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Raman response function for silica fibers
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The commonly used Lorentzian form of the Raman response function for studying propagation of ultrashort
pulses in silica fibers does not properly account for the shoulder in the Raman gain spectrum originating
from the Boson peak. We propose a more accurate form of this response function and show that its predic-
tions for the Raman-induced frequency shift should be in better agreement with experiments. © 2006 Op-
tical Society of America
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The nonlinear effects in optical fibers affect the
propagation of ultrashort pulses considerably and
lead to a variety of interesting optical phenomena,
such as Raman-induced frequency shift (RIFS), soli-
ton fission, and supercontinuum generation.1 The Ra-
man effect is known to impact ultrashort pulses, and
its inclusion is essential in any theoretical modeling.
Indeed, numerous efforts have been made to charac-
terize the nonlinear properties of silica glass and
fibers2–8 and to model the associated nonlinear
response.9–11 In general, it has the form R���
= �1− fR�����+ fRhR���, where the two terms account
for the instantaneous electronic and retarded mo-
lecular responses, respectively.1 The Raman response
function hR��� exhibits complicated dynamics9 be-
cause of the amorphous nature of silica glass.2,3

Although the Raman response can be modeled
fairly accurately by a superposition of 13 complicated
functions,11 such a model is often impractical owing
to its complexity. At the other extreme, the Raman
response is approximated by damping oscillations as-
sociated with a single vibrational mode,10 resulting in
a Lorentzian-shaped gain spectrum (dashed curve in
Fig. 1). This model uses three parameters to provide
the correct location and peak value of the dominant
peak in the Raman gain spectrum (blue curves with
dots in Fig. 1). Because of its simplicity, this simple
model is widely used to investigate ultrafast nonlin-
ear phenomena in optical fibers. Although it explains
the qualitative behavior reasonably well, this model
underestimates Raman gain considerably in the fre-
quency range below 10 THz, while overestimating it
beyond 15 THz. Consequently, it does not provide a
correct quantitative description of Raman-induced
phenomena and leads to difficulty in comparing
theory and experiments. We show in this Letter that
the problem can be fixed by considering the aniso-
tropic nature of Raman scattering and introducing an
appropriate but simple form for the anisotropic part
of the Raman response.

The third-order nonlinear response of silica should
be described by a tensor of the form2

Rijkl
�3� ��� = ��1 − fR�/3�������ij�kl + �ik�jl + �il�jk�

+ fRRa����ij�kl + �fR/2�Rb�����ik�jl + �il�jk�, �1�
where i , j ,k , l=x or y and Ra��� and Rb��� are the iso-
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tropic and anisotropic parts of the Raman response,
respectively. The often-used scalar form of the nonlin-
ear response is given by Rxxxx

�3� ���= �1− fR�����
+ fR�Ra���+Rb����.

Equation (1) indicates that the Raman gain in
silica fibers consists of contributions from isotropic
and anisotropic molecular responses given by ga���
�2�fR Im�R̃a���� and gb����2�fR Im�R̃b����, respec-
tively, where �=n2�0 /c is the nonlinear parameter.1

Here, R̃���� ��=a ,b� is the Fourier transform of R����
defined as R̃����=�−�

� R����exp�i���d�. From Eq. (1),
the Raman gain for copolarized and orthogonally po-
larized pumps is found to be2 g����=ga���+gb��� and
g����=gb��� /2. Figure 2 shows the spectra of g� (Ref.
6) and the associated decomposed ga and gb (g� is
shown in Fig. 1). Although the anisotropic part pro-
vides a relatively small Raman gain for an orthogo-
nally polarized signal, its contribution to the copolar-
ized Raman gain dominates in the low-frequency
region. Figure 2 shows clearly that it is the aniso-
tropic response that is responsible for the shoulder
around 3 THz in the copolarized Raman gain.

Physically, the isotropic Raman response stems
dominantly from the symmetric stretching motion of
the bridging oxygen atom in the SiuOuSi bond.3 It

Fig. 1. (Color online) Raman gain spectra. Blue curves
with dots: experimental data6; dashed curve, conventional

Lorentzian model; red curves, our model.

2006 Optical Society of America



November 1, 2006 / Vol. 31, No. 21 / OPTICS LETTERS 3087
turns out that this motion, and the resulting Raman
gain ga, can be described well by the widely used
single-Lorentzian model. For this reason, we adopt it
for the isotropic response and use Ra���= faha���,
where ha��� is given by10

ha��� = �1��1
−2 + �2

−2� exp�− �/�2�sin��/�1� �2�

and fa represents the fractional contribution of Ra to
the total copolarized Raman response. By using the
values �1=12.2 fs and �2=32 fs (Ref. 10) and choosing
fa=0.75, we find that ga in Fig. 2 can be fitted quite
well with Eq. (2), especially in the spectral region be-
low 14 THz. If we can find an appropriate function
for the anisotropic Raman response Rb���, we should
be able to provide an accurate description of the total
nonlinear response.

Figure 2 shows that gb, and the corresponding g�

in Fig. 1, exhibit a broad peak in the frequency region
around 3 THz. Such a low-frequency peak is known
as the Boson peak and is a universal feature of amor-
phous glassy substances.12–17 Although its physical
nature is still under debate,12–17 the Boson peak re-
flects an excessive density of vibrational states. The
Boson peak in g� can be described by a Lorentzian
function with a cubic dependence on frequency on its
low-frequency side.12–14 We have found that the cor-
responding temporal response can be modeled by a
simple function of the form

hb��� = ��2�b − ��/�b
2�exp�− �/�b�, �3�

where a single �b governs the response because of the
low-frequency nature of the Boson peak.

