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Abstract—This paper calculates timing jitter in intensity-
modulated/direct detection lightwave systems in which chromatic
dispersion is compensated in the optical domain and in systems
where the effects of chromatic dispersion are mitigated by means
of electrical equalization at the receiver. The authors focus on a
linear communication channel and derive a new expression for
the timing jitter after the photodetector using frequency-domain
analysis. It shows that timing jitter depends cubically on link
length when dispersion is compensated in the electrical domain.
In contrast, when dispersion is fully compensated optically, timing
jitter depends only linearly on the link length. A new expression
for the optimum timing jitter in the presence of residual dispersion
is also presented.

Index Terms—Communication systems, optical fiber dispersion,
optical noise, timing jitter.

I. INTRODUCTION

D ISPERSION management is an essential technique for
upgrading the bit rate of existing optical links to meet

the increasing traffic demand [1]. In fact, for systems oper-
ating above 10 Gb/s over standard single-mode fibers, dis-
persion compensation is mandatory, even for metro distances.
Techniques employed for dispersion compensation can be di-
vided into two groups. The ones that process the signal after
the photodetector are called electrical. In contrast, techniques
that operate on the optical signal directly are termed optical.
It is also possible to perform dispersion equalization at the
transmitter. However, with the model used in this paper, the
results obtained will be identical to those achieved with optical
equalization as long as full dispersion compensation is achieved
prior to photodetection. For this reason, we include this type of
equalization in the optical group.

Both types of dispersion-compensation techniques (electrical
and optical) have received considerable attention in recent
years. In the optical domain, the use of dispersion-compen-
sating fibers is most prevalent, although chirped fiber Bragg
gratings also appear promising [1]. In the electrical domain,
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a transversal filter is commonly employed, and the search for
a “smart” equalizer filter capable of operating at bit rates as
high as 80 Gb/s is continuing [2]–[5]. The interest in electrical
compensation is motivated by the possibility of integrating such
a dispersion equalizer with the photodetector and other receiver
components, resulting in considerable cost reduction for the
whole system. Indeed, fully integrated receivers are already
available commercially for 10 Gb/s channels and may soon
become available for 40 Gb/s. Other advantages of the electrical
techniques include the possibility of easily and dynamically
tuning the amount of dispersion compensation.

In this paper, we show that electrical equalization of dis-
persion suffers from a fundamental limit related to the growth
of timing jitter along the fiber link. In fact, we prove that the
accumulation of amplified spontaneous emission (ASE) noise
in combination with fiber dispersion leads to a cubic growth
of timing jitter with propagation distance. Such a cubic growth
was first discovered in the context of soliton systems [6], and
it was thought that it was a characteristic of nonlinear com-
munication systems. Later work revealed that ASE produces
considerable timing jitter even for nonsoliton systems [7]–[10].

We focus on a purely linear communication channel and
derive a new expression for the variance of timing jitter after
the photodetector using frequency-domain analysis. We show
that the cubic dependence of timing jitter on link length cannot
be avoided if the effects of dispersion are compensated in the
electrical domain within the receiver. In contrast, when disper-
sion is fully compensated using optical techniques, timing jitter
is reduced considerably because it depends only linearly on the
link length.

II. CHROMATIC DISPERSION AND

INTERSYMBOL INTERFERENCE

In modern lightwave communication systems, the maximum
distance at a given bit rate is frequently limited by chromatic
dispersion of the transmission fiber. A light pulse travelling
through a fiber link is composed of many frequency compo-
nents. Due to variations of the refractive index with optical
frequency, different spectral components travel at different
speeds and produce pulse broadening. Such pulse broadening
can cause intersymbol interference at the decision circuit if
tails of neighbor pulses overlap at the decision instant. When
this occurs, the signal at the input of the decision circuit
depends not only on the transmitted symbol, as it ideally
should, but also on the presence or absence of pulses in the
neighbor time slots.
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In the optical domain, one way to compensate for the disper-
sion effects is to force the optical signal through a device where
spectral components that traveled faster slow down relative to
other components. This process can in principle be adjusted to
equalize the delay over the entire spectrum of an optical pulse,
resulting in full dispersion compensation.

