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Linear optical bullets
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Abstract

We describe a class of spatio-temporal optical pulses that spread neither spatially nor temporarily in linear dispersive media over long
propagation distances. These new spatio-temporal pulses, referred to as linear optical bullets, can have any spatio-temporal profile and
temporal width, and they carry a finite amount of energy. We also discuss in detail a technique for the experimental realization of linear
optical bullets.
� 2005 Elsevier B.V. All rights reserved.
Spatial and spatio-temporal wave packets that can resist
spreading due to diffraction and dispersion play a special
role in optics because of their fundamental particle-like
behavior with a variety of potential applications. It is often
believed that the formation of such wave packets requires a
nonlinear medium. Indeed, the entire field of optical soli-
tons is based on the balance of dispersion or diffraction
with the nonlinear response of an optical medium [1]. If
the nonlinearity of such a medium is capable of balancing
both dispersion and diffraction, the resulting spatio-tempo-
ral soliton is referred to as an optical bullet [2].

Perhaps somewhat surprisingly, localized wave packets
can also form in a linear medium. Many such solutions
of the paraxial and non-paraxial wave equations have been
found in the context of both optics [3–12] and ultrasonics
[13–15]. Localized spatio-temporal solutions propagating
either in free space or in linear dispersive media are known
as X waves [12,15] because of the particular shape of their
spatio-temporal profiles. However, most of the localized
waves discussed in the literature thus far are solutions of
the wave equations with an infinite amount of energy. Sim-
ilarly, the so-called non-diffracting beams, first studied in
Refs. [5] and existing even in free space, have field enve-
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lopes containing an infinite power [16]. Recently found spa-
tio-temporal nonspreading X waves [11,12] propagate in
linear dispersive media, but they carry an infinite amount
of energy as well. Thus, none of the nonspreading waves
studied to date can play a role similar to that of optical bul-
lets [2], which represent pulses with a finite energy and owe
their very existence to the anomalous dispersion of the med-
ium. A natural question thus arises: Can one construct a
linear analog of a finite energy optical bullet that will not
spread, at least to good accuracy, on propagation in a lin-
ear dispersive medium?

In this communication, we answer this question in the
affirmative. More specifically, we show that dispersion
and diffraction can act in concert to produce spatio-tempo-
ral wave packets with a finite energy, in the normal disper-

sion regime of a linear medium. We call such waves,
generated by a source of finite spatial size, linear optical

bullets (LOB) because they carry a finite energy and are
not affected by either diffraction or dispersion over long
distances. We show that the characteristic distance over
which the proposed LOBs become affected by diffraction
and dispersion can be controlled by adjusting the size of
the source aperture. We also emphasize that unlike the con-
ventional optical bullets [2], whose spatio-temporal shape is
determined by the trade-off between spreading due to dif-
fraction and dispersion and self-focusing produced by Kerr
nonlinearity, the LOBs proposed in this paper can have any
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spatio-temporal shape. In this work, we propose a specific
scheme for the experimental realization of LOBs by analyz-
ing in detail the spectrum of the source that produces them.
An important advantage of our scheme is the capability of
generating LOBs of a desirable temporal width within the
limits of applicability of the slowly varying envelope
approximation.

We begin by considering an optical pulse propagating in
the normal dispersion regime in a linear optical medium
characterized by a frequency-dependent refractive index
n(x). On expanding the propagation constant b(x) =
n(x)x/c in a Taylor series around the carrier frequency x0

of the pulse and truncating the series after the quadratic
term, we arrive at the following paraxial wave equation
for the slowly varying field envelope U(x,y,z, t) [1]:
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Here bm ¼ ðdmb=dxmÞx¼x0
, b1 is the inverse of the group

velocity, and b2 governs the dispersive properties of the lin-
ear medium (b2 > 0 for normal dispersion). This equation
can be written in terms of the dimensionless variables as
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where X = x/rI, Y = y/rI, Z ¼ z=b0r
2
I , and T = (t � b1z)/

Tp. Physically, T is the retarded time normalized to the
pulse width Tp. The transverse spatial scale rI is related
to the temporal pulse width Tp as r2

I ¼ 2T 2
p=ðb0b2Þ.

