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Polarization-Mode Dispersion and
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Abstract—Polarization-mode dispersion (PMD) and polariza-
tion-dependent loss (PDL) associated with various optical com-
ponents affect the quality of pump beams even before they enter
a fiber-optic parametric amplifier (FOPA). A vector theory of
the underlying four-wave mixing process is developed to study
the impact of PMD and PDL on the amplification of signal and
idler fields. It is shown that the use of high-quality polarizers just
before the input end of the fiber can improve the performance of a
dual-pump parametric amplifier considerably.

Index Terms—Fiber-optic parametric amplifiers (FOPAs),
four-wave mixing (FWM), polarization-dependent loss (PDL),
polarization-mode dispersion (PMD).

I. INTRODUCTION

F IBER-OPTIC parametric amplifiers (FOPAs) are used for
many applications. They can be used as high-gain ampli-

fiers [1]–[5], wavelength converters [6]–[9], phase conjugators
[10], and ultrafast signal processing units [11], [12]. It is
important that a practical FOPA does not add too much noise or
distortion to the signal. For this reason, it is essential to identify
various noise sources and to understand their impact on the
FOPA performance.

It is well known that the pump beams used for pumping a
FOPA have to be prepared to be as distortion free as possible
because a FOPA transfers noise from pumps to the signal
and idlers while amplifying them [13]–[20]. In practice, the
generation of a tunable high-power low-noise pump beam re-
quires numerous optical components [4]–[9]. In a typical FOPA
setup, a tunable external-cavity semiconductor laser is used as
a continuous-wave (CW) seed. This seed is passed through a
preamplifier and a booster amplifier to bring its power to the
desired level. Noise added by the two amplifiers is reduced by
placing tunable optical filters after them. The amount of pump
power that can be launched into the fiber is limited by stimu-
lated Brillouin scattering (SBS), a process that is three orders
of magnitude more efficient than the four-wave mixing process
(FWM) used for parametric amplification [21]. To suppress
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SBS, pump spectra are broadened by modulating the phases of
all pump beams either by using a pseudorandom bit sequence or
at multiple incommensurate frequencies. Several polarization
controllers as well as isolators are needed to control the pump
polarization and to reduce the feedback level.

The effects of phase modulation and amplifier noise have
been addressed in previous studies [13]–[20]. In this paper,
we consider a new mechanism through which polarization-
mode dispersion (PMD) and polarization-dependent loss (PDL)
associated with various optical components distort the pump
beams and thus degrade the amplified signal and idler beams at
the FOPA output. Dispersionlike distortion of a time-dependent
signal through PMD and PDL has been studied before in the
context of telecommunication systems [22] and erbium-doped
fiber amplifiers [23].

In simplest terms, PMD has its origins in the frequency
dependence of the birefringence-induced phase shifts. PMD
rotates the state of polarization (SOP) of optical fields with
different frequencies at different rates. Equivalently, the two
polarization components of a pulse travel with different group
velocities such that the pulse disperses in time [22], [24]–[26].
An optical component with PDL attenuates the two polarization
components of a field by different amounts [22]. The combina-
tion of PMD and PDL affects both the power and the SOP of
an optical field. Their combined impact is aggravated further by
the fact that the birefringence magnitude as well as the orienta-
tion of the principal axes of some optical components may vary
in time because of environmental changes [27]. As a result, it
may not be possible to arrange these components to minimize
the PMD and PDL effects without using complex feedback
mechanisms.

The consequences of PMD and PDL for a FOPA are twofold.
First, the SOPs of the pumps do not remain constant in time.
Because the gain of FOPA depends on the SOPs of its pumps,
the gain also varies in time. Second, pump powers are clipped
by the components exhibiting PDL, causing them to vary in
time. Even though such changes in the pump SOPs and powers
are relatively small, they affect the FOPA gain significantly be-
cause this gain depends exponentially on the powers and SOPs
of the pumps. In the absence of pump-phase modulation, such
variations in the pump SOP and power would be only as fast as
random variations in the PMD and PDL of the optical compo-
nents (in a time scale of a few minutes to hours). However, as
pump phases are modulated to suppress SBS, PMD and PDL
can lead to signal fluctuation on a time scale ∼ 1 ns. Physically
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speaking, the instantaneous frequencies of the pumps vary in
time at the rates at which the pump phases are modulated. As
the pumps pass through a component with PMD, their SOPs
become time dependent on the same scale because PMD rotates
the different frequency components of pumps at different rates.
A PDL component following the PMD component attenuates
the pump by different amounts at different times. As a result,
the pumps entering the FOPA have, in practice, SOPs and pow-
ers that change with time at the rate of the phase modulation.