The situation is somewhat different when dispersion is com-
pensated electronically. One way to eliminate intersymbol in-
terference, even in the presence of chromatic dispersion, is to
guarantee that at the decision time of a specific bit, pulses in all
neighboring bit slots have zero amplitude. This is possible to
realize by an electrical filter with a suitable transfer function. In
a typical approach, this filter is designed such that the pulse
spectrum has a specific shape (known as the raised-cosine
spectrum) after the electrical equalizer. When the full width at
half maximum of this pulse spectrum is equal to the bit rate,
intersymbol interference vanishes, and no degradation due to
pulse broadening is caused in spite of dispersion-induced pulse
broadening.

However, both methods have difficulties in the presence of
timing jitter. Clearly, if the pulse’s arrival time is not certain
and fluctuates around an expected value, it is not possible to
define a set of points where pulse tail amplitude must vanish.
In fact, this amplitude must vanish over a temporal band whose
duration depends on the amount of timing jitter. As the jitter
grows, this band also grows, leading eventually to a situation
where the receiver cannot work properly. For this reason, it is
extremely important to control the magnitude of timing jitter.

As discussed in the next section, if fiber dispersion is not
fully compensated optically, pulses arriving at the receiver will
have a large jitter because of its cubic growth with fiber link
length. As it is unlikely that receivers employed for long-haul
systems can work with such a large jitter, the ASE-induced
timing jitter sets a fundamental limit on the ability to overcome
the chromatic dispersion electrically. In contrast, if dispersion
is compensated optically, the jitter at the receiver input is
relatively small as it only grows linearly with the link length.

III. NOISE ACCUMULATION IN THE

FREQUENCY DOMAIN

We consider a generic intensity-modulated/direct-detection
point-to-point optical communication system. The optical
transmitter launches a stream of pulses into the fiber, these
pulses propagate through the fiber, being periodically amplified
for fiber loss compensation, and at the system end, a receiver
converts the optical pulse stream into the electrical domain and
recovers the data using a decision circuit.

We consider two different types of receivers. In the first one,
we force the pulse width, before the photodetector, to be the
same as it was just after the transmitter. This is generically the
approach followed when dispersion is compensated optically.
We assume that a dispersion-compensating module (DCM) is
placed just before the receiver for this purpose. In practice,
many DCMs may be used all along the link. However, our use
of a single DCM does not limit our conclusions, as we focus
on a linear transmission system for which the place where the
DCMs appear is not relevant as long as the entire accumulated

dispersion is compensated such that each optical pulse recovers
its original width.

In the second type of receiver, we assume that some residual
dispersion is left on the link, either because DCMs are not
used at all or because they are not able to fully compensate
the chromatic dispersion. In this situation, optical pulses may
spread over multiple time slots before the detection. Only after
the photodetector, the electrical signal is shaped to guarantee
that the pulse tails cross a null at all decision times other than
the pulse’s own decision time. This is the approach generally
followed by electrical equalizers.

Random fluctuations of the pulse central position in the pres-
ence of ASE noise can occur because of two different effects:
beating of signal with noise and beating of noise with noise.
In this work, we focus on the jitter produced by the beating
of signal with noise. We assume that the electrical equalizer
is not able to eliminate the random walk of the pulse central
position produced by this. As we will show, such a beating leads
to a perturbation that is spectrally superimposed on the signal,
thereby limiting the effect of the equalizer. However, this does
not mean that the effect of the jitter on the decision circuit is
independent of the electrical filter response. In fact, it is possi-
ble to tailor the filter response such that it minimizes the effect
of timing jitter on the decision process (see, for instance, [11]).
In this work, we focus on the optical transmission line and do
not consider the optimization of the electrical filter. However,
this analysis can in principle be extended to include the effect
of the electrical filter.

To calculate the timing jitter, we define formally the pulse
central position along the fiber link as [12]

tp(z) =
1
Ep

+∞∫
−∞

t |u(z, t)|2 dt (1)

where u(z, t) represents the electric field envelope at position z
and at time t, and the pulse energy Ep is given by

Ep =

+∞∫
−∞

|u(z, t)|2 dt. (2)

Because of ASE noise, tp varies randomly from pulse to pulse,
leading to timing jitter. A useful measure of this timing jitter
is provided by the variance of tp calculated using the standard
definition

σ2
t = (tp − tp)2 (3)

where an overbar indicates an ensemble average over ASE-
induced temporal fluctuations.