It is easy to show that any wave of the from
F(X + Y � T), with F(x) being an arbitrary function of x,
is a non-spreading solution of Eq. (2). However, no such
solution can be an optical bullet because the energy,
E ¼

R
dT
R

dX
R

dY j F ðX þ Y � T Þj2, associated with such
a wave is infinite. Motivated by this observation, we pro-
pose as a candidate for the LOB the spatio-temporal enve-
lope whose profile U0 in the source plane is given by

U 0ðX ; Y ; T Þ ¼ hðLX � jX jÞhðLY � jY jÞF ðX þ Y � T Þ; ð3Þ

where h(x) is a unit step-function, and 2LX and 2LY are the
dimensions of the source aperture in units of rI. The solu-
tion to Eq. (2) with the initial condition (3) is readily
obtained by first introducing a Fourier transform eU ðX ;
Y ; Z;XÞ of U and noting that each frequency component
of the pulse diffracts according to the Fresnel diffraction
theory. By taking the inverse Fourier transform, we obtain
for the LOB field in any transverse plane Z > 0 the
expression
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Here the Fourier transform in the source plane is defined aseF ðXÞ � R1�1 dTF ðT Þ expðiXT Þ and the auxiliary function
W(S,X,Z) is defined as
WðS;X; ZÞ � 1
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dx is the error function.
Physically, Eq. (5) implies that each monochromatic

component of the pulse undergoes Fresnel diffraction at
the source aperture with the Fresnel number depending
on the corresponding frequency. However, if the fields
of such monochromatic components are combined with
the appropriate spectral weights and phase chirps accord-
ing to Eq. (4), the resulting spatio-temporal pulse is a
non-spreading optical bullet. Further analysis of Eqs.
(4) and (5) leads to the following conclusions. First, as
LS!1, (S = X,Y), Fresnel diffraction reproduces the
profile of the aperture, i. e., the step-functions, and the
field amplitude approaches that of an ideal non-spreading
wave of the form F(X + Y � T). Second, in the case of a
finite-aperture source, a characteristic distance over
which the LOB becomes affected by diffraction increases
with LS, and hence, it can be controlled by adjusting the
size LS of the source aperture. These semi-qualitative
considerations are confirmed by the behavior of the exact
solution (4). The intensity distributions of the bullet at
distances Z = 0 and Z = 5 from the source plane are dis-
played in Fig. 1, assuming a square aperture of the size
L = 30. The normalized spectral distribution of the bullet
field in the source plane is taken to be a Gaussian,eF ðXÞ ¼ expð�X2=2Þ. It can be seen from Fig. 1 that
the spatio-temporal profile of the LOB remains virtually
immune to spreading over distances that exceed the dif-
fraction length z0 ¼ b0r

2
I of a beam of width rI by at

least a factor of 5.
We should stress that our general exact solution (4) pre-

dicts that a wide variety of LOBs can exist, distinguished
from each other on the basis of their spectra. As an inter-
esting example, we display in Fig. 2 the intensity distribu-
tion at the distance Z = 5 for an LOB with a finite-
bandwidth spectrum. More specifically, we take eF ðXÞ ¼
hðB� j X jÞ and choose B = 1/2. Similar to the Gaussian
case, the intensity distribution after 5 diffraction lengths
almost coincides with that in the source plane (Z = 0), even
though this LOB contains a number of satellite peaks in
addition to the dominant central peak. The oscillatory
structure seen in Fig. 2 is expected for a finite-bandwidth
beam and follows a pattern of the form sin2(X � T)/
(X � T)2. Clearly, LOBs that we have found can have a
multipeak structure in space and time that is governed
solely by their source spectrum.

