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Expressions are derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model
beam propagating through a paraxial ABCD system. Using the recently developed unified theory of coherence
and polarization of electromagnetic beams and the ABCD matrix for gradient-index fibers, we study the
changes of the spectral density, of the spectral degree of polarization, and of the spectral degree of coherence of
such a beam as it travels through the fiber. Effects of material dispersion are also considered. © 2006 Optical

Society of America
OCIS codes: 060.0060, 030.0030, 260.0260.

1. INTRODUCTION

It has been known for some time that the spectral degree
of polarization of an electromagnetic Gaussian Schell-
model (EGSM) beam may change on propagation even in
free space.'™ Using the recently formulated unified
theory of coherence and polarization,* changes in the de-
gree of polarization of an EGSM beam propagating
through turbulence®® and through random phase
screens’ has been investigated. In the present paper we
apply the theory to examine the changes in the spectral,
polarization, and coherence properties of an EGSM beam
as the beam propagates through a gradient-index (GRIN)
fiber.

We consider a GRIN fiber that is characterized by a
parabolic refractive-index profile, symmetric about its
axis. Such fibers exhibit lower pulse dispersion than their
step-index counterparts and hence have been used exten-
sively in optical communication systems. Plastic GRIN fi-
bers are currently of interest for local area networks and
for short-haul data communication. Due to its parabolic
refractive-index profile, a GRIN fiber is an inhomogenous,
isotropic medium. The cross-spectral density function of
an optical field in the fiber, which characterizes the
second-order correlation properties of the beam traveling
through it, satisfies, in the scalar model, two inhomog-
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enous Helmholtz equations. An integral equation for the
cross-spectral density of a scalar wave propagating
through a GRIN fiber was derived in Refs. 8 and 9 by the
use of modal analysis. It is known that the modes of a
parabolic-index medium are Hermite—Gauss functions.®
A closed-form expression for the spectrum of the field gen-
erated by a scalar Gaussian Schell-model source at an ar-
bitary distance within a GRIN fiber was derived in Ref. 11
on the basis of formalism developed in Ref. 8. Expressions
for the spectrum may also be derived by using the gener-
alized Huygen—Fresnel integral for paraxial wave propa-
gation through an ABCD system.lz’13

In the present paper, the generalized Huygens—Fresnel
formalism is used to derive explicit expressions for the el-
ements of the 2X2 cross-spectral density matrix of an
electromagnetic Gaussian Schell-model beam propagating
through a GRIN fiber. The beam we consider is character-
ized by a general set of parameters, which makes it pos-
sible to exploit the full richness of this broad class of
beams. The knowledge of the cross-spectral density ma-
trix in any plane orthogonal to the direction of propaga-
tion (the fiber axis) then makes it possible to determine
the spectral density, the spectral degree of polarization,
and the spectral degree of coherence of the field within
the fiber.

© 2006 Optical Society of America
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2. ELECTROMAGNETIC GAUSSIAN
SCHELL-MODEL BEAM

Consider a random electromagnetic beam propagating
close to the z direction. Let {E(r,w)}={E(r, 0),Ey(r, »)}
be a statistical ensemble of the fluctuating component of
the transverse electric vector in mutually orthogonal x
and y directions, at a point P(r), [r=(p,z), see Fig. 1] at
frequency w. The second-order correlation properties of
the beam can then be characterized by the 2 X2 electric
cross-spectral density matrix*

W(ry,r9,0) = [W;i(ry,rs,0)] = [(Ei (r),0)E,(rs, 0))],

(i=xy;7=xy), (1)

where the asterisk denotes the complex conjugate and the
angle brackets denote the average taken over the en-
semble of the electric field.

A scalar Gaussian Schell-model source (Ref. 14, Chap.
5) is one of the simplest and most widely employed sec-
ondary source models used for studying propagation-
induced changes in correlation properties of the beam
that the source generates (see, for example, Refs. 15-17).
A vector generalization of the scalar GSM source was in-
troduced in Ref. 18 and was discussed more fully in Ref.
19. Methods of generating such sources were proposed in
Refs. 20 and 21. The electromagnetic GSM source consid-
ered in our analysis is characterized by the most general
set of parameters.