Equations (1) and (2) can be written in the frequency domain,
using the frequency differentiation and conjugate functions
theorems, and Parseval’s formula [13], as

tp(z) = − i

2πEp

+∞∫
−∞

U ∗(z, ω)
∂U(z, ω)

∂ω
dω (4)
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Ep =
1
2π

+∞∫
−∞

|U(z, ω)|2 dω (5)

where U(z, ω) is the Fourier transform of u(z, t) and is
defined as

U(z, ω) =

+∞∫
−∞

u(z, t)eiωtdt. (6)

In the absence of ASE noise, pulse propagation is completely
deterministic as every pulse suffers the same propagation delay
and no timing jitter occurs. Therefore, the ASE noise can be
seen as the fundamental origin of timing jitter. In the case of a
linear transmission system, the case studied in this paper, one
can focus on a single pulse for calculating the timing jitter.
However, if the transmission system is affected by fiber non-
linearities, one must consider multiple pulses simultaneously
to include the additional jitter resulting from the nonlinear
interaction between adjacent pulses [14].

In general, ASE noise is unpolarized as spontaneously emit-
ted photons can have an arbitrary state of polarization. In this
work, we assume that the noise component polarized orthogo-
nally with respect to the signal is removed before photodetec-
tion. This restriction is not important as the signal only beats
with the copolarized noise.

The noise added by an optical amplifier, copolarized with the
signal, has the average power [15]

PN = hν0nspBopt(G− 1) (7)

where h is the Planck constant, ν0 is the carrier frequency, nsp is
the spontaneous emission factor, Bopt is the optical bandwidth
(in hertz), and G is the amplifier gain. Considering the central
limit theorem, the noise added by the amplifier can be assumed
to be white noise with Gaussian statistics, as discussed, for
instance, in [16].

Modeling the noise as a zero-mean stationary Gaussian ran-
dom process, a random fluctuation Nk(ω) is added to each
frequency component of the pulse at the kth amplifier such that

Nk(ω) = 0 (8)

Nk(ω1)N ∗
k(ω2) =σ2

kδ(ω1 − ω2) (9)

where σ2
k is the bilateral ASE noise power spectral density.

Its value σ2
k = hν0nsp(G− 1)/2 ensures that (7) is satisfied.

Equations (8) and (9) characterize ASE noise at each amplifier
output. However, to evaluate the noise at the photodetector, we
must consider the effect of fiber dispersion on noise.

We are dealing with a linear transmission channel whose
losses are completely compensated by optical amplifiers. How-
ever, chromatic dispersion is present and affects both signal
and noise. Each fiber section between two amplifiers can
be modeled as a filter with the transfer function H(z, ω) =
exp((i/2)β2ω

2z + (i/6)β3ω
3z), with z = LA, where LA is

the amplifier spacing, and β2 and β3 are, respectively, the group
velocity dispersion and third-order dispersion parameters of the

fiber. As a result, the total noise at the end of a fiber link of
length L can be written as

N(ω) =
M∑

k=1

Nk(ω)H(L− kLA, ω) (10)

where M is the number of amplifiers. In (10) and hereafter, we
omit the length dependence of N(ω) to simplify the notation.
The first two moments of N(ω) are given by

N(ω) = 0 (11)

N(ω)N ∗(ω) =
L

LA
σ2.

k (12)

See Appendix A for their derivation. From (12) and the def-
inition of σ2

k, it follows that the bilateral ASE noise spectral
density grows linearly with transmission distance L and can be
written as

σ2 =
hν0nsp(G− 1)L

2LA
. (13)

IV. TIMING JITTER

In this section, we use (3) to calculate the timing jitter at the
photodetector. For this purpose, we replace U(L, ω) in (4) with
S(L, ω) + N(ω), where

S(L, ω) = S(0, ω)H(L, ω) (14)

is the spectrum of the pulse envelope in the absence of noise
(it acquires a dispersion-induced phase shift due to propaga-
tion), and N(ω) is the noise spectrum at z = L. The pulse
average position is obtained from (4) and (5) and is given by
(see Appendix B for details)

tp = − i

2πEp

+∞∫
−∞

[
S∗(L, ω)

∂S(L, ω)
∂ω

+ N ∗(ω)
∂N(ω)
∂ω

]
dω.

