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Photon-pair generation by four-wave mixing in
optical fibers

Q. Lin, F. Yaman, and Govind P. Agrawal
Institute of Optics, University of Rochester, Rochester, New York 14627

Received October 4, 2005; revised December 20, 2005; accepted January 12, 2006; posted February 6, 2006 (Doc. ID 65168)

We present a theory to quantify a fundamental limit on correlated photon pairs generated through four-
wave mixing inside optical fibers in the presence of spontaneous Raman scattering (SpRS). Our theory is
able to explain current experimental data. We show that if correlated photon pairs are generated with po-
larization orthogonal to the pump the effect of SpRS is significantly reduced over a broad spectral region
extending from 5 to 15 THz. © 2006 Optical Society of America

OCIS codes: 190.4380, 190.5650, 060.4370, 270.0270, 270.5290.
Entangled photon pairs are essential for applications
related to quantum information processing. Four-
wave mixing (FWM) in optical fibers can generate
correlated photon pairs with high brightness.1,2 How-
ever, recent experiments show3–8 that this scheme is
severely deteriorated by spontaneous Raman scatter-
ing (SpRS), which contributes significantly to acci-
dental coincidence counting and limits the available
frequency range of correlated photon pairs. With a
complete neglect of the Raman response,9 current
theories1,2 cannot describe such an effect of SpRS,
and empirical fitting is widely used in practice.3–8 As
FWM becomes promising for fiber-based photon
sources, it is important to develop an appropriate
theory for guiding practical photon-pair generation.7

In this Letter, we present such a theory.
In the Heisenberg picture, the two polarization

components of the field operator, Âi�z ,�� �i=x ,y�,
satisfy10,11
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where Rij
�1� describes the linear dispersive properties,

including birefringence, and Rijkl
�3� is the third-order

nonlinear response for silica fibers given by12

Rijkl
�3� ��� =

�

3
�1 − fR�������ij�kl + �ik�jl + �il�jk�

+ �fRRa����ij�kl +
�

2
fRRb�����ik�jl + �il�jk�, �2�

where Ra��� and Rb��� are the isotropic and aniso-
tropic Raman responses and fR represents their frac-
tional contribution to the nonlinear refractive index.
m̂ij is the noise operator (related to the phonon reser-
voir), and nonlinear parameter �=n2�p /caeff, where
aeff is the effective core area.

We focus on the degenerate FWM induced by a

single pump wave launched at �p. Photon energy con-
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servation requires 2�p=�s+�i, where �s and �i are
the frequencies of the signal and idler photons, re-
spectively. In most experiments, pump pulses are
wide enough in time that the dispersion length is
much longer than the fiber length. As a result, the
pump can be assumed to be quasi-continuous. More-
over, as the pump is much more intense than the sig-
nal and the idler, it can be treated classically and as-
sumed to remain undepleted. We also assume that
the pump wave is linearly polarized along a principal
axis of the fiber, say, the x axis. It is easy to show that
the Kerr nonlinearity imposes only a phase modula-
tion on the pump wave, which evolves as Apx�z�
=Ap��z�, where the phase factor ��z�=exp�i�kx��p�
+�P0�z�, P0= 	Ap	2 is the pump power and kx��p� is the
propagation constant.

It turns out that the FWM process can be decou-
pled into two independent “eigenprocesses,” shown in
Fig. 1. Decomposing Eq. (1) in the spectral domain,
we obtain the Heisenberg equations for the two po-
larizations of the signal as

�Âj�z,�s�
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= i�kj��s� + ��j��s�P0�Âj�z,�s�

+ i�	j��s�Apx
2 Âj

†�z,�i� + iApxm̂jx�z,�s�, �3�

where j=x ,y, kj is the propagation constant, and
�s=�s−�p. The idler equation can be obtained by ex-
changing the subscripts s and i. The signal and idler
fields are normalized to satisfy �Âj�z ,�
� , Âk

†�z ,����
=2��jk���
−���.