The elements of the cross-spectral density matrix of the
field generated by a planar, secondary electromagnetic
Gaussian Schell-model source located in the plane z=0
(which we will refer to as the source plane), are given by
the expressions

W (p1,p5,0) = VS (p, ) S (p}, 0) 1 (p} - p}, ),

(i=xy;7=%y). (2)

Here p; and p, are two-dimensional position vectors of
points in the source plane, SEO) are the spectral densities
of the x and y components of the electric field, and
,ug-))(pé—pi) are coefficients that represent the correlation
between the Cartesian components E;(p;,») and E;(py, w)
of the electric field at the points p; and py. In Eq. (2), the
spectral density functions and the correlation coefficients
are taken to be Gaussian functions; i.e., they are of the
form

12

SEO)(P’,w)=Ai2 eXp(_ ZPT.‘Z)’ (i=x5y)a (3)

13
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Fig. 1. Illustration of the notation.
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The parameters A;,B;;,0;, and §; are independent of po-
sition but may depend on the frequency, and B;;=1.
Hence, the elements of the cross-spectral density matrix
of the field generated by such an EGSM beam in the plane
z=0 are given by

> Py )

W(p!,ph,w) =AAB; exp| - — - —
i (pl p2 w) tAj i P 40_l2 40_]2

y lp5 - pil? , _ ;
exp 25 ) ((=xy;j=xy). (5
The parameters characterizing the source may not all
be chosen arbitrarily. The nonnegative definiteness of the
cross-spectral density matrix imposes constraints on the
values of these parameters. There are additional con-
straints due to the requirement that the source generates
a beam.?? The necessary and sufficient conditions, that
the parameters of the source must satisfy in order that
the source generate a physically realizable beam have
been recently derived.'” A method for the synthesis of
EGSM beams has also been proposed. It makes use of two
mutually correlated phase-only liquid-crystal spatial light
modulators.?!

3. PROPAGATION OF THE CROSS-
SPECTRAL DENSITY MATRIX THROUGH
A GRIN FIBER

Consider a GRIN fiber with its axis of symmetry along the
z axis, whose spatial dependence of the square of the in-
dex of refraction has a parabolic profile, i.e., is of the form

ni(@)[1- (o) +y?)], x*+y><R}

~9 . —
A,y 0) = ng(w)[1- a*(w)RE],

x> +y2=R2
(6a)

Here R, is the core radius, ng(w) is the refractive index at
the center of the fiber, a(w) is the radial gradient of the
refractive index, and k=w/c, ¢ being the speed of light in
vacuum. If n{(w) is the refractive index on the axis of the
fiber and ny(w) is the refractive index at the boundary of
the fiber, the radial gradient of the refractive index is
given by the expression

1 ni(w) |2
a(w) = 1?0 1- % . (6b)

The ABCD matrix for paraxial ray propagation through a
GRIN fiber between planes z=0 and z=const. >0 is given

by'2
A B cos(az) sin(az)/na
|:C D] - [— nasin(az)  cos(az) ] ’ @
Let us consider an electromagnetic beam of any state of

polarization and coherence propagating close to the z axis
in the fiber, in the positive z direction. A typical member
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of the statistical ensemble of the electric field E(p,z, ») at
any point P, specified by the position vector r=(p,z), may
be determined from the knowledge of the field E©(p’, )
in the source plane z=0 by using the propagation law ap-
plicable to a paraxial ABCD sys‘cem12 18,2324,

ik exp(zkz)
E(pz;0)=- —— JJE“”(p ;)

Xexp{%(DP -2p-p' +Ap' )]dzp’- (8)

In Eq. (8), p’ and p are, of course, the transverse position
vectors that specify the location of the points in the plane
z=0 and z=const.>0 respectively, A,B,D being the ele-
ments of matrix (7) which depend on z.