(15)

Using a similar procedure, σ2
t can also be calculated (see

Appendix B) as

σ2
t =

σ2

πEp
T 2

r (L) (16)

where Tr(L) is a root-mean-square (rms) measure of the pulse
width at z = L and is given by

T 2
r (z) =

1
Ep

+∞∫
−∞

t2 |u(z, t)|2 dt. (17)

In the case of a linear communication channel with arbitrary
dispersion characteristics, the rms width of a pulse can be
calculated in analytic form for input pulses with arbitrary shape,
width, and chirp [1, App. C]. In the case of chirp-free input
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pulses of rms width Tr ≡ Tr(0) and in a system for which the
effects of β3 are negligible, the result is found to be

T 2
r (z) = T 2

r + (β2zσω)2 (18)

where the rms spectral width of the input pulse σω is obtained
from

σ2
ω =

1
2πEp

+∞∫
−∞

ω2 |S(0, ω)|2 dω. (19)

Equation (18) shows how chromatic dispersion along the fiber
link broadens optical pulses. In the case of unchirped Gaussian
pulses, σω = 1/2Tr, and we obtain

T 2
r (z) = T 2

r +
(
β2z

2Tr

)2

. (20)

This relation shows that the shortest output pulse is obtained for
a specific value of input pulse width. This input pulse width is
found to be [1]

Tr_opt =

√
|β2|L

2
. (21)

Combining (16), (20), and (21), we obtain the smallest timing
jitter for a given value of residual dispersion and system length

σ2
t_opt =

σ2

πEp
(|β2|L) . (22)

V. ELECTRICAL VERSUS OPTICAL

COMPENSATION OF DISPERSION

Equation (16) represents our main result. It shows that the
variance of timing jitter after the photodetector depends on
the width of optical pulses just before it. It is this width
dependence that indicates that optical and electrical dispersion-
compensation schemes behave quite differently as far as timing
jitter is concerned.

When dispersion compensation is performed in the optical
domain such that an average value of β2 equals 0, pulses are
reshaped such that their width becomes equal to its value at the
fiber input. This is evident from (18), where the second term
vanishes when β2 = 0. As a result, timing jitter is given by

σ2
t =

hν0nsp(G− 1)
2πEpLA

(
T 2

r L
)

(23)

and it depends on the link length linearly. In contrast, when
dispersion is compensated in the electrical domain, pulses are
broader when they reach the photodetector and timing jitter
is enhanced considerably. Using (16) and (18), we obtain for
this case

σ2
t =

hν0nsp(G− 1)
2πEpLA

[
T 2

r L + (β2σω)2L3
]
. (24)

The second term in this equation depends on the link length
as L3 and can be much larger than the first linear term. It

is this cubic dependence that suggests electrical compensation
of dispersion suffers from a major drawback related to timing
jitter.

It is interesting to note that if we optimize the input pulse
width for a given transmission distance L as indicated in (21),
timing jitter grows only quadratically with the distance even
in the presence of residual dispersion. This is easily seen by
combining (13) and (22) to obtain

σ2
t =

hν0nsp(G− 1)|β2|L2

2πEpLA
. (25)

VI. NUMERICAL EXAMPLES

It follows from (16) that the jitter resulting from beating of
signal with the copolarized noise is inversely proportional to
the pulse energy and can be reduced by using more energetic
pulses. As the optical signal-to-noise ratio also improves with
increasing pulse energy, it is important to send as much energy
per pulse as possible. The values used in actual systems will be
limited by the available power at the optical transmitter and by
the nonlinearities of the optical channel.

In this section, we verify the accuracy of analytical expres-
sions derived in the preceding section by solving the linear
fiber propagation equation [1] using realistic system parameter
values. We consider a 500-km-long lightwave system operating
in the low-loss spectral window (near 1550 nm) with five ideal
amplifiers (nsp = 1) spaced equally apart. The last amplifier
is placed right before the optical receiver, and therefore can
be considered a preamplifier. Between the preamplifier and
the photodetector, an optical filter with bandwidth much larger
than the pulse spectral width is placed in order to remove
part of the out-of-band optical noise. We assume that the
dispersion is partially compensated and a residual dispersion
of 0.4 ps/nm/km was left along the link. We assume the third-
order dispersion parameter [1] to be zero. Fig. 1 compares the
standard deviation of pulse central position, normalized to the
bit duration Tbit ≡ 1/B, for three different bit rates, B = 10,
40, and 160 Gb/s. Unchirped Gaussian pulses with amplitude
S(0, t) =

√
P0 exp[−t2/(2T 2

0 )], where P0 is the pulse peak
power and T0 = Tbit/5, were used. To estimate numerically
the timing jitter, we repeated 1000 times the propagation of
a single pulse with noise for each bit rate and for each dis-
tance. The average output power was kept constant at 1 mW,
and the average attenuation of the fiber link, considering
both the transmission and the dispersion-compensating fibers,
was 0.4 dB/km.