The complex quantities �x=2− fR+ fRR̃a��s�
+ fRR̃b��s� and �y=2�1− fR� /3+ fRR̃a�0�+ fRR̃b��s� /2,
where a tilde denotes a Fourier transform, include
both cross-phase modulation and Raman scattering
as the imaginary parts of R̃a and R̃b provide the co-

Fig. 1. Two eigenprocesses of FWM. The signal and idler
are copolarized with the pump during process (a) but are

orthogonally polarized during process (b).
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polarized and orthogonally polarized Raman gain/
loss as12 gRx��s�
2�fR Im�R̃a��s�+R̃b��s�� and
gRy��s�
�fR Im�R̃b��s��, respectively. Coupling to the
phonon mode at frequency 	�s	 introduces SpRS that
is represented by the operator m̂jx�z ,�s�. It
satisfies the commutation relation10,11 of
�m̂jx�z1 ,�
� ,m̂jx

† �z2 ,����=2�gRj��
����
−�����z1−z2�.
FWM efficiency is related to 	j that is different for

the two eigenprocesses: 	x=1− fR+ fRR̃a��s�
+ fRR̃b��s� and 	y= �1− fR� /3+ fRR̃b��s� /2. In practice,
the first term dominates, and copolarized FWM is
roughly three times more efficient than the orthogo-
nally polarized FWM. For this reason, most recent
experiments3–8 have focused on the copolarized con-
figuration. However, this approach has a serious
drawback because SpRS is also maximized when the
pump and the signal/idler are copolarized. Moreover,
the Raman response also changes the refractive in-
dex through the Kramers–Kronig relation and thus
affects the FWM efficiency.9 The magnitude of 	x de-
creases by �20% when the signal is detuned far be-
yond the Raman gain peak.

Equation (3) can be solved to yield the following so-
lution for the signal wave for a fiber of length L:

Âj�L,�s� = �
j�L,�s�Âj�0,�s� + �j�L,�s�Âj
†�0,�i�
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where the coefficients are given by
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where gj is the parametric gain coefficient given
by gj

2= ��	jP0�2− ��j /2�2, �j=kj��s�+kj��i�−2kx��p�
+2�P0��j−1� represents the phase mismatch, and Kj
= �kj��s�−kj��i�� /2.

In general, the two FWM processes in Fig. 1 have
different phase-matching conditions because of the fi-
ber birefringence, and only one of them is used in a
given experiment for photon generation. As the two
processes have the same form of solution as Eq. (4),
we can drop the polarization subscript j=x ,y, pro-
vided that appropriate �, 	, �, and g are used. In
practice, the signal and idler fields are filtered
to limit their bandwidth as Â
���=�H
��
−�
� �Â�L ,��exp�−i���d� /2�, where H
��−�
� � is the
filter transmission function centered at �
� �
=s , i�.
Filters are positioned at the center of the phase-
matched window, where Re���
0, and selected such
that �s�+�i�=2�p, where we denote the signal as the
anti-Stokes with �s���p.

For photon-pair generation, the pump power is

kept low enough that �P0L�1 to prevent stimulated
scattering. Using Eqs. (4)–(7), we find that the pho-
ton flux, I

�Â


† ���Â
���� in this low power regime is
given by I
=��
�	�P0	L	2+P0L	gR	N
�, where 
=s , i,
Ns=nth but Ni=nth+1, and nth= �exp��	�0	 /kBT�
−1�−1 is the phonon population at frequency �0=�s�
−�p and at temperature T. 	=	��0�, gR=gR��0�, and
filter bandwidth ��
 is defined as ��
=�	H
��
−�
� �	2d� /2�. As expected, the photon flux consists of
two sources: one is FWM that grows quadratically
with both pump power and fiber length, and the
other is SpRS that grows linearly and generates
more idler photons than signal photons. Clearly,
�P0L should be maintained at an appropriately low
level, large enough to make FWM dominate but
small enough to prevent stimulated scattering. As a
result, SpRS remains as a dominant degradation
source.

The quantum correlation between signal and idler
photons can be well quantified by the ratio between
true and accidental coincidence, defined as

���� = �Âi
†�t�Âs

†�t + ��Âs�t + ��Âi�t��/�IsIi� − 1, �8�

where �Âi
†�t�Âs

†�t+��Âs�t+��Âi�t�� is the biphoton prob-
ability of the signal–idler pair. Using Eqs. (4)–(7), we
are able to obtain the following simple expression
when �P0L�1:
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where ���� is related to the two filters as ����
= ���s��i�−1/2�Hs��−�s��Hi��s�−��e−i��d� /2�. Clearly,
the correlation decreases with increased pump power
because of an increased probability of simultaneous
multiphoton generation, as was observed
experimentally.4,6,7 SpRS contributes little to the true
coincidence, but it introduces considerable accidental
coincidence and thus reduces the correlation value.
For a pure FWM process without SpRS, 	 is real and
the correlation reduces to ����= 	����	2 / 	�	P0L	2.

Equation (9) constitutes our main result. In what
follows, we use it to discuss some typical experimen-
tal results and to propose a new scheme. Figure 2
shows ��0� as a function of pump–signal detuning for
the two polarization configurations shown in Fig. 1,
assuming identically shaped signal and idler filters
such that 	��0�	2
1. In the orthogonal configuration
we increase P0 by a factor of 3 so that FWM creates
nearly the same number of photons in the two cases.

When the signal is close to the pump (say, detuning
of 0.5 THz), correlation is about 12 for a typical value
of �P0L
0.15 but reduces to 3.5 when �P0L in-
creases to 0.4, indicating that current experiments
around this regime3,4,6 are close to the fundamental
limit. In the copolarized case (dotted curves), the cor-
relation remains small over a broad range,
2–15 THz, reflecting the degrading effect of SpRS.
However, the correlation increases to high values
when the signal is detuned far beyond the Raman-

gain peak (but with �40% reduction in FWM-
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generated photons due to a Raman-induced decrease
in FWM efficiency). For example, around 30 THz, the
correlation varies from 138 to 39 for �P0L=0.1–0.2
and can increase to 450 when �P0L is decreased to
0.05. For this reason, several experimental groups
have made efforts to operate around this regime or
even farther.5,7,8 Consider the data of Ref. 7. With a
pump–signal detuning of 28 THz near 735 nm, Eq.
(9) shows that ��0� is 2105, 42, and 17 for �P0L val-
ues of 0.0155, 0.19, and 0.31, respectively (corre-
sponding to average powers of 0.05, 0.6, and 1 mW,
respectively, in Ref. 7 ). These values are higher than
the experimentally measured correlation of 300, 23,
and 10 at these power levels, implying the possibility
of further experimental improvement. A large dis-
crepancy at the lowest pump level is likely due to
dark counting, which tends to dominate accidental
coincidence when the photon rate is low.

Figure 2 shows that high-quality photon pairs can
be generated with copolarized FWM only far from the
pump (by at least 20 THz). However, they can be ob-
tained over a broad spectral region below 20 THz
when the photon pairs are generated with polariza-
tion orthogonal to the pump (solid curves). The Ra-
man gain is almost negligible in this configuration,9 a
feature that improves the correlation ��0� consider-

Fig. 3. Correlation enhancement factor plotted as a func-
tion of pump–signal detuning.

Fig. 2. Correlation ��0� versus pump–signal detuning, as-
suming perfect phase matching, for n2=2.6�10−20 m2/W,
peak Raman gain of 0.62�10−13 m/W (at 1550 nm), and
T=300 K. The Raman spectra used are from Ref. 9. The
dotted and solid curves show the copolarized and orthogo-
nally polarized cases, respectively.
ably. The most improvement occurs in the detuning
range of 5 to 15 THz, the same range where the co-
polarized configuration is the worst. Near the copo-
larized Raman-gain peak close to 13 THz, correlation
can be increased from a value of 4–7 to more than
20–60 for �P0L=0.1–0.2.

We quantify the increase in the correlation for the
orthogonally polarized case by a figure of merit de-
fined as the ratio of ��0� in the orthogonal and copo-
larized cases at a given detuning, as shown in Fig. 3.
Clearly, orthogonally polarized FWM exhibits corre-
lation enhancement over a broad spectral range.
When the power level is low, photon generation is
dominated by SpRS in the copolarized case but is
dominated by FWM in the orthogonally polarized
case, resulting in a significant correlation enhance-
ment of close to 20 for �P0L=0.05. The enhancement
factor decreases with increased power level because
FWM tends to dominate at high power levels. For
�P0L=0.1–0.2, the enhancement factor is 5–10 over
a broad spectral region around the Raman gain peak.

We have presented a vector theory to quantify
photon-pair generation inside optical fibers and used
it to explain the current experimental results. We
suggest a new configuration in which photon pairs
are generated with polarization orthogonal to the
pump and show that it significantly reduces the ef-
fect of SpRS over a broad spectral region where the
copolarized FWM suffers from severe SpRS. In prac-
tice, such orthogonally polarized FWM can be real-
ized in low-birefringence fibers.13 Note that a fiber
with random birefringence can be used only if its
length is shorter than the birefringence correlation
length.
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