This paper is organized as follows: In Section II, we intro-
duce the concept of effective PMD and PDL vectors and derive
an expression for the pump powers at the input end of the FOPA
in terms of them. This expression is used in Section III to find
the FOPA gain in terms of the effective PMD and PDL vectors.
Section IV focuses on temporal changes in the signal power
produced by PMD and PDL when pump phases are modulated.
We propose in Section V a simple solution for minimizing the
impact of PMD and PDL on the FOPA performance. The results
are summarized in Section VI.

II. EFFECTIVE PMD AND PDL VECTORS

In the frequency domain, the action of an optical component
exhibiting PMD on an optical field at frequency ω can be
described in the Jones space as [22]

|Aout(ω)〉 = U(ω) |Ain(ω)〉 , U(ω) = e−
i
2 ω�b(ω)·�σ (1)

where the vector�b(ω) = [b1(ω), b2(ω), b3(ω)] is the PMD vec-
tor of the optical component in the Stokes space and �σ =
[σ1, σ2, σ3] is the Pauli spin vector with components [21]

σ1 =
(

1 0
0 −1

)
σ2 =

(
0 1
1 0

)
σ3 =

(
0 −i
i 0

)
. (2)

Note that �b · �σ, which is defined as b1σ1 + b2σ2 + b3σ3, is a
2 × 2 matrix. The PMD vector �b(ω) is, in general, frequency
dependent; the first term in the expansion of �b(ω) is conven-
tionally referred to as the first-order PMD. The PMD vector
points in the direction of the fast axis in the Stokes space. Its
magnitude provides the relative delay between the polarization
components of the field that are parallel and antiparallel to the
PMD vector.

To clarify the notation used in this paper, |A〉 represents a
vector in the Jones space, whereas the arrows and hats are
reserved for vectors and unit vectors in the Stokes space. A
vector in the Jones space and the corresponding Stokes vector
�A are related as �A = 〈A|�σ|A〉. It is important to note that two
Jones vectors with an angle of ψ between them make an angle
of 2ψ in the Stokes space. Thus, two vectors that are orthogonal
in the Jones space are antiparallel in the Stokes space.

The transfer matrix T of a component exhibiting PDL is
not unitary. The optical field after passing through such a
component can be written as [22]

|Aout(ω)〉 = T |Ain(ω)〉 , T = e−µe�µ·�σ (3)

where �µ is the PDL vector with magnitude µ. In this repre-
sentation of the PDL matrix, the polarization component of a
field that is parallel to �µ experiences no loss, but the antiparallel
component is attenuated by exp(−2µ). Such a PDL component
is said to have a PDL of 10 log10[exp(4µ)] in decibel units
[22]. Some components used to prepare FOPA pumps may also
exhibit polarization-dependent gain (PDG) (such as erbium-
doped fiber amplifiers [23]). Their effect is equivalent to that of
a polarization-independent gain followed by a PDL component.

In general, an optical component may exhibit some degree of
PMD and PDL at the same time. Calculating the total transfer
matrix of a large number of such components becomes quite
complicated. However, noting that any matrix M can be de-
composed into a unitary matrix and a positive Hermitian matrix
in the form M = TU, the modeling of such a system can be
simplified without loss of generality. More specifically, we can
assume that the pump passes through only two components, the
first one having only PMD with a transfer matrix U and the
second one having only PDL with a transfer matrix T [22].
In addition, we can assume that all polarization-independent
changes on the pumps, such as phase modulation and amplifi-
cation, occur before the PMD and PDL components. We stress
that the PMD and PDL represented by the matrices U and T
are not the same as the PMD and PDL vectors of any individual
component or a simple combination of these [22].

The pump field before entering the PMD and PDL compo-
nents has the form

|Ain(t)〉 =
√
Peiφ(t)|ain〉 (4)

where P is the pump power after amplification, φ(t) is the
phase modulation imposed on the pump, and |ain〉 is the unit
Jones vector of the pump. Using (1) and (3), the pump field after
the PMD and PDL components can be expressed as follows:

|Aout(ω)〉 = TU(ω) |Ain(ω)〉 . (5)

Combining (1)–(5) and including only the first-order PMD
effects, the pump field entering the FOPA can be written in the
Stokes space as (see Appendix A)

�Pout(t) = Pe−2µ
{
sinh(2µ)µ̂+

[
1 + 2 sinh2(µ)µ̂µ̂

]
R(θ)p̂

}
(6)

where �Pout = 〈Aout|�σ|Aout〉, θ(t) = φ(t+ b/2) − φ(t−
b/2), and p̂ = 〈ain|�σ|ain〉 is the unit Stokes vector of the input
pump. R(θ) represents the rotation of the SOP of the pump
around the direction of the PMD vector by an angle θ and is
given by

R(θ) = cos θ + (1 − cos θ)b̂b̂+ sin θb̂× (7)

where the projection operator b̂b̂ and the cross-product operator
b̂× are defined as [24]

b̂b̂ =


 b1b1 b1b2 b1b3
b2b1 b2b2 b2b3
b3b1 b3b2 b3b3


 , b̂× =


 0 −b3 b2
b3 0 −b1
−b2 b1 0


 .
(8)
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It follows from (6) that the pump SOP becomes time depen-
dent after the PMD component. The PDL component makes
the pump power also time dependent. Since the amount of
PMD is much smaller than the duration of a pump-phase
modulation cycle, we can expand φ(t± b/2) in a Taylor series
and retain terms of up to first order in b. In this case, θ(t) can
be approximated as

θ(t) ≈ b∂φ(t)
∂t

. (9)

Therefore, distortions are expected in time intervals during
which the pump phase changes rapidly.

Power changes induced on the pump depend not only on the
amounts of PMD and PDL but also on the relative orientations
of the PMD and PDL vectors with respect to the pump SOP. For
instance, if the input SOP of the pump is parallel to the PMD
vector (p̂ ‖ b̂), it is not affected by PMD. Similarly, if the PDL
vector points to the same direction (p̂ ‖ b̂ ‖ µ̂), the pump power
remains unaffected. It is clear from the rotation matrix R(θ)
that, for a given θ, the maximum SOP rotation occurs when the
PMD vector and the input pump SOP are orthogonal (b̂ ⊥ p̂).
In this case, the last term in R(θ) contributes most because it
represents the projection of the pump SOP on the axis that is
perpendicular to both the PMD vector and the pump SOP. In the
same manner, when the PDL vector is perpendicular to both the
PMD vector and the input pump SOP (b̂ ⊥ p̂ and ±µ̂ ‖ b̂× p̂),
the variations in the pump power are maximized.

In general, the directions of the three vectors p̂, b̂, and µ̂ do
not remain fixed in time and rotate randomly on a slow time
scale. Moreover, some components can have both PMD and
PDL at the same time, making it impossible to control them
independently. Therefore, it is not possible to adjust the com-
ponents so that a minimum amount of distortion is guaranteed.
In practice, one observes that pump-power distortions can vary
over a wide range. In this worst-case scenario, the three vectors
p̂, b̂, and µ̂ are mutually orthogonal, and (5) reduces to

�Pout(t)=Pe−2µ {[sinh(2µ)±cosh(2µ) sin(θ)] µ̂+cos(θ)p̂} .
(10)

Moreover, in FOPAs that use dual pumps, the distortions on the
two pumps occur independently, and their contribution can add
constructively or destructively.

To study how much the pump field is affected by PMD
and PDL in a realistic system, we assume that the pump is
modulated using a pseudorandom bit sequence in the nonreturn-
to-zero format [13]. The use of the functional form

φ(t)=
π

2
{erf [c0(2t+T0)/Tr]−erf [c0(2t−T0)/Tr]} (11)

allows us an easy way to adjust the full-width at half-maximum
and the rise time of the pulses by choosing T0 and Tr appropri-
ately. Here, erf(x) stands for the error function, and c0 ≈ 0.9
guarantees that Tr is the duration in which the pump phase

Fig. 1. (a) Pump-phase variations over a 500-ps window centered on a single
bit at 3 Gb/s. Variations of (b) pump SOP and (c) pump power for rise times of
25 (solid) and 35 ps (dashed) with PMD of 0.5 ps and PDL of 0.5 dB.

increases from 10% to 90% of its maximum. Using (9) and (11),
the rotation angle is given by

θ(t) ≈ 2c0
√
πb

Tr

{
exp

[−c20(2t+ T0)/T 2
r

]

− exp
[−c20(2t− T0)/T 2

r

]}
. (12)

This equation shows that faster the pump phase is modulated
and the larger the PMD, the larger the pump SOP rotation.

In recent experiments, pump phase has been modulated at bit
rates ranging from 2 to 10 Gb/s [4]–[9]. Rise times are quoted
rarely, but a rise time of 30 ps was used in [6]. We also need
the realistic values for the PMD and PDL magnitudes. Since
these can vary over a wide range in practice, we vary them over
a realistic range. As an example, Fig. 1 is drawn for a PMD
of 0.5 ps and a PDL of 0.5 dB. Fig. 1(a) shows pump-phase
variations from (11) for an isolated 1 bit at a bit rate of 3 Gb/s
(T0 = 333 ps). The solid and dashed curves in Fig. 1(b) show
θ(t) for rise times of 25 and 35 ps, respectively. It is assumed
that the PMD vector is perpendicular to the input pump SOP,
resulting in the maximum rotation. At locations where the pump
phase changes rapidly, θ = 2.6◦ for Tr = 35 ps and increases
to θ = 3.6◦ when the rise time is reduced to 25 ps. Fig. 1(c)
shows relative changes in the pump power for a PDL of 0.5 dB
for the same two rise times, assuming that the PDL vector is
perpendicular to both b̂ and p̂. In this configuration, the pump
power varies by less than 0.5%. Even though a 0.5% change
sounds small, it can affect FOPA performance, as discussed in
the next section.