The propagation kernel in Eq. (8), with the substitution
of the matrix elements from Eq. (7) is formally identical
with Eq. (17) of Ref. 8, which was derived on the basis of
modal expansion of the field supported by an infinite
square-law medium [i.e., with Ry— = in Eq. (6)]. For such
a medium, the index of refraction assumes unrealistic val-
ues at points sufficiently far from the axis. However, for a
multimode fiber, when a large number of low-order modes
are excited (a requirement satisfied for paraxial propaga-
tion), the analysis of the infinitely extended refractive-
index profile gives results in close agreement with those
obtained by using the truncated profile.?

With E(p,z, ) given by Eq. (8), one obtains from Eq. (1)
the following expression for the elements of cross-spectral
density matrix of the electric field at points r{=(p;,2z) and
ro=(pg,z) in the plane z=const.:

Wi(p1,p2.2;0) = (2 B) f f d?p; f f A2y W) (p1, ph; )
ik

X exp|:— —(Alpi* - py") —2(p1-p}

—p2py) + D(Plz - P22):| . 9

Here W\ (p},p},w) = (E” (p},0)E\"(p},0)), (i=x,y;
Jj=x,y), are, of course, elements of the cross-spectral den-
sity matrix in the plane z=0. For the field generated by
an EGSM source, they are given by Eq. (5).

The spectral density (sometimes called spectral inten-
sity) S(r;w) at any point P, specified by the position vec-
tor r in the half-space z >0, at frequency o, is given by the
formula
Tr W(r,r;w) =W, (r,r;o) +

S(r;w) = W,,(r,r;w),

(10)

where Tr W denotes trace of the W matrix. Knowledge of
the spectral density makes it possible to study the broad-
ening of a beam and the spectral shifts that may occur on
propagation through the GRIN fiber. The spectral degree
of coherence of the electric field at any two points P(r;)
and P(r;) may be determined by the use of the formula
[Ref. 4, Eq. 8]
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Tr W(rl,rz,w)

7/(1'1,1'2, (D) =

VT Wy, ey, 0)\Tr Wiry, 1y, )

Wxx(rl7r27w) + Wyy(rlar%w) (11)
 SCp0)\Srye)

Evidently, to determine the behavior of the spectral den-
sity and the spectral degree of coherence of the electric
field in the half-space z >0, we need to calculate the diag-
onal elements of the cross-spectral density matrix from
Eq. (9). The off-diagonal elements do not contribute to the
degree of coherence, as is clear from the formula (11).
They do, however, contribute to the spectral degree of po-
larization P(r,w), which is given by the expression [see
Ref. 4, Eq. 11]

\/ 4 Det W(r,r, )
P(r,w)= 1-— (12)
[Tr W(r,r,w)]

where Det W denotes the determinant of the W matrix.

4. CROSS-SPECTRAL DENSITY MATRIX OF
A GENERAL ELECTROMAGNETIC
GAUSSIAN SCHELL-MODEL BEAM
PROPAGATING THROUGH A GRIN FIBER

We will now apply some of the preceding formulas to the
situation when the beam that propagates through the fi-
ber is an EGSM beam. The elements of the cross-spectral
density matrix of an EGSM beam propagating through a
GRIN fiber may be determined by substituting from Eq.
(5) into Eq. (9) and then substituting from Eq. (7) the val-
ues of the matrix elements A,,C, and D for the GRIN fi-
ber.

On substituting from Eq. (5) into Eq. (9) we obtain for
the elements of the cross-spectral density matrix the ex-
pression

Eo\? ik
Wii(p1,p2,2;0) = (2 B) AAB; exp{ B(D (p} - P%)}

e o
y i P

exp 107 40_?
y |P2—l’1‘2 ik (A(

exp| - ———— |exp| - — -

P 253 P pl P2

—2(1’1‘P1—P2'P§))]- (13)

On introducing the variables
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P1+ P2 ¢ pi—p
= 9 ) _p2 p1>
P11t P2 ,
pP=—g 5 P =P2=p1, (14)

Eq. (12) becomes

E\? ik
Wip,p',z;0) = onB AA;B;jexp ——(Dp p)

o fel-eliee)
ol ) [

1
2 I
XeXp{ ¢ (1602 afz(s?ﬂ

J

(&£ kA ik
Xexp| & (4_0-12_@+?§_Ep> .