Moreover, gb exhibits a flat spectral plateau in the
frequency range 8–15 THz that cannot be completely
accounted for by Eq. (3). This plateau not only coin-
cides with the broadband peak of ga but also exhibits
a drop-off around 15 THz, similar to ga. These fea-
tures suggest that this spectral portion of gb shares a
common physical origin with the dominant peak of
ga, probably because of the participation of other

Fig. 2. (Color online) Decomposition of the copolarized Ra-
man gain into its two parts, ga and gb. The dashed curve
shows the fit based on the simple Lorentzian model.
bond-bending motions or the existence of strong
intermediate-range correlations between nearby
bonds.3 Based on the preceding discussion, we pro-
pose the following form for the anisotropic part of the
Raman response in fused silica: Rb���= fbhb���
+ fcha���, where fb and fc represent the fractional con-
tributions of hb��� and ha���, respectively. In our
model, the copolarized nonlinear response is given by

Rxxxx
�3� ��� = �1 − fR����� + fR��fa + fc�ha��� + fbhb����, �4�

with fa+ fc+ fb=1. By choosing �b=96 fs to account for
the spectral width of the Boson peak together with
fb=0.21 and fc=0.04, we find in Fig. 1 that both g� and
g� are fitted very well by our model over the fre-
quency range 0–15 THz.

Figures 1 and 2 show only the normalized Raman
gain spectra. To obtain a realistic value of the peak
Raman gain, we need to assign an appropriate value
to fR in Eq. (1). If we use n2=2.6�10−20 m2/W for
silica fibers,1 the choice fR=0.245 in our model yields
a peak Raman gain equal to the experimental value
of gR=1.2�10−11 cm/W at 795.5 nm,4 corresponding
to gR=1.81�10−11 cm/W at 526 nm.6 With this
choice, not only does our model provide Raman gain
accurately over the spectral range 0–15 THz, it also
describes the Raman-induced changes in the nonlin-
ear refractive index over the same frequency range
well, since the two are related through the Kramers–
Kronig relation.2 This can be seen in Fig. 3, where we
plot the nonlinear refractive index given by the real
part of R̃xxxx

�3� ���.
Our value of fR is slightly higher than the experi-

mental value of about 0.2 (Refs. 9 and 10), because
our model overestimates the Raman gain in the spec-
tral region beyond 15 THz. This causes an underesti-
mation of the electronic contribution to nonlinear re-
fractive index by 5% or so, as seen in Fig. 3, when the
frequency shift exceeds 20 THz and where the Ra-
man contribution is negligible. However, this under-
estimation does not affect the description of nonlin-
ear effects until the pulse becomes so short that it
contains only a few optical cycles. We expect our

Fig. 3. (Color online) Normalized nonlinear refractive in-
dex. Blue curve, obtained from experimental Raman
spectra6; thin dashed curve, conventional Lorentzian

model; red curve, our model.
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model to provide a relatively accurate description of
nonlinear effects for pulses as short as 30 fs.

As a simple application of our model, we focus on
the RIFS. For a linearly polarized soliton, the RIFS
increases along the fiber at a rate given by18

d�̄

dz
= −

Es�0

2	Aeff
�

0

� g������/�0�3

sinh2��/�0�
d�, �5�

where �̄ is the carrier frequency of soliton, Es is the
soliton energy, �0=4 ln�1+	2� / �	Ts� is related to the
soliton width Ts (FWHM), and Aeff is the effective
mode area. Figure 4 shows the normalized rate of
RIFS, defined as 
d�̄ /dz
Aeff / �gREs�. Clearly, our
model provides a relatively accurate description of
RIFS, and its predictions nearly coincide with that
based on the experimental Raman spectra. However,
the conventional single-Lorentzian model10 underes-
timates the RIFS rate by about 40% for pulse widths
in the range of 100 to 500 fs. When pulse width de-
creases below 100 fs, the contribution of the broad
Raman-gain peak begins to dominate, and the dis-
crepancy between the two models decreases.

To further explore the implications of our model,
we have studied propagation of a 300-fs sech pulse at
1200 nm with 960 W peak power along a 5 m long
microstructured fiber numerically by solving the gen-
eralized nonlinear Schrödinger equation.1 The fiber
with a 2.5 
m core diameter is assumed to have a
large air-filling fraction, so its dispersion can be mod-
eled as a glass rod surrounded by air. The inset of
Fig. 4 shows the output spectra. Because of fiber dis-
persion, the input pulse splits into two parts, one of
which forms a soliton whose width changes from
about 60 to 100 fs along the fiber, resulting in a net

Fig. 4. (Color online) RIFS rate versus soliton width Ts for
our model (red curve) and conventional model (dashed
curve). The blue curve is based on the experimental Raman
spectrum. Inset, output spectra obtained numerically for a
RIFS of 175 nm. Our proposed model shows excellent
agreement with the one obtained numerically using
the experimental Raman spectrum. However, the
conventional model based on Eq. (2) underestimates
the RIFS by about 20%.

In conclusion, we show that the conventional
single-Lorentzian model does not provide an accurate
quantitative description of the Raman response. The
reason is found to be related to the anisotropic part of
the Raman response that is ignored by this often-
used model. Based on the notion of the Boson peak,
we introduce a simple function to account for this an-
isotropic part and show that the new model fits quite
well both the Raman gain and the Raman-induced
changes in the nonlinear refractive index over a fre-
quency range 0–15 THz. We expect that our model
would provide a much more accurate description of
the propagation of ultrashort pulses. Our model can
also be used to describe quantitatively various
Raman-related vectorial nonlinear phenomena.
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