Before discussing the impact of PMD and PDL on FOPA
performance, we note that pump-phase modulation can affect
both the dual- and single-pump FOPAs in several other ways.
For example, phase modulation broadens the idler spectrum in
single-pump FOPAs [8], [9]. It also affects the phase-matching
condition for all FOPAs. Because the instantaneous frequencies
of pumps change with time as a result of phase modulation,
the phase mismatch among the fields, and therefore the FOPA
gain, varies in time [15], [19]. Some of these problems can
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be solved for a dual-pump FOPA when phases are modulated
such that the sum φ1(t) + φ2(t) remains constant. However,
the impact of phase modulation cannot be mitigated in this way
when pumps experience large dispersion either in components
such as the erbium-doped amplifiers and optical filters used to
prepare the pumps [20] or in the fiber itself [14]. Dispersion
converts pump-phase modulation into pump-power modulation,
which is transferred to the signal by the FWM process, resulting
in deterioration of signal quality. Effects of dispersion can be
mitigated to a large extent by adding a suitable piece of fiber
with opposite dispersion just before the pumps enter the fiber.

III. POLARIZATION DEPENDENCE OF FOPA GAIN

The preceding discussion is quite general, and it can be used
for both single- and dual-pump FOPAs. For the rest of this
paper, we focus on a practical dual-pump FOPA configuration
in which the two pumps are linearly as well as orthogonally
polarized. In addition to the advantages discussed earlier, such
FOPAs provide a relatively large gain bandwidth that is nearly
insensitive to signal SOP [9] as long as pump polarizations are
perfectly orthogonal.

Equations describing the FWM interaction inside a dual-
pump FOPA can be written in the Jones space as follows [28]:

∂|A1〉
∂z

= iγe

(〈A2|A2〉 + |A1〉〈A1| + |A2〉〈A2|
)|A1〉

+ iβ(ω1)|A1〉 (13)

∂|A2〉
∂z

= iγe

(〈A1|A1〉 + |A1〉〈A1| + |A2〉〈A2|
)|A2〉

+ iβ(ω2)|A2〉 (14)

∂|A3〉
∂z

= iγe

(
P1 + P2 + |A1〉〈A1| + |A2〉〈A2|

)|A3〉

+ iγe

(|A1〉 〈A∗
2| + |A2〉 〈A∗

1|
) |A∗

4〉 + iβ(ω3)|A3〉
(15)

∂|A4〉
∂z

= iγe (P1 + P2 + |A1〉〈A1| + |A2〉〈A2|) |A4〉

+ iγe

(|A1〉 〈A∗
2| + |A2〉 〈A∗

1|
) |A∗

3〉 + iβ(ω4)|A4〉
(16)

where |Ak〉 is the Jones vector of the field at the carrier
frequency ωk, β(ωk) is its propagation constant, and Pk =
〈Ak|Ak〉 is its power. The Manakov equation [29] was used
to derive (13)–(16). Its use is justified whenever the correlation
length of the birefringence fluctuations is much shorter than the
nonlinear length defined as LN = [γe(P1 + P2)]−1. For most
FOPAs, the correlation length is ∼ 10 m, but nonlinear length
typically exceeds 100 m.

In the preceding set of equations, γe = 8γ/9 because the
polarization rotations induced by birefringence reduce the non-
linear parameter γ, on average, by a factor of 8/9. PMD is also
assumed to be small enough that the relative angle between
the pump SOPs is maintained along the fiber length, even
though individual SOPs change randomly over the Poincaré
sphere. This condition is satisfied if the diffusion length

LD = 3/(Dp∆ω)2 is much larger than the fiber length [30],
where Dp is the PMD parameter and ∆ω is the frequency
difference between the pumps. As an example, for a fiber with
Dp = 0.017 ps/

√
km [31] and a pump separation of 50 nm, the

PMD diffusion length is ≈ 7 km. The neglect of fiber PMD
is also justified in view of PMD causing slow fluctuations in
the signal gain (time scale < 1 µs), while we consider phase
modulations on a time scale of < 1 ns. Random variations in
the zero-dispersion wavelength are important for large pump
spacings but become less critical when pump separation does
not exceed 50 nm [32]. Degenerate FWM associated with
individual pumps is ignored because it does not contribute
significantly to the flat portion of the gain spectrum, as long
as the two pumps are sufficiently far (> 10 nm) from the zero-
dispersion wavelength of the fiber. The pumps are also assumed
to be much more intense than the signal and idler waves.