(15)

After long calculations, which are outlined in Appendix A,
the elements of the cross-spectral density matrix in any
plane z>0 are found to be given by the formula

1 4aijp2
Wij(P,P',Z;w) =AiAjBijEeXp -
ij

A

ikD kAN 1
X _ o — | — -0
exp) | 5 Bij+ 5 )%, P p

12

YijP
X - s 16
eXp[ Aij:| (16)

1/1 1 1/1 1 1
;="\t 35| Pi=7\ 2" 3| YiT%t_ g
e\ 2t E) PiTa\@ ) Wty

Y

(17a)

B\? ikA\2
Alj = k 160[U‘)/l] Bl_] + ? . (17b)

We note that for the diagonal elements of the cross-
spectral density matrix W;(p,p’,0), B;;=0 and conse-
quently formula (17b) becomes

6)2 (kA 2
A= % 16a;;y; + = (17¢)

which is purely real. The parameter A;; may be inter-
preted as an expansion coefficient. However, compared
with its free-space counterpart, it is not a monotonically
increasing function of z; rather, it oscillates with z be-
cause the matrix elements A,5,C, and D vary sinusoi-
dally with z [see Eq. (7)].

and
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Equation (16) together with Eqs. (17) is the general ex-
pression for the elements of the 2 X2 cross-spectral den-
sity matrix of an electromagnetic Gaussian Schell-model
beam propagating through an ABCD system. On substi-
tuting for the values of the ABCD matrix elements from
Eq. (7) into Egs. (16) and (17), one obtains the following
expressions for the elements of the cross-spectral density
matrix of an EGSM beam propagating through a GRIN fi-
ber:

Wip.p'2i0) =AA By

{ 4%,)2} Hikcot(az)
Xexp| — expy | —
Aij noa

ik cot(az)\ 1 )
- IBij"'T A_u pp

')/"P’Z
><exp|:— ; :|, (18)

i

where

sin(az) \ 2 ) N
Aij = Ena {16CVU’}/L] - [BL] +ikna COt(CYZ)] }, (19)

and the parameters «;;, 8;;, and y;; are given by Eq.
(17)(a). The expressions are valid at any distance z>0
from the source and for any real-valued n(w) and a(w).

5. SPECTRAL CHANGES OF AN
ELECTROMAGNETIC GAUSSIAN SCHELL-
MODEL BEAM ON PROPAGATION
THROUGH A GRIN FIBER

There have been many studies of propagation-induced
changes of the spectrum of light generated by a scalar
source, the changes depending on the coherence proper-
ties of the source (for a review of the subject see Ref. 17).
In Ref. 11, frequency shifts of the spectrum of the field
generated by a scalar Gaussian Schell-model beam on
propagation through a gradient-index fiber were reported,
taking into account the effect of material dispersion. It is
worth mentioning that not only may the spectrum of the
propagated field suffer a shift of its peak frequency, but,
in general, the spectral profile will also undergo a distor-
tion. In this section we will study changes of the spectrum
of an EGSM beam propagating through a GRIN fiber.

As is evident from Eq. (10), the spectrum at a point r
=(p,z) depends only on the diagonal elements of the
cross-spectral density matrix. With the choice of p;=py
=pin Eq. (13), the diagonal elements of the cross-spectral
density matrix at the point P(r) become

1 4aii92 .
Wii(p7p72;w) =AiA_eXp - A ) (l =x7y) (20)

i il

where p represents the transverse position vector of the
observation point. In Eq. (20),
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l , sin%(az) < 4&)]
Ay = | cos®(az) + 1+— ||, (21a)

(2nkac?)? &
and
1
aii=Q7 (l=x,.’)’) (21b)

The spectral density of the field S(p,z;®) may be calcu-
lated by substituting from Egs. (20) and (21) into Eq. (10).
It may be verified that in the limit as z—0,S(p,z; ) re-
duces to the expression for the spectrum S©(p;w) of the
field in the plane z=0; it may be calculated by substitut-
ing from Eq. (5) into Eq. (10).

