical simulations, this is a
very good approximation for the integral in (42). It can be shown
using numerical integration that the relative error of this approx-
imation falls within 10% band if the pulse energy is below 30%
of the saturation energy of the amplifier. Substitution of (42)
into (39) gives the following modified equation:

(44)

Noting that in a multiple-scales analysis, lower-order coef-
ficients in the expansion
affect higher order, but not the other way around, we can split
(40) into the following two separate differential equations:

(45)

(46)

Following the same procedure as in Section III and solving
the couple equations (44) and (45), the signal gain can be written
as

(47)

where is defined as

(48)

In the next section we show the accuracy of these expressions
by comparing them directly with numerically integrated results.



1658 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 12, JUNE 15, 2008

TABLE I
PARAMETERS USED IN ANALYTICAL CALCULATIONS

AND NUMERICAL SIMULATIONS

V. COMPARISON OF ANALYTICAL RESULTS WITH

NUMERICALLY INTEGRATED RESULTS

To demonstrate the accuracy of the results derived so far, we
compare our analytical results with numerical simulations. Un-
less specified otherwise, we use parameters given in Table I
for our calculations. In our simulations, the input pulse is an
unchirped (transform-limited) Gaussian pulse with energy
and the intensity profile

(49)

where is the mode area and is related to the FWHM of
the input pulse as .

The numerical results were obtained by directly integrating
the coupled (2) and (3) with MATLAB™ software. The re-
sults provide the intensity profile of the pulse, as it is
being amplified, and the corresponding carrier-density profile

. The local gain coefficient is obtained using
, which is then used to calculate by

performing the integral indicated in (7). The signal gain is then
obtained using the relation . The satura-
tion energy of the amplifier corresponding to this data is 5.5 pJ.

Before the pulse enters the SOA, the carrier density has a
constant value ( m for our parameter values) set
by the carrier injection rate. After pulse enters the SOA, gain
saturation reduces the carrier density all along the amplifier,
making it a function of both and . After the pulse has passed
through the SOA, the carrier density as well as the signal gain

begin to recover as carriers are continuously injected into
the active region. Fig. 3 shows this gain-recovery dynamics by
plotting normalized carrier density as a function
of at elapsed times of (I) 0 ps, (II) 100 ps, and (III) 500 ps
after a Gaussian pulse of 2.0 ps FWHM has passed completely
through the SOA. Input pulse energy is either (a) fJ
or (b) fJ. The dashed lines - - show the numerical
simulation results, while the solid lines (—) show the carrier
density calculated using the analytical solution given in (47).
Fig. 3 shows clearly that our analytical expression (47) represent
the spatial and temporal gain dynamics for SOAs under different
saturation conditions quite accurately.

As a further test of the accuracy and validity of our approx-
imate solution we look at the shape and pulse spectrum of the

Fig. 3. Normalized carrier density, �� � � ��� , against SOA position, �,
at elapsed times of: (I) 0 ps (II) 100 ps and (III) 500 ps, after a Gaussian pulse
of 2 ps FWHM and energy: (a) � � �� fJ and (b) � � ��� fJ has passed
completely through the SOA.

amplified pulse at the output end of the SOA. Pulse shape is pro-
vided directly by the intensity profile . The pulse spec-
trum requires the knowledge of the phase as it is related
to the Fourier transform of the electric field

(50)

It is well known [4] that the phase of the pulse inside an SOA is
related to the integrated gain coefficient by the simple relation

, where is the so-called linewidth
enhancement factor, assumed to have a value of 5 for our SOA.
It is thus relatively easy to calculate the pulse spectrum.

Fig. 4 shows the (a) pulse shape and (b) pulse spectrum when
a Gaussian pulse of 20 ps FWHM and energy: (I) 50 fJ and
(II) 500 fJ, is amplified. The dashed lines - - show the numer-
ical simulation results and the solid lines - - - show the corre-
sponding analytical results. Fig. 4 shows that as the pulse energy
increases, the amplified pulse becomes asymmetric such that its
leading edge is sharper compared with its trailing edge. This
is because the leading edge sees larger gain than trailing edge
owing to the saturation of the gain medium by the intensity in the
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Fig. 4. Amplified: (a) pulse shape and (b) pulse spectrum of a Gaussian pulse
of 20 ps FWHM and energy: (I) 50.0 fJ and (II) 500.0 fJ.

leading pulse edge. Due to this asymmetry and self-phase modu-
lation (SPM) induced frequency chirp on the pulse, the spectrum
of the pulse exhibits a multipeak structure. As clearly seen from
Fig. 4, the dominant spectral peak shifts to the low-frequency
side (red shift). The red shift increases for higher pulse energies.
The asymmetry of the pulse spectrum is due to the asymmetry
in the pulse shape, but the multiple peaks have their origin in
the SPM-related interference of frequencies within the pulse. A
good match between the numerical and analytical results recon-
firms the accuracy of our approximate treatment based on the
multiple-scale method.

As a final test of the accuracy of our approach, we investi-
gate the impact of waveguide losses. Fig. 5 shows the output
spectrum when an input Gaussian pulse of 20 ps FWHM and
500 fJ of energy is amplified. The loss coefficient of SOA is (I)

m and (II) m . As before, dashed lines
- - show numerical results while solid lines (—) show the cor-

responding analytical results. As clearly seen from Fig. 5, losses
reduce the magnitude of red shift as well as peak heights. Again,
a good match between the numerical and analytical results con-
firms the validity of our approximate solution obtained in the
presence of waveguide losses.

Fig. 5. Amplified pulse spectrum of an input Gaussian pulse of 20 ps FWHM
and 500.0 fJ of energy when loss coefficient of SOA is given by (I) � � ����

m and (II) � � � m .

VI. CONCLUSION

In this paper, we proposed a systematic way to construct ap-
proximate solutions for pulse amplification and gain-recovery
dynamics in SOAs using a multiple-scale technique. The main
contribution of this work is to put widely used heuristic argu-
ments onto a firm theoretical base so that approximate analyt-
ical solutions for carrier-recovery dynamics can be systemat-
ically constructed for different variants of SOA models. Sur-
passing previous work in this area, we showed that it is possible
to construct analytical solutions to describe gain-recovery dy-
namics when waveguide attenuation is not negligible. By com-
paring with directly numerically integrated results, we showed
that our approximate results can accurately describe the evolu-
tion of carrier density along the SOA after optical pulses have
passed through the SOA gain medium. Also, we compared our
analytical results against numerical results by plotting the shape
and spectrum of amplified pulses for both lossy and lossless
SOAs. Very good agreement between numerical and analytical
results confirms the wide applicability of our analytical solution
in many practically useful cases.
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