It remains to consider the issue of the LOB generation in
a laboratory setting. To address this issue, we calculate the
spectral amplitude of U0. Assuming, for simplicity, a
Gaussian spectral profile of the LOB in the source plane,
taking the Fourier transform of Eq. (3) with respect to T,
and converting the result to the dimensional units, we
obtain



Fig. 1. Intensity profile of the LOB, evaluated at Y = 0 and Z = 0, within a square aperture of the size L = 30 (top) and at the distance Z = 5 from the
aperture (bottom). The spectral distribution of the LOB field in the source plane is taken to be a Gaussian, centered at the frequency x0.

Fig. 2. Intensity profile, evaluated at Y = 0, at the distance Z = 5 for the LOB generated by a source with a finite-bandwidth spectrum of the formeF ðXÞ ¼ hðB� jXjÞ with B = 1/2 and L = 30.
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eU 0ðx; y;xÞ / expð�x2T 2
p=2Þ exp½ixT pðxþ yÞ=rI�. ð6Þ

It can be inferred from Eq. (6) that to form an LOB at the
source plane, the spectral amplitude of the pulse must have
a linear chirp whose magnitude depends on the spatial
coordinates through the variable x + y.

Fig. 3 shows schematically an experimental setup that
can be used to generate the LOB with such a spectral
amplitude. The experimental procedure is as follows. An
optical beam with a Gaussian spatio-temporal intensity
profile is placed at the focus of a thin lens so that the out-
put field is collimated to a desired spatial size in both trans-
verse dimensions. The Gaussian spectrum of the pulse is
then separated spatially into individual frequency compo-
nents (say, along the x-axis) using a bulk grating. The
resulting uniform pulse is then transmitted through a
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Fig. 3. Schematics of the setup for experimental realization of linear
optical bullets.
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planar wedge whose thickness varies along x in a linear
fashion. Different monochromatic components of the pulse
are assumed to propagate close to the z-axis such that the
maximum angle the direction of propagation of a given
component makes with the z-axis is much smaller than
the inclination angle of the wedge. The wedge imparts an
x-dependent phase shift (a linear chirp) onto the spectral
amplitude of the pulse. A second identical grating is then
used to reconstruct the optical beam. This procedure is
repeated to impose a y-dependent linear chirp on the pulse
by using another wedge and a grating pair oriented orthog-
onal to the first one. We assume that dispersion of the grat-
ing pairs and the wedge material is either negligible or
is compensated using a suitable dispersion-compensation
scheme.

It follows from the geometry of Fig. 3 that the spectral
amplitude of the modified beam can be written as

eU sðx;y;xÞ/ expð�x2T 2
p=2Þexp½iðx=cÞnwðxþyÞtana�; ð7Þ

where nw is a linear refractive index of the wedge at the car-
rier frequency x0 and a is the angle of inclination of the
plane of the wedge. On comparing Eqs. (6) and (7), we con-
clude that in order for the proposed setup to realize an
LOB, one has to adjust the angle a such that
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Note that the inclination angle of each wedge is indepen-
dent of the parameters of the pulse, and hence the same
experimental setup can generate LOBs of any temporal
width. It is also worth pointing out that LOBs of different
spatio-temporal profiles can be generated starting from a
pulse of a given temporal profile F(T) and following the
procedure just described.

In summary, we have presented a novel class of spatio-
temporal pulses, which carry a finite amount of energy
and do not spread either spatially or temporarily on prop-
agation in linear, normally dispersive media over long
distances. Consequently, these pulses qualify as linear opti-
cal bullets. Such bullets can have any spatio-temporal
profile and any temporal width as long as the slowly
varying envelop approximation remains valid. We have
also proposed a concrete way for realizing LOBs experi-
mentally. The proposed LOBs are expected to have many
applications ranging from high definition metrology to
telecommunications.
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