As an example, let us consider the case when the nor-
malized spectra of the x and y components of the electric
field in the source plane z=0 are equal to each other.
When this is so, A; may be written as

Ai=15%w), (i=xy), (22a)

where the parameters I;, (i=x,y) are constants and
s(w) denotes the normalized spectral density in the
plane z=0; i.e.,

SO )
sO(w) = L. (22b)

5%p,w)dow

We will assume that s9(w) is a Lorentzian line centered
at the wavelength \y=564 nm (vy=wy/27=532 Thz) with
a FWHM of 53.2 Thz; i.e.,

s(o)(w) —

1+ [4(0— wg)/(50)2] (22¢)

where Sw is the FWHM. We also assume that the param-
eters o; and §;; in Eq. (6) (i=x,y;j=x,y) are independent
of frequency.

At a fixed distance within the fiber, the spectral shift
Aw is the difference between the peak frequency of the
modified spectrum of the field at that distance and the
peak frequency w, of the source spectrum. A positive
value of Aw represents a blue shift, while a negative value
represents a red shift. We will study the variation of the
normalized spectral shifts, i.e., Aw/w, as a function of the
distance z of propagation at a fixed radial distance from
the fiber axis for different sets of source parameters, and
we will illustrate the preceding analysis by examples.

As in Ref. 11, all the numerical calculations pertain to a
specific fiber whose core is made of doped silica (7.9%
GeO, at the core center) and a cladding made of pure
silica SiOy. The frequency dependence of the refractive in-
dex is taken to be given by the Sellmeier formula,

° Bjo}
nf(w) =1+ 5. (224d)
j=1 (t)j -

For pure silica, the parameters are B;=0.6961663, B,
=0.4079426, B3=0.8974794, A\;=0.0617167 pum, A\,

=0.1162414 um, and A3=9.896161 um, where \;=2mc/w;.
To include the effect of dopant on the refractive index, the
Sellmeier formula may still be used, but with somewhat
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different values of the parameters. For silica glass doped
with  7.9% GeOy, B1=0.7136824, B,=0.4254807, B;
=0.8964226, \;=0.0617167 um,\5=0.1270814 um, and
A3=9.896161 um. For the fiber considered in the present
analysis, we can calculate the frequency dependence of
the refractive index at the core and at the fiber boundary
and hence, using Eq. (6b), calculate the radial gradient
a(w) of the index parameter. The core radius is taken to
be 25 um.

Figure 2 shows the variation of the spectral shifts with
increasing distance of propagation for a scalar Gaussian
Schell-model beam that propagates within the fiber at a
fixed radial distance from the fiber axis (p=10/%). The
dashed curve shows the spectral shifts when the fre-
quency dependence of a is ignored by setting a(wg)
=(4.8)107* k. The solid curve shows the spectral shifts
for a dispersive GRIN. It can be seen that the spectral
shifts for a dispersion-free fiber shows only blue shifts
and exhibits periodicity, while a dispersive fiber shows
red shifts as well and no periodicity. Similar results have
been reported in Ref. 11.

0.03

0.02

0.01 J

0 : ’
-0.01 (

-0.02

5(1)/(,00

-0.03 v
0 500 1000 1500 2000

zin um

Fig. 2. Normalized spectral shift Aw/w, of the field generated by
a scalar Gaussian Schell-model source, as a function of the
propagation distance z, within a GRIN with a parabolic
refractive-index profile. The frequency shifts are calculated for
points at a fixed off-axis distance 10/k,, for a source with o
=20/ky,5=4/k,. The dashed curve shows the frequency shifts
when the frequency dependence of « is ignored, taking a(w,)
=(4.8)107* k.
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3w/ wy
—l

-0.005

-0.01

-0.015
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Fig. 3. Normalized spectral shift Aw/w, for the field generated
by an electromagnetic Gaussian Schell-model source as function
of the propagation distance z within a dispersive graded-index fi-
ber with a parabolic refractive-index profile. The frequency shifts
are calculated for points at a fixed off-axis distance 10/k, from
the fiber axis for a source with o,=0,=50/k,, I,=1,=0.5. The cor-
relation parameters for the source for the dashed curve are J,
=2/ky, 8,,=4/k,, and those for the solid curve are taken to be
6,x=2/kg, 6,,=18/ky.
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Fig. 4. The region around the second zero crossing of the nor-
malized spectral shift of Fig. 2 shown in greater detail.