In Fig. 1, analytical results are shown by the solid, dashed,
and short dashed lines for B = 10, 40, and 160 Gb/s, respec-
tively. The square symbols were obtained through numerical
simulation. As it is evident, there is good agreement between
the numerical and analytical results. Fig. 1 shows how timing
jitter grows with the link length and the bit rate. Assuming that
the system can tolerate a timing jitter up to 10% of the bit slot,
which is a realistic value (see, for instance, [18]), we find that
the systems operating at 10 and 40 Gb/s can, in principle, reach
the 500-km mark. However, timing jitter limits the reach of the
160 Gb/s to roughly 100 km.
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Fig. 1. Normalized timing jitter versus link length for three different bit rates (10, 40, and 160 Gb/s). Lines show analytical results; numerical results are indicated
by square symbols. Values of system parameters are given in the text.

Fig. 2. Normalized timing jitter versus amplifier spacing for a 200-km-long system operating at 160 Gb/s. The solid line shows the analytical result while square
symbols represent values obtained numerically.

We have also verified that timing jitter gets worse as the span
length between two neighboring amplifiers increases simply
because the amplifier gain increases exponentially with the
span length. This is ultimately a consequence of the excess
noise added to the signal. For a 200-km system, with the same
parameters as the one previously considered, Fig. 2 shows the
normalized timing jitter as a function of the amplifier spacing
when the bit rate is 160 Gb/s. As seen there, for a 200-km sys-
tem with 0.4 ps/nm/km of residual dispersion, amplifier spacing
should be below 50 km to maintain timing jitter below 10% of
the bit slot.

Another issue to consider is the dependence of timing jitter
on system length. This dependence is linear if the chromatic
dispersion is fully compensated, but becomes cubical if some
residual dispersion is left within the link. In Fig. 3, we show
by a short dashed line the results for a 200-km lightwave
system operating at 160 Gb/s, with 100 km of span be-
tween optical amplifiers, assuming that a residual dispersion of
0.4 ps/nm/km exists along the fiber link and is compensated
only after the photodetector with some kind of electrical filter-

ing. For comparison, we also present the results obtained when
the pulse width is optimized to the value Tr_opt, as indicated
in (21), for each distance (long dashed curve). The case of full
optical dispersion compensation is shown by a solid line. As it
is evident from these results, if full optical chromatic dispersion
compensation cannot be achieved in practice, the optimiza-
tion of pulse width can still improve the system performance
substantially.

Another interesting issue is to study how timing jitter
depends on the pulse width. In the case of full dispersion
compensation, timing jitter improves when pulses get shorter.
A completely different situation occurs in soliton systems for
which timing jitter improves when pulse width increases, lead-
ing to a tradeoff between the optical signal-to-noise ratio and
the timing jitter (see, for instance, [17]).

If chromatic dispersion is mitigated electrically, the opti-
mum pulse width is given by (21). Considering the same
500-km-long system operating at 10 Gb/s, we show in Fig. 4
the timing jitter normalized to its optimum value σt_opt given
in (22) for different pulse widths, considering both optical and
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Fig. 3. Normalized timing jitter versus distance when a residual dispersion of 0.4 ps/nm/km is compensated electrically (short dashed curve). Considerable
improvement can be realized when the pulse width is optimized for each distance (long dashed curve). The solid curve shows the case of full optical dispersion
compensation. In each case, squares represent numerical results.

Fig. 4. Timing jitter normalized to its optimum value for different pulse widths for a 500-km-long system operating at 10 Gb/s. Square symbols represent
numerical results.

electrical dispersion compensation. According to the results
shown in Fig. 4, the optimum pulse width is around 11% of
Tbit when electrical dispersion mitigation is employed, which
agrees well with the value obtained directly from (21).

VII. CONCLUSION

In this work, we have considered timing jitter in a lightwave
system in the absