
1
T
s
m
p
l
f
g
l
t
1
i
f
d
c
n
b
fi
u

fi
A
w
a
b
p
f
c
n
c
l
s

h
a
o

Huang et al. Vol. 24, No. 10 /October 2007 /J. Opt. Soc. Am. A 3063
Polarization changes of partially coherent pulses
propagating in optical fibers
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We consider polarization changes of partially coherent pulses propagating through birefringent dispersive fi-
bers in the linear regime. We show that the evolution of the degree of polarization across such pulses is deter-
mined not only by the coherence properties of the pulse in the source plane, but also by the spatial walk-off
introduced by the group-velocity mismatch between the two polarization components. The interplay between
these two factors determines the asymptotic value of the degree of polarization of an initially unpolarized sta-
tistical pulse. We compare our results with previously discussed coherence-induced polarization changes of
partially coherent beams propagating in free space. © 2007 Optical Society of America
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. INTRODUCTION
he degree of polarization reflects the vectorial nature of
tatistical electromagnetic fields, and it is an important
easurable quantity that characterizes the evolution of

artially coherent light fields [1–3]. The polarization of
ight may change on propagation as a result of various
actors, including the nonlinearity and random birefrin-
ence of the medium [4–6]. In this paper, we focus on po-
arization changes of light induced by the source fluctua-
ions. Although this topic attracted attention as early as
973 [7], it was only after 1993 that it was fully developed
n the context of partially coherent beam propagation in
ree space and in a linear nondispersive dielectric me-
ium [8–10]. By now, coherence-induced polarization
hanges have been extensively studied for beams [11] and
onparaxial fields [12,13] in free space as well as for
eams in turbulent atmosphere [14], and gradient-index
bers [15] within the framework of a recently formulated
nified theory of coherence and polarization [3].
The vast majority of investigations of statistical optical

elds to date have been concerned with stationary fields.
t the same time, statistical optical pulses represent a
ide class of partially coherent fields that find numerous
pplications in areas as diverse as optical imaging and fi-
er optics [6]. While a few studies on partially coherent
ulses are available, they have, to our knowledge, been so
ar limited to the scalar case [16–23]. In this work, we
onsider propagation of partially coherent electromag-
etic pulses in linear optical media. In particular, we fo-
us on propagation-induced changes in the degree of po-
arization of partially coherent pulses launched inside
ingle-mode optical fibers.

Propagation of fully coherent pulses along optical fibers
as been studied extensively in the presence of dispersion
s well as nonlinear effects [6]. Random birefringence of
ptical fibers has also attracted much attention in the
1084-7529/07/103063-6/$15.00 © 2
ast decade because the resulting polarization mode dis-
ersion (PMD) has become a limiting effect in high-bit-
ate and long-haul communication systems [5,6]. Such ef-
ects can be suppressed in the so-called polarization-
aintaining fibers by introducing a relatively large

onstant birefringence. In this paper we consider propa-
ation of partially coherent pulses along such fibers in the
inear regime, i.e., we neglect the nonlinear effects but in-
lude both the group-velocity dispersion (GVD) and bire-
ringence. The evolution of the degree of polarization of
ight in such fibers is determined by the interplay be-
ween the pulse spreading, which depends on the coher-
nce properties of the two polarization components, and
he spatial walk-off resulting from a birefringence-
nduced group-velocity mismatch. This circumstance

akes the polarization dynamics quite different from the
reviously studied correlation-induced polarization
hanges of statistically stationary fields propagating in
ree space [8].

This work is organized as follows. In Section 2 we in-
roduce the electromagnetic Gaussian Schell-model
GSM) and use it to obtain a general expression for the
econd-order correlation tensor at any point along the fi-
er. We then briefly discuss the state of polarization of the
ulse in the source plane. In Section 3, we find an analyti-
al expression for the degree of polarization across the
emporal profile of the pulse at any point along the optical
ber. We then illustrate our general results with numeri-
al examples and discuss their implications. The main
onclusions are presented in Section 4.

. SECOND-ORDER COHERENCY TENSOR
o describe partially coherent pulses, we choose a realiza-
ion from the statistical ensemble of optical pulses and
007 Optical Society of America
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mploy the Jones vector notation to write its fluctuating
lectrical field at a time t and position z in the form

E�t,r� = �Ax�t,z�

Ay�t,z��F�x,y�ei��0z−�0t�, �1�

here �0 is the carrier frequency and �0 is an effective
ropagation constant at this frequency of the single mode
upported by the fiber with the spatial profile F�x ,y�.
hysically, Ax�t ,z� and Ay�t ,z� are the slowly varying am-
litudes of the two mutually orthogonal polarization com-
onents of the field E�t ,r�. The correlation properties of
he pulse can then be characterized by a second-order cor-
elation tensor, defined as [1]

�jl�t1,t2,z� = �Aj
*�t1,z�Al�t2,z��, �2�

here j and l take on values x or y and the angle brackets
enote ensemble averaging.
In the linear propagation regime, the evolution of any

requency component of the two polarization modes is
overned by Bj�� ,z�=Bj�� ,0�exp�i��j���−�0�z�, where Bj
epresents the Fourier transform of Aj, and the propaga-
ion constants �j for the two modes are different because
f the birefringence. Expanding �j��� in a Taylor series
round the carrier frequency �0 and taking the inverse
ourier transform, Aj�t ,z� is found to satisfy the wave
quation [6]

�Aj

�z
+ �1j

�Aj

�t
+

i

2
�2j

�2Aj

�t2 = i��0j − �0�Aj, �3�

here �mj= �dm�j /d�m��=�0
. Physically, �1j	1/vgj, where

gj is the group velocity, and �2j accounts for the GVD. For
ost fibers, the GVD is nearly the same for the two po-

arization modes, i.e., �21=�22	�2, but their group veloci-
ies differ because of fiber birefringence.

To simplify Eq. (3), we introduce new variables as

� = �0�2z, �j = t − z�1j, Ãj��j,�� = Aj�t,z�exp�− i��0j

− �0�z�, �4�

hich results in the simple wave equation

2i�0

�Ãj

��
=

�2Ãj

��j
2 . �5�

olving this equation with a standard Fourier–transform
echnique, we find that

Ãj��,�j� =
 i�0

2��
�

−�

�

Ãj0���exp�−
i�0

2�
��j − ��2
d�, �6�

here Ãj0��� is the amplitude of the jth polarization com-
onent in the source plane z=0. It follows from Eqs. (2)
nd (4) that

�jl�t1,t2,z� = �̃jl��j1,�l2,��ei��0l−�0j�z, �7�

�̃jl��j1,�l2,�� 	 �Ãj
*��j1,��Ãl��l2,���, �8�

here � = t −z� and � = t −z� .
j1 1 1j l2 2 1l
To determine the second-order correlation tensor in any
ransverse plane z=const�0, we focus on a particular
SM source that generates the field with the correlation

ensor of the form

�̃jl
0��1,�2� = A2	jl exp�−

��1
2 + �2

2�

4
t
2 
exp�−

��1 − �2�2

2
cj
2 
 .

�9�

he model of Eq. (9) describes rather well the output of
he nonstationary statistical light sources that can be re-
lized by temporarily modulating statistically stationary
ources with Gaussian spectra such as light-emitting di-
des [24] and quasi-white light sources that mimic ther-
al radiation [25]. Here the initial pulse width 
t is as-

umed to be the same for both polarization modes, and 
cj
tands for the correlation time of the jth polarization
ode. After some algebra, it follows from Eqs. (6), (8), and

9) that

�̃jl��j1,�l2,�� =
A2	jl

�j���
exp�−

�j�j1
2 + �j

*�l2
2 − 2�j�j1�l2


t
2
j

2�j
2��� 
 ,

�10�

here we have introduced the following notation:

1


j
2 =

1

4
t
2 +

1


cj
2 , �j = �j −

i�

2�0
, �11�

�j =
aj

4�aj
2 − bj

2�
, �j =

bj

4�aj
2 − bj

2�
, �12�

aj =
1

4
t
2 +

1

2
cj
2 , bj =

1

2
cj
2 , �13�

�j��� = 
1 + �2/��0
t
j�2. �14�

Equation (10) shows how the coherence properties of
he pulse change with propagation. The ensemble-
veraged 2�2 matrix J�t ,z�, characterizing the polariza-
ion properties of the pulse at some point �t ,z�, is referred
o as the coherency tensor with its matrix elements de-
ned as Jjl�t ,z�= �Aj

*�t ,z�Al�t ,z��. The degree of polariza-
ion can be expressed in terms of the coherency tensor as
1]

P�t,z� = �1 −
4 det�J�t,z��

�tr�J�t,z���2 �1/2

, �15�

here det and tr denote the determinant and the trace of
matrix, respectively. The coherency tensor is related to

he second-order correlation tensor by the expression

Jjl�t,z� = �̃jl�t − z�1j,t − z�1l,�0�2z�ei��0l−�0j�z. �16�

Consider first the polarization properties in the source
lane z=0. We assume that the x and y polarization
odes have the same intensities and are uncorrelated in

he source plane, in agreement with Eq. (9). This assump-
ion results in the coherency tensor at z=0 in the form
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J�t,z = 0� = I0�t��1 0

0 1
 , �17�

here I0�t�=A2 exp�−t2 /2
t
2�. It follows from Eq. (15) and

q. (17) that P=0, i.e., the light in the source plane is
ompletely unpolarized.

To find changes in the degree of polarization at a dis-
ance z, we first calculate the coherency tensor at any
oint �t ,z� according to Eqs. (10), (16), and (17), which re-
ults in

J�t,z� = �Ix�t,z� 0

0 Iy�t,z�
 , �18�

here the individual mode intensities are given by

Ij�t,z� =
A2

�j�z�
exp�−

�t − z�1j�2

2
t
2�j

2�z� 
 , �19�

nd the temporal broadening factor of each polarization
omponent depends on the GVD parameter �2 as

�j�z� =
1 + � �2z

2
t
2�2

+ � �2z


t
cj
�2

. �20�

s expressed in Eq. (18), the x and y polarization modes
emain uncorrelated on propagation of the pulse along
he fiber, but their intensities become different. The tem-
oral width of these two components becomes different
ecause of the GVD and polarization-dependent correla-
ion times. The two modes also walk off spatially because
f their different group velocities as a result of fiber bire-
ringence.

. PROPAGATION-INDUCED CHANGES IN
HE DEGREE OF POLARIZATION
o simplify the expression of the degree of polarization,
e substitute Eqs. (18)–(20) into Eq. (15). It is convenient

o transform the field E�t ,r� from the fixed coordinate sys-
em to a coordinate system moving with the average
roup velocity vg=1/ �̄, where �̄= ��1x+�1y� /2, so that the
egree of polarization can be expressed as a function of
he retarded time �= t− �̄z and the propagation distance z
s

P��,z� =
�Ix��,z� − Iy��,z��

Ix��,z� + Iy��,z�
, �21�

here

Ij��,z� =
A2

�j�z�
exp�−

�� ± 	z�2

2
t
2�j

2�z�
 . �22�

ere + and − signs correspond to the x- and y-polarized
odes, respectively, and 	= ��1y−�1x� /2 represents the ex-

ent of group-velocity mismatch. It follows from Eq. (22)
hat the different dynamics of the intensity profiles of the
wo polarization modes can be caused by the competition
etween the walk-off effect and the polarization-
ependent pulse spreading. The walk-off effect results
rom the fiber birefringence, while the widths of the inten-
ity profiles increase at different rates because of differ-
nt correlation times of the two polarization components
t the source. Specifically, according to Eq. (22), the width
f the jth polarization mode profile at a distance z from
he source can be expressed as

�cj�z� =

t
2 +

�2
2z2


t
2 �1

4
+


t
2


cj
2 � , �23�

hich clearly depends on both 
t and the correlation time
cj of the corresponding polarization component.
We now analyze, both analytically and numerically, the

ropagation of the degree of polarization in special cases
n which either coherence properties of the light in the
ource plane are assumed polarization independent, or fi-
er birefringence is ignored. The evolution of the degree of
olarization is also demonstrated numerically for a gen-
ral case when both birefringence and polarization-
ependent coherence properties are considered. For the
umerical calculations, we employ 
t=10 ps and �2
17.8 ps2/km, which are typical values for picosecond
ulses propagating in silica-glass fibers [6].
We first consider a polarization-independent partially

oherent light source, i.e., 
cx=
cy=
c. In this case, the
eneral expression for the degree of polarization (21) can
e simplified as follows:

P��,z� = tanh� ��	z�


t
2�2�z�
 . �24�

t follows immediately from Eq. (24) that at �=0, we have
�0,z�=0, indicating that the light remains completely
npolarized at the center of the pulse. This is expected
ince the intensity profiles of the two polarization modes
ave the same widths at the source, and the walk-off due
o birefringence will cause the intensities of the two
odes to differ at any � except at �=0. For any ��0, such

s �=−	z, we transform the field from a fixed coordinate
ystem to a coordinate system moving with the group ve-
ocity of the x mode.

The degree of polarization P as a function of the propa-
ation distance z is displayed in Fig. 1 for 
c=100, 20, 5,
nd 1 ps. The solid, dotted–dashed, and dotted curves cor-
espond to 	=2.6, 0.52, and 0.13 ps/km, respectively. As
een in Fig. 1, the degree of polarization steadily in-
reases with the propagation distance and approaches its
symptotic value regardless of the choice of 
c and 	. The
symptotic value of P depends on the choice of 
c and 	
nd is given by the expression

P� = tanh� 	2

�2
2� 1

4
t
2 +

1


c
2�−1
 . �25�

n particular, for nearly coherent light �
c�
t�, the light
an become completely polarized if birefringence is also
arge enough, as evident from Figs. 1(a) and 1(b). This is
xpected since the walk-off effect dominates when the
ulse spreading is relatively small, resulting eventually
n complete temporal separation of the two polarization

odes from each other. On the other hand, when the light
s nearly incoherent, the pulse spreading can be so pro-
ounced that the walk-off effect becomes less prominent.
s a consequence, the intensity profiles of the two polar-

zation modes nearly overlap despite the walk-off, and the
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ulse remains almost completely unpolarized as is evi-
ent from Fig. 1(d).
The extent of variations of the degree of polarization

cross the pulse for a fixed z is shown in Fig. 2, where we
hose 	=0.26 ps/km, and 
c takes the values 1, 5, 20, and
00 ps, the same four values used in Fig. 1. The solid,
otted–dashed, and dotted curves correspond to z=2, 6,
nd 12 km, respectively. As expected, the degree of polar-
zation remains zero at the center of the pulse and in-

ig. 1. Degree of polarization P as a function of fiber length z
otted–dashed, and dotted curves correspond to 	=2.6, 0.52, and

ig. 2. Variations of the degree of polarization with � for (a) 
c
ashed, and dotted curves correspond to z=2, 6, and 12 km, resp
reases symmetrically on the two sides of pulse center, ir-
espective of the choice of 
c and z. Note that the light
emains nearly unpolarized across the entire pulse when
he coherence time of the input pulse is much shorter
han the pulse width �
c�
t�.

We analyze next the impact of the polarization-
ependent coherence properties on the change of polariza-
ion as light propagates along the fiber with or without bi-
efringence. For an ideal fiber with no birefringence, the


c=100 ps, (b) 
c=20 ps, (c) 
c=5 ps, and (d) 
c=1 ps. The solid,
s/km, respectively.

s, (b) 
c=20 ps, (c) 
c=5 ps, and (d) 
c=1 ps. The solid, dotted–
y.
for (a)
0.13 p
=100 p
ectivel
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egree of polarization is affected by the pulse spreading,
nd this can be seen from Eqs. (20)–(22) by setting 	=0.
ccording to Eq. (23), the widths of the two polarization
omponents increase at different rates when 
cx�
cy. As
consequence, the difference in the widths of intensity

rofiles for the two polarization modes also increases with
he propagation distance along the fiber. It can be inferred
rom Eq. (22) that at a certain propagation distance z, one

ode has larger width but lower intensity than the other,
hich induces changes in the degree of polarization.

ig. 3. Variations of the degree of polarization across the pulse
ion of z for (c) 	=0 and (d) 	=0.26 ps/km for partially coherent lig
ashed, and dotted curves correspond to z=5, 20, and 40 km, resp
nd (d).

ig. 4. Normalized intensity of the whole pulse (solid curve) an
=10 km. The degree of polarization P is also plotted for compar
Variations in the degree of polarization across the pulse
re calculated for a fiber with negligible birefringence and
artially coherent light with 
cx=12 ps and 
cy=16 ps.
he results are exhibited in Fig. 3(a) in which the solid,
otted–dashed, and dotted curves correspond to z=5, 20,
nd 40 km, respectively. Similar to the case of sources
ith polarization-independent correlation properties

hown in Fig. 2(a), the degree of polarization is symmetric
round the pulse center, but it is nonzero at the center.
e then calculate the degree of polarization across the

	=0 and (b) 	=0.26 ps/km. The degree of polarization as a func-
h 
cx=12 ps and 
cy=16 ps. In parts (a) and (b), the solid, dotted–
y; they correspond to �=0, 20, and 80 ps, respectively, in parts (c)

he two polarization modes (dashed curves) as a function of � at
otted curve).
for (a)
ht wit
ectivel
d of t
ison (d
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ulse for a birefringent fiber by choosing 	=0.26 ps/km.
he result is displayed in Fig. 3(b). Comparing parts (a)
nd (b) of Fig. 3, we conclude that the walk-off effect re-
ulting from fiber birefringence does not break the sym-
etry of the degree-of-polarization profile. Rather, the

enter of symmetry is shifted away from the pulse center.
he degree of polarization as a function of z is also calcu-

ated with or without birefringence, and the results are
hown in parts (c) and (d) of Fig. 3 using 	=0 and 	
0.26 ps/km, respectively. The solid, dotted–dashed, and
otted curves correspond to three temporal positions
cross the pulse, �=0, 20, and 80 ps, respectively. Con-
rasting with the case of a source with polarization-
ndependent coherence properties shown in Fig. 1, the de-
ree of polarization in this case does not necessarily
ncrease monotonically along the fiber, and it does not re-

ain zero at the center of the pulse.
To illustrate the effects of the walk-off and of

olarization-dependent spreading on the pulse intensity,
e plot in Fig. 4 the normalized intensities of the whole
ulse and the two polarization modes as functions of � at
=10 km. The degree of polarization P across the entire
ulse is also displayed for comparison. Interestingly, the
otal pulse intensity remains symmetric about the pulse
enter despite the presence of both the walk-off effect and
olarization-dependent spreading.

. CONCLUSIONS
e have studied the behavior of the degree of polarization

f partially coherent pulses propagating along dispersive
nd birefringent optical fibers in the linear regime. We
ave shown that the polarization dynamics is determined
y a subtle interplay of two factors: (i) the coherence prop-
rties of the input pulse at the source plane and (ii) the
patial walk-off of the two mutually orthogonal polariza-
ion components of the pulse caused by the fiber birefrin-
ence. Consequently, even when the coherence properties
f the two polarization components of the pulse in the
ource plane are the same, the degree of polarization
hanges along the fiber because of the group-velocity mis-
atch. This circumstance makes polarization changes on

ulse propagation in fibers qualitatively and quantita-
ively different from those induced by partially coherent
eam propagation in free space [8]. Thus the space–time
nalogy existing for partially coherent scalar pulses
ropagating in linear dispersive media and partially co-
erent scalar beams propagating in free space [26] cannot
e fully extended to their electromagnetic counterparts.
n future work, we plan to take into account the influence
f the fiber nonlinearity and random birefringence on the
tate of polarization of intense statistical pulses propagat-
ng in realistic optical fibers.
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