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Phase-space quality factor
for ultrashort pulsed beams
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We derive an expression for the lower bound of the phase-space beam quality factor M2 of an ultrashort
pulse. We show that the condition M2�1 does not, in general, hold for such pulsed beams. Rather, the mini-
mum value of M2 depends on the pulse spectrum. We also show that M2 attains minimum only for pulsed
beams whose spot size varies with frequency as �−1/2, and that the radial intensity profile of the best-quality
pulsed beam can be non-Gaussian. © 2008 Optical Society of America
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In many applications, it is desirable to have highly
directional beams with the smallest possible spot size
at the source. However, because of an inverse
(Fourier-transform) relationship between the spot
size of the beam and its far-field angular spread [1], it
is only possible to trade one off for the other. To char-
acterize the beam quality, a dimensionless quantity,
known as the M2 factor, is often used in practice [2].
Mathematically, this factor is related to the phase-
space product of the root-mean-square (rms) beam
width and the rms value of the far-field angle [3–7]
and is defined such that M2=1 for an ideal Gaussian
beam whose beam waist is located at the source
plane.

Even though M2 factor was originally introduced
in the context of continuous-wave (cw) beams, it is of-
ten used to characterize the quality of pulsed beams
as well. In the case of relatively long pulses such as
those emitted by Q-switched lasers, a time-
dependent M2 factor is sometimes employed [4–6].
Yet, such an approach is both fundamentally un-
sound and impractical in the case of femtosecond
pulses emitted by modern mode-locked lasers [8]. For
ultrashort pulses lasting for only a few optical cycles,
the spectral bandwidth becomes comparable in mag-
nitude to the carrier frequency of the pulse [9]. Al-
though the properties of such pulsed beams, propa-
gating in free space or linear dispersive media, have
been extensively investigated in recent years [10–16],
a rather subtle question of how to define the corre-
sponding M2 factor has so far not been addressed. A
related basic question is: What is the radial intensity
profile associated with the best-quality ultrashort
pulsed beam?

In this Letter, we propose a definition for the
phase-space quality factor of ultrashort pulsed
beams. We show that the magnitude of such a pulse-
beam quality factor M2 has a minimum value that
depends on the characteristics of the pulse source
spectrum. We also demonstrate that the radial inten-
sity profile of the best-quality pulsed beam can sig-
nificantly deviate from a Gaussian.

In the following, it is convenient to work in the

space-frequency representation by introducing a
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spectral decomposition of the optical field V�� , t� of
the pulse viz., U�� ,��=�−�

� dtV�� , t�exp�i�t�. The rms
width of the pulsed beam at the source plane can
then be defined as
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where �U�� ,���2 is the density of the energy spectrum
S���, which was predicted to be a directly measur-
able quantity for femtosecond laser pulses [17]. For
fully coherent pulsed beams, S��� is defined by the
relation

S��� � � d2��U��,���2. �2�

The rms value of the far-field angle can be defined
in a similar manner using the concept of the radiant
intensity. More precisely,

�s�
2 � =

�
0

�

d�� d2s�s�
2 ,J�ks�,��

�
0

�

d�� d2s�J�ks�,��

, �3�

where the radiant intensity, J�ks� ,��, is given by [1]

J�ks�,�� = �2�k�2cos2 ��Ũ�ks�,���2. �4�

Here, k=� /c is the propagation constant, s� is a two-
dimensional (2D) vector projection onto the source
plane of a [three-dimensional (3D)] unit vector s
pointing from the source to the far zone, and
Ũ�ks� ,�� is the 2D spatial Fourier transform of
U�� ,��.

In most practical situations, one deals with
paraxial sources whose angular distribution peaks
sharply along the z direction such that cos �	1 and

�s� � =sin �	�. Hence, we can extend the limits of in-
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tegration over ks� to cover the entire 2D Fourier
plane. It then follows from Eqs. (3) and (4) that the
angular spread of a pulse beam generated by a
paraxial source is given by

�s�
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�
0

�

d�� d2�ks��s�
2 �Ũ�ks�,���2

�
0

�
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. �5�

To obtain a lower bound for the phase-space prod-
uct of pulsed beams, we generalize the approach of
[18] by considering the following functional:

���� =
1

W�
0

�

d�� d2��f* · f� � 0, �6�

where the vector f is defined as

f � �U��,�� + ���� � U��,��, �7�

� is any real function of �, and the total energy W of
the pulse is expressed as

W = �
0

�

d�� d2��U�2 = �
0

�

d�� d2�ks���Ũ�2. �8�

On observing that

� d2� � U* � U =� d2�ks��k2s�
2 �Ũ�2, �9�

which follows from the properties of Fourier trans-
forms, we can cast the inequality in Eq. (6) into the
form

��2� − 2�0Fs��0� + �0
2k0

2�s�
2 � � 0, �10�

provided that � obeys the scaling relation ����
=�0��0 /��. In Eq. (10), Fs represents a spectral form
factor, defined as
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where �0 is the frequency at which the source spec-
trum attains maximum.

We now introduce the M2 factor in the form of a
phase-space product as

M2 � k0��s�
2 ���2�, �12�

and we propose to use it for assessing the phase-
space quality of any pulsed beam. The advantage of
our definition over the previously introduced time-
resolved one [6] is that the former represents a time-
independent scalar quantity characterizing the whole
pulse. It follows at once from Eq. (10) that there ex-

2
ists a lower bound on the magnitude of M such that
M2 � Fs��0�. �13�

Inequality (13) is a key result of this Letter. It shows
that the quality factor of a pulsed beam, in general,
depends on the spectral characteristics of the corre-
sponding source. As required, the new inequality re-
duces to the standard result M2�1 for cw or
quasi-cw sources whose bandwidth is narrow enough,
S���	
��−�0�.

For ultrashort pulses with a relatively wide spec-
trum, the minimum value of M2 exceeds 1. Consider,
for example, a Gaussian pulse whose spectrum is of
the form S���	exp
−��−�0�2 /
2�, where 
 is a mea-
sure of the spectral bandwidth. It is seen in Fig. 1
that Fs monotonically increases as a function of the
ratio 
 /�0, exceeding 2 for 
 /�0�0.7. Clearly, M2

close to 1 should not be expected for pulsed beams
whose spectral bandwidth becomes comparable to
their carrier frequencies. It should be stressed that
the choice of a Gaussian spectrum becomes inappro-
priate as 
 /�0→1 because S��� does not vanish at
�=0, as required of any physically realizable spec-
trum.

To model more accurately the ultrashort pulse
spectrum, we consider a realistic femtosecond pulse
source [9]. The energy spectrum of any such source
should exhibit (a) an infrared cutoff, (b) a degree of
asymmetry with a high-frequency tail, and (c) a well-
defined peak at a certain frequency. We propose the
following phenomenological model for such a spec-
trum:

S��� 	 ��� − �
*
�qe−a� if � � �

*

0 if � � �
*

, �14�

where �
*

is the infrared cutoff frequency and the pa-
rameter a=q / ��0−�

*
� is chosen such that the spec-

trum peaks at �0. The real positive exponent q and
the ratio �0 /�

*
describe the asymmetry of the spec-

trum. In Fig. 2 we display pulse spectra (top) for q
=1, and the corresponding form factors (bottom) as
functions of q for four values of the ratio �0 /�

*
. When

this ratio is relatively large, Fs exceeds 2. Values
closer to 1 are realized for �0 /�

*

10, and Fs becomes

smaller than 1 when �0 /�
*

is below 6.
An important question is under what conditions

M2 of a pulsed beam attains its minimum value Fs.

Fig. 1. Spectral form factor as a function of 
 /�0 for pulses

whose spectrum is centered at frequency �0.
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The field distribution of such a beam can be deter-
mined from Eqs. (6) and (7) by noting that f should be
set to zero, or

�U��,�� + ���� � U��,�� = 0. �15�

A straightforward integration of this equation yields

U��,�� = A���exp�−
�2

2�2���� , �16�

where A��� is the spectral density of the pulsed beam
on the axis, and we have introduced the (frequency-
dependent) beam width ���� by the expression

���� = �0��0/��1/2. �17�

As is seen from Eq. (16), the field U�� ,�� does not
factorize into spectral and spatial parts for the best
phase-space quality pulsed beam. To study the spa-
tial distribution of the energy in the pulsed beam, we
determine its radial intensity profile, defined as

I��� � �
0

�

d��U��,���2. �18�

Substituting from Eq. (16) into Eq. (18) and eliminat-
ing A in favor of the measurable energy spectrum, we
obtain

I��� =
1

4�
�

0

�

d�
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�2���
exp�−

�2

2�2���� . �19�

Fig. 2. Pulse spectra as functions of � /�
*

for q=1, and
form factors as functions of q for four values of �0 /�

*
.

In Fig. 3, we show the radial intensity profile I��� for
two values of �0 /�
*

for ultrashort pulses with the
spectrum given in Eq. (14). A Gaussian profile for a
quasi-monochromatic beam centered at �0 is also
presented for comparison. Clearly, the beam profile
deviates considerably from a Gaussian shape for such
broadband pulse spectra.

In conclusion, we have shown that the condition
M2�1 does not hold for optical beams consisting of
ultrashort pulse trains. Rather, the minimum value
of M2 depends on the pulse spectrum. It exceeds 1 in
most cases of practical interest, but M2
1 is pos-
sible for certain pulse spectra. We also show that the
radial beam profile of the best phase-space quality
pulse can significantly deviate from a Gaussian
shape.
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