Equations (13)–(16) can be solved analytically. As shown in
Appendix B, the analytical solution for the signal gain, which
is defined as G3(L) = P3(L)/P3(0), is given by

G3(L) =
G+ +G−

2
+
G+ −G−

2
p̂0 · p̂3 (17)

where p̂j is the unit Stokes vector along the SOP of the jth field
at the input end z = 0, p̂0 is the unit vector parallel to p̂1 + p̂2,
and the gains G+ and G− are obtained from

G± = 1 +
[
F±
g±

sinh(g±L)
]2

, g± =
√
F 2± − κ2 (18)

where κ = ∆β/2 + γe(P1 + P2)/2 is the total phase mis-
match, ∆β = β(ω3) + β(ω4) − β(ω1) − β(ω2) is its linear
part, F± = γe∆±

√
P1P2, and ∆± depends only on the input

SOPs of the two pumps as

∆± = 1 ± cos(θp/2) (19)

where θp is the angle between the Stokes vectors of the two
pumps. Physically speaking, G+ and G− are the FOPA gains
when the signal SOP is parallel and antiparallel to the direction
of p̂0, respectively. In other words, p̂0 defines the axis along
which the signal experiences maximum or minimum gain.
These maximum and minimum gains depend on the relative
orientation of the input pump SOPs. When the input pumps
are copolarized (p̂1 ‖ p̂2),G+ takes its maximum value, and no
gain occurs for the signal component orthogonal to the pump
SOPs, i.e., G− = 1. When the two pumps are orthogonally
polarized at the input end (p̂1 = −p̂2), the signal gain becomes
independent of the signal SOP as G+ = G−. However, in this
case, the gain is reduced roughly by a factor of 2 (in decibel
units).

The important question is how G3 changes when the pumps
experience PMD and PDL before entering the FOPA. As dis-
cussed in Section II, the SOPs and the powers of the two pumps
change during time intervals in which their phase changes
rapidly. According to (17)–(19), if the pump powers or pump
SOPs change, the signal gain is also affected. In fact, even
if the pump powers and SOP change slightly, the impact on
the signal can be quite large because of the presence of the
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Fig. 2. FOPA gain as a function of signal wavelength when two pumps are
orthogonally polarized (θ = π, solid curve). The dotted and dashed curves
show the cases when pump SOPs make an angle of 177.5◦ and 182.5◦,
respectively. In each case, vertical bars show the extent of gain variations when
pump powers vary by 1%.

sinh(g±L) in (18). To illustrate the impact of PMD and PDL
on the signal and idlers, we consider a FOPA designed using a
1-km-long highly nonlinear fiber (γe = 15 W−1 · km−1) that
has its zero-dispersion wavelength at 1583.5 nm. The third-
and fourth-order dispersion parameters at this wavelength are
β3 = 0.055 ps3/km and β4 = 2.35 × 10−4 ps4/km, respec-
tively. These fiber parameters correspond to an actual config-
uration used experimentally [12]. Two pumps are orthogonally
polarized initially and are launched with 260 mW of power at
wavelengths of 1559 and 1609 nm.

Fig. 2 shows the signal gain G3 as a function of signal
frequency predicted by (17) for such a FOPA. As shown by
the solid curve, in the absence of the PMD and PDL effects, the
FOPA produces a uniform gain of 28 dB in the central spectral
region between the two pumps. The dependence of signal gain
on the relative orientations of input pumps is shown by the
dotted and the dashed curves for which θp = 180◦ ± 2.5◦. In
each case, the vertical bars show the extent of gain variations
when the pump powers are changed artificially by ±1%. The
main point to note is that the signal can change by > 1 dB
with relatively small changes in the pump powers and small
deviations from perfect orthogonality of the pump SOPs. We
should stress that even though Fig. 2 shows only the signal
gain, the same behavior occurs for the idler beam because FWM
generates signal and idler photons in pairs. In the following,
we focus on signal amplification, but our conclusions apply
for other FOPA applications related to phase conjugation or
wavelength conversion.

IV. TEMPORAL VARIATIONS IN AMPLIFIED SIGNAL

We now focus on temporal changes in the signal power
produced by PMD and PDL when the pump phases are mod-
ulated to suppress SBS. Fig. 3 shows the amplified signal
power (normalized to its time-averaged value) over the same
time interval used for Fig. 1. As discussed in Section II, the
relative orientation of pump SOPs with respect to the PMD and

Fig. 3. Time dependence of the relative signal power at the FOPA output
for three different orientations of the pump SOP vector, PMD vector, and
PDL vector. (b) and (c) Different curves correspond to different signal SOPs
discussed in the text.

PDL vectors determines how much the signal is distorted. To
illustrate this point, Fig. 3(a)–(c) corresponds to different ori-
entations of the PMD and PDL vectors. In Fig. 3(a), the pumps
are linearly and orthogonally polarized such that p̂1 = [1, 0, 0]
and p̂2 = [−1, 0, 0]. The PMD and PDL vectors affecting the
first pump are b̂1 = [0, 0, 1] and µ̂1 = [0, 1, 0]. For the second
pump, these vectors are oriented such that b̂2 = [0, 0,−1] and
µ̂2 = [0,−1, 0]. The magnitudes of PMD and PDL are 0.5 ps
and 0.5 dB, respectively, for both pumps. Since the pumps pass
through the PMD components pointing in the opposite direc-
tions and their phases are modulated in opposition, both pumps
are rotated in the same direction. In this situation, the pumps
preserve their orthogonality throughout the FOPA length. The
PDL vectors are oriented such that the two pumps have the
same power profile (similar to that shown in Fig. 1). Therefore,
the signal distortions in Fig. 3(a) are solely due to pump-power
variations. Moreover, as the pumps maintain their orthogonal-
ity, distortions are the same for all input signal SOPs, i.e., such
a FOPA does not exhibit any PDG.

In Fig. 3(b), the PMD vector affecting the second pump
is changed to b̂2 = [0, 0, 1] so that pumps rotate in opposite
directions and loose their orthogonality. In addition, the pump
powers are affected by PDL such that their total power is nearly
time independent. As a result, distortions in Fig. 3(b) originate
mostly from variations in the pump SOPs. In the time interval
where the pump phases change rapidly, the pump SOPs deviate
from orthogonality, and the signal gain depends on the input
signal SOP as well as the pump SOPs. The solid, dashed, dot-
ted, and dashed-dotted curves in Fig. 3(b) correspond to the four
choices of signal SOPs governed by p̂3 = [0, 1, 0], [0,−1, 0],
[1, 0, 0], and [0, 0, 1], respectively. For certain signal SOPs,
signal power can fluctuate more than 65%, indicating severe
degradation of FOPA performance caused by the PMD effects.

In Fig. 3(c), both the PMD and PDL vectors affecting the
second pump are taken to be the same as those that affect the
first pump. In this configuration, pump SOPs rotate in opposi-
tion, but the pump powers change in unison. The contributions
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of pump-power variations add to the distortion caused by
pump-polarization variations at the rising edge of the phase
modulation profile but is subtracted from it at the falling edge.
As a result, the magnitude of the signal distortion at the rising
edge is even larger than that shown in Fig. 3(b). In all cases
in Fig. 3, the pump SOP, and the PMD and PDL vectors are
chosen to be mutually orthogonal for both pumps, resulting in
maximum pump distortion. However, the distortion of the two
pumps may add up or mitigate the effects of each other, albeit
in an uncontrollable manner. Moreover, since the directions
of the PMD and PDL vectors may change with time, signal
distortions may fluctuate in time, taking on shapes similar to
those shown in Fig. 3 or their combinations. In practice, PMD
and PDL effects would appear as noise and lower the signal-to-
noise ratio.

A comparison of Fig. 3(a) and (b) shows that for a given
amount of PMD, deviations from orthogonality of the pump
SOPs are more harmful than pump-power distortions caused
by the combination of PMD and PDL. Even though the pump
SOPs as well as pump powers affect the FOPA gain exponen-
tially by modifying F± in (18), the nonorthogonality of the
pump SOPs affects this quantity directly through ∆± and is thus
more harmful. It is important to stress that Fig. 3 focuses on the
cases in which the PMD and PDL vectors are oriented such
that they cause the largest degradation of the pump. In practice,
these vectors can align from time to time in such a way that the
signal is relatively unaffected.

Unlike FOPAs with orthogonal pumps, when pump SOPs
are parallel, their rotation becomes less of a problem. Signal
degradation in this situation is mainly due to pump-power
variations which, as shown in Fig. 3(a), are quite small (< 2%).

V. PRACTICAL SOLUTION

Since the nonorthogonality of two pumps caused by PMD
and PDL is detrimental to the FOPA performance, it would help
if their SOPs are made perfectly orthogonal before the pumps
enter the fiber. This can be enforced in practice by placing good-
quality polarizers at the input end of the FOPA. Even though
these polarizers would cause some power distortion, we show
in this section that they improve the signal quality drastically at
the FOPA output. Their use thus constitutes a simple practical
solution to the PMD- and PDL-induced degradation of FOPAs.