Normalized spectrum

wg in THz

Fig. 5. Normalized spectrum of the field generated by an elec-
tromagnetic Gaussian Schell-model source for different values of
the propagation distance within the fiber. The spectral density is
calculated for points at a fixed off-axis distance 10/k, from the
fiber axis with a source for which o,=0,=50/k,, I,=1,=0.5. The
correlation parameters for the source are taken to be &,

=2/ky, 8,,=4/k;. The dashed curve shows the source spectrum

(2=0). Spectral density of the field at a propagation distance z
=1200 um within the fiber shows a red shift (A), and spectral
density of the field at a propagation distance z=1165 um within
the fiber shows a blue shift (B).

Figure 3 shows the variation of the spectral shifts with
increasing distance as an electromagnetic Gaussian
Schell-model beam propagates through a dispersive
GRIN fiber. The figure illustrates the influence of the pa-
rameters &, and J,, that characterize the correlation
properties of the two orthogonal Cartesian components of
the electric field in the source plane. A comparison with
Fig. 1 shows that the electromagnetic beam exhibits more
complicated spectral shifts than does its scalar counter-
part. Figure 4 shows the variation of spectral shifts in
greater detail for propagation distances at which the blue
shifts switches over to red shifts. Figure 5 shows the be-
havior of the spectral density of the field generated by an
EGSM beam within the fiber for two different values of
the distance of propagation.

6. CHANGES IN THE SPECTRAL DEGREE OF
POLARIZATION OF AN
ELECTROMAGNETIC GAUSSIAN SCHELL-
MODEL BEAM ON PROPAGATION
THROUGH A GRIN FIBER

Next we will consider the changes in the spectral degree
of polarization of an EGSM beam on propagation through
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a GRIN fiber. The degree of polarization at a point r is
given by Eq. (12) and obviously requires knowledge of all
the elements of the cross-spectral density matrix for rq
=rg=r. The diagonal elements of the cross-spectral den-
sity matrix at the point r are given by Egs. (20) and (21).
The off-diagonal element at a point r=(p,z) may be ex-
pressed in the form

1 4ozjcj,p2
ny(P,P,Z;w)zAiAjB - exp| — A ’ (23)

xy
Axy xy

B\? ikA\?
Axyz E 16axy7xy_ ﬁxy"'? (243.)

where

and

1/1 1 1/1 1 1
axy=E ?x"';y P :Bxy=z ;x_?y ) ')’xy:axy"'TSagcy'
(24b)

In Eq. (23), p represents, of course, the radial position
vector of an off-axis point in any cross-section of the fiber.

For simplicity, we will consider a source that has the
same spectral widths for the x and y components of the
electric field in the source plane (i.e., when o,=0,=0).
Then,

1 1

;i =0, oy == 55 Yoy= T 5t T g 25a
P g YoTgatagy 5

and

, sin®(az) 40” .
Axyz Ccos (aZ)+(2nk—aa'2)2 1+? . (25 )

xy

Substituting from Egs. (25) into Eq. (23) and using Egs.
(20) and (21) in formula (12), we can determine the spec-
tral degree of polarization of the field at a point within the
fiber. Figures 5 and 6 show the changes in the spectral de-

D)

P(Z,(,Oo)

500 1000 1500 2000

z in um

Fig. 6. Spectral degree of polarization of the field on-axis as a
function of propagation distance z within a dispersive GRIN fiber
with a parabolic refractive-index profile. The spectral and corre-
lation parameters of the EGSM source are given by o,=o0,
=50/ky, 1,=1,=0.5, 8,,=2/kg, 6,,=2/kg, I,,=0.1. (A) By
=3.0811/ky, (B) 6,,=4.1623/k,, (C) &,,=5.2434/k,, (D) &,
=6.3246/k,.
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B

Fig. 7. Illustration of the notation.

gree of polarization on-axis as the EGSM propagates
within the GRIN fiber. The periodicity of the spectral de-
gree of polarization is due to the imaging property of a
medium with a quadratic variation of the refractive in-
dex.

As already mentioned in Section 2, the parameters
characterizing the spectral and the correlation properties
of the source have to be chosen with care to ensure that
the source is physically realizable. The sufficiency condi-
tion, chiefly due to the nonnegative definiteness of the
cross-spectral density matrix, may be expressed as in-
equality (Ref. 19):

O Oyy

— . (26)

ny ——,
\”|Qxy| V"Qxy‘

As a consequence of this constraint, the spectral degree of
polarization at a point in the fiber may assume values
only within a well-defined range, as can be seen from Fig.
6. The lower and upper bounds of the degree of polariza-
tion of the electric field at any point are determined by the
spectral properties and by the correlation properties of
the source. Additional constraints on the parameters im-
posed by the requirement that the source generate a
beam were derived in Ref. 22.

max{d,,, d,,} < &, < mi

7. CHANGES IN THE SPECTRAL DEGREE OF
COHERENCE OF AN ELECTROMAGNETIC
GAUSSIAN SCHELL-MODEL BEAM

ON PROPAGATION THROUGH A GRIN
FIBER

The spectral degree of coherence of the electric field for a
pair of points in the cross section of the fiber is given by
formula (11). It is evident that it depends only on the di-
agonal elements of the cross-spectral density matrix. We
will choose the two points to be located radially symmetri-
cally with respect to the fiber axis (i.e., po=—pq; see Fig.
7). With this choice we have

P1t P2
="

=0 and p’'=py-p;=2p,. (27)

On substituting from Eq. (27) into Eq. (16), one finds that
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1 4y,05
W "Ziw)=A— - 28
i(p,p',2;0) = A; AiieXp N ) (28a)
where
, sin?(az) 407
A;=|cos?(az) + ———=| 1+ 28b
and
1 1
i= 5+t % 28¢c
Yi=g APy (28c¢)

Substituting from Eqgs. (28), (20) and (21) into Eq. (11), we
obtain for the spectral degree of coherence at the chosen
pair of points, the expression

7(p,— p,z;0)
1 4yp” 1 4yy,p°
A, —exp| - +A,—exp| - s
xAxx P Ach AyAyy P Ayy
= 3 - (29)
1 < Ay ) 1 ( ayyp )
A,—exp| - +A,—exp| -
A A Ay Ayy

Figure 8 shows the variation of the spectral degree of co-
herence with increasing distance of propagation within
the fiber when the ratio of the parameters A, /A, is varied
while the correlation parameters J,, and J,, are kept con-
stant. Figure 9 shows the changes in the spectral degree
of coherence as a function of the distance of propagation
when the correlation width of the y component of the elec-
tric field is varied while all the other source parameters
are kept constant. The periodic variation of the degree of
coherence is again a consequence of the imaging property
of the gradient fiber.

0.52
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0.46}

|n(ﬂ,'ﬂ, Z;(DO)I
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0.42}

0.4 L L L
0 500 1000 1500
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Fig. 8. Spectral degree of coherence as a function of propagation
distance z for a pair of points located radially symmetrically at a
distance 1/k( from the fiber axis. The different curves show the
variation as the spectral density of the x component of the field is
changed while that of the y component is kept fixed. The param-
eters of the source are taken to be o,=0,=50/k¢,1,=1,5,
=40/ky,8,,=30/kg,0=w,. (A) I,=1, (B) I,=0.5, (C) I,=0.25.
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Fig. 9. Spectral degree of coherence as a function of the propa-
gation distance z for a pair of radially symmetric points at a dis-
tance 1/k, from the fiber axis. The different curves show the
variation of the spectral degree of coherence as the parameter
that characterizes the correlations of the x component of the field
is changed, keeping that of the y component fixed. The source is
specified by the following parameters: o,=0,=50/k(,1,=0.5,1,

=1,8,,=4/kg,w=wp. (A) 5,,=3/k, (B) 5..=18/ky, (C) 8..=25/k,,

8. CONCLUSIONS

The analysis presented in this paper shows that the spec-
tral density, the spectral degree of polarization, and the
spectral degree of coherence of an electromagnetic Gauss-
ian Schell-model (EGSM) beam all change on propagation
through a gradient-index fiber that supports a large num-
ber of low-order modes. The transverse degree of coher-
ence at two points within the fiber and the degree of po-
larization at a point in the fiber exhibit periodicity, caused
by the focusing property of square-law media. The spec-
tral, polarization, and coherence properties of the EGSM
beam in any cross section at a certain propagation dis-
tance within the gradient-index fiber depend on the cor-
relation properties and on the spectral properties of the
source generating the beam. It is to be noted that coher-
ence and polarization properties of the electric field
change as any one of the parameters characterizing the
spectral and the correlation properties of the source is
varied while all the other parameters are kept fixed.
Since the nonnegative definiteness of the cross-spectral
density matrix of the electric field in the source plane im-
poses restriction on the physically allowable range of val-
ues of the source parameter, the degree of polarization
and the degree of coherence of the electric field at a fixed
propagation distance are also restricted within a certain
range.

APPENDIX A: DERIVATION OF EQ. (16) FOR
THE ELEMENTS OF THE CROSS-

SPECTRAL DENSITY MATRIX ACROSS THE
BEAM

According to formula (1), the elements of the cross-
spectral density matrix in any plane z >0 are given by the
formula
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sz(P,P’7Z'CU)

( iB) AABUexp<—E(Dp p’))fjd2
1 1 ik
Xexp[ <F+E>1exp<— Ef-p’)
el
160% 1602 262

ol (£ £ A -
exp| € 40%_4a-f+3§_6” '

Introducing the parameters

1/1 1 /1 1 !
aij=1_6 ;l_*_?] , Bijz Z(?_? , V= ot 2_53_,
(A2)

the integral over the parameter &' takes the form

I(¢,p) = f f d?¢ exp(- y;£'?)

kA ik
Xexpy & ﬁij"'? §-EP . (A3)

Using the formula
“ \r 7T q2
exp(- px® + gx)dx = —exp ) (A4)
- p 4p?

the integral in Eq. (A3) may be evaluated and gives the
following expression for I(£,p):

ik A ik |?
Bij+ ?)f— 3P

v
I(¢,p) = —exp . (A5)
Yij 4

After expanding the exponent, we obtain the formula

k2
I(¢, P) eXp( p2)
Yij 47ij82

ik kA
Xexp| — 2 B :BLJ"'_ f P

1 kA
Xexp| — o ﬁlj+— §2 (A6)
ij

On substituting from Eq. (A6) into (A1), the integral I’
taken over the variable & takes the form

I’(p,p’,Z;w)=de2§
1 ikA\?
xXexpy — 4aij—4—% 'BU+7 52
i
ik ik LkA
Xexpj - Ep 2 B ﬂl] P g ’

(A7)
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which again can be evaluated by using formula (A4). Per-
forming the integration yields the expression

v m [ 4yB8° 1 hAV
(p,p',z;0) = AiJ n2 |eXP 4%%] B+ p

’Yij 9 1 lk.A
Xexp _Ip' exp Bl] P p
ij

(A8)

B\? ikA\?
A= % R Bij"’? ~ (A9)

On substituting from Egs. (A6)—(A9) into Eq. (Al), we fi-
nally obtain, after some algebraic manipulations, the fol-
lowing expression for the elements of the cross-spectral
density matrix in any transverse plane z>0:

1 4()zL-J-p2
—eX
PPUa P\ T T,

ikD ikA\ 1
X _ o — | — -p'
exp) | 5 Bij+ 5 a.|PP

Y
’}’ijP’Z
Xexp| — A .

y

where

Wip,p',z;0) =AAB;;

(A10)
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