Fig. 4 shows how much signal distortion can be mitigated by
using polarizers and is drawn under conditions identical to those
used for Fig. 3 except for the use of polarizers. Polarizers are
adjusted so that their maximum transmission axes are parallel
to the input SOPs of pumps with a 30-dB extinction ratio.
A comparison of Figs. 3 and 4 shows that polarizers help in
reducing signal distortion in all cases. In some cases, signal-
power variation is reduced from more than 65% to less than
3%. The residual distortion is related to the finite extinction
ratio of the polarizers used, and a small amount of distortion
is induced by the polarizers themselves. Fig. 4(b) shows that
the FOPA exhibits some PDG because different signal SOPs
are affected differently. This is a sign that pumps still have
polarization components that are not orthogonal. If polarizers
with an extinction ratio of 50 dB are used, the distortion reduces

Fig. 4. Same as Fig. 3, except polarizers with 30-dB extinction ratio are used
before two pumps enter the FOPA.

Fig. 5. Signal-to-noise ratio plotted as a function of PMD, assuming a PDL
of 0.5 dB for both pumps. Notice the dramatic improvement in (b), in which
polarizers with 30-dB extinction ratio are used.

to below 1% for all input signal SOPs. Polarizers also help in
reducing the signal distortion in Fig. 3(c), where variations in
both the pump power and pump SOPs affect the signal. In this
case, if polarizers with an extinction ratio of > 50 dB are used,
PDG totally disappears, and Fig. 4(c) reduces to Fig. 4(a) for
all input signal SOPs.

From a practical perspective, one is interested in knowing
how much signal quality is degraded by the PMD and PDL
effects. For this purpose, we calculate the standard deviation
of signal fluctuations by using σ3 = [〈P 2

3 〉 − 〈P3〉2], where the
angle brackets denote time averaging over a single bit duration.
In Fig. 5, the relative distortion σ3/〈P3〉 is plotted as a function
of PMD for several values of the average FOPA gain G3

when the relevant vectors are adjusted to give the maximum
distortion. The PDL magnitude is taken to be 0.5 dB in all cases.
Rise time is taken to be 35 ps. Polarizers are used in Fig. 5(b) to
demonstrate how much they help in improving the signal qual-
ity. Fig. 5 shows that signal distortion increases with PMD as
well as withG3. Polarizers reduce the impact of PMD and PDL



3094 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 8, AUGUST 2006

induced distortions to a large extent. For example, for a 1-ps
PMD and a 28-dB FOPA gain, the output noise level is reduced
from 15% to 0.5% when polarizers are used at the input end of
the FOPA. Note that 〈P3〉/σ3 is not related to signal-to-noise
ratio since only the worst-case distortion is taken into account.

VI. CONCLUSION

We have shown in this paper that PMD and PDL associated
with various optical components affect the quality of pump
beams even before they enter a FOPA, and this in turn may
produce relatively large changes in the signal and idler powers
at the FOPA output. The magnitude of such changes depends
on the relative SOPs of the two pumps. In particular, predicted
changes are relatively large for orthogonally polarized pumps,
but they become negligible for copolarized pumps.

We used the concept of the PMD and PDL vectors to derive
an expression for the Stokes vector of the pump beam at the
input end of the FOPA. We developed a vector theory of the
underlying FWM process to obtain an expression for the signal
gain of a dual-pump FOPA in the general case, in which the
two pumps and the signal are launched with arbitrary SOPs. We
used this expression to study the impact of PMD and PDL on
the amplification of signal and idler fields and found that signal
fluctuations can exceed 50% under certain conditions. We quan-
tified the signal degradation caused by PMD and PDL in terms
of signal-to-noise ratio. We show that the use of high-quality
polarizers just before the input end of the fiber can improve the
performance of a dual-pump parametric amplifier dramatically.
Even though we focus on signal amplification, our conclusions
apply to the idler as well. Thus, our results are useful for
FOPA applications such as phase conjugation or wavelength
conversion, in which the idler beam is of practical interest.

APPENDIX A
STOKES VECTOR OF THE PUMP

The derivation of (6) makes use of the following well-known
identities related to the Pauli spin vector [24]:

(�r · �σ)(�k · �σ) =�r · �k + i(�r × �k) · �σ (20)

(�r · �σ)�σ(�r · �σ) = 2�r(�r · �σ) − r2�σ (21)

e�r·�σ = cosh(r) + sinh(r)r̃ · �σ (22)

where �r and �k are complex-valued vectors with r2 = �r · �r and
r̃ = �r/r.

By substituting (1), (3), and (4) in (5) and taking the Fourier
transform, the output pump field in time domain is found to be

|Aout(t)〉 = e−µe�µ·�σ
√
P

2π

∞∫
−∞

dω exp
[
− i

2
ω�b · �σ − iωt

]

∞∫
−∞

dt′ exp [iφ(t′) + iωt′] |ain〉 (23)

where the PDL element is assumed to be independent of pump
frequency. Using (22) and changing the order of integrations,
(23) becomes

|Aout(t)〉 = e−µe�µ·�σ
√
P

2π

∞∫
−∞

dt′eiφ(t′)

∞∫
−∞

dωe−iω(t−t′)

×
[
cos(ωb/2) − i sin(ωb/2)b̂ · �σ

]
|ain〉. (24)

The integrations in (24) can be performed analytically. By
using (22), the resulting expression can be written as

|Aout(t)〉 = e−µ
√
P exp

(
i

2
[φ(t+ b/2) + φ(t− b/2)]

)

× e�µ·�σe− i
2 θ(t)b̂·�σ|ain〉 (25)

where θ(t) = φ(t+ b/2) − φ(t− b/2). The Stokes vector of
the pump �Pout = 〈Aout|�σ|Aout〉 becomes

�Pout(t) = Pe−2µ〈ain|e i
2 θb̂·�σe�µ·�σ�σe�µ·�σe−

i
2 θb̂·�σ|ain〉. (26)

To proceed further, we make use of the following relation
that can be derived from (20)–(22):

e�r
∗·�σ�σe�r·�σ = [r̃(r̃∗ · �σ) + r̃∗(r̃ · �σ) + ir̃ × r̃∗] |sinh(r)|2 + �αR

+
(
|cosh(r)|2 − (r̃ · r̃∗) | sinh(r)|2 − �αI×

)
�σ (27)

where �αR + i�αI = 2 cosh(r∗) sinh(r)r̃. With this relation,
(26) becomes

�Pout(t) = Pe−2µ〈ain| sinh(2µ)µ̂

+
[
1 + 2 sinh2(µ)µ̂µ̂

]
R(θ)|ain〉. (28)

Introducing R(θ) = ei/2θb̂·�σ�σe−i/2θb̂·�σ and using (27), we ob-
tainR(θ) defined in (7). With this definition, (28) reduces to (6).

APPENDIX B
SOLUTION OF VECTOR FWM EQUATIONS

Since |A1〉〈A1 + |A2〉〈A2|, P1, and P2 remain constant
along the fiber, (13) and (14) can be solved to provide the
following solution [28]:

|A1(z)〉 = exp [iβ(ω1)z + iγez(P20I + M0)] |A10〉 (29)

|A2(z)〉 = exp [iβ(ω2)z + iγez(P10I + M0)] |A20〉 (30)

where M0 = |A10〉〈A10| + |A20〉〈A20|, Pj0 = 〈Aj0|Aj0〉 and
|Aj0〉 is the pump Jones vectors at the input end (j = 1, 2). In-
serting this solution into (15) and (16), we obtain the following
signal and idler equations after a change of variables:

∂|B3〉
∂z

= iκ|B3〉 + iγe [|A10〉 〈A∗
20| + |A20〉 〈A∗

10|] |B∗
4〉 (31)

∂|B4〉
∂z

= iκ|B4〉 + iγe [|A10〉 〈A∗
20| + |A20〉 〈A∗

10|] |B∗
3〉 (32)
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where B3 and B4 are related to the signal and idler fields as

|Bk〉 = exp
(
i

2
∆βz − iγez

2

× [(P10 + P20)I + 2M0] − iβ(ωk)z
)
|Ak〉. (33)

As usual, the signal and idler equations can be combined to
obtain the following second-order differential equation for the
signal [28]:

∂2|B3〉
∂z2

= −κ2|B3〉 + γ2
e [P1|A20〉〈A20| + P2|A10〉〈A10|

+(〈A10|A20〉|A10〉〈A20| + h.c.)] |B3〉 (34)

where h.c. stands for Hermitian conjugate. Using the
relation [24]

|A10〉〈A20| =
1
2

[〈A20|A10〉 + 〈A20|�σ|A10〉 · �σ] (35)

and (20)–(22), (34) can be simplified to yield

∂2|B3〉
∂z2

=−κ2|B3〉+ γ
2
eP1P2

4
×[3+p̂1 ·p̂2+(p̂1+p̂2)·�σ] |B3〉.

(36)

This equation can be solved to obtain

|B3(z)〉 = GF+|B3‖〉 +GF−|B3⊥〉 (37)

where |B3‖〉 and B3⊥〉 are the polarization components of the
input signal that are parallel and antiparallel to the Stokes
vector p̂0 = p̂1 + p̂2. Furthermore,GF+ andGF− are the gains
experienced by the two polarization components of the signal
field and are given by

GF± = cosh(g±z) +
iκ

g±
sinh(g±z) (38)

where κ and g± are defined in (18) and (19). Combining (37)
and (38), the signal gain can be written as

G3(L) =
G+ +G−

2
+
G+ −G−

2
p̂0 · p̂3 (39)

where G± = |GF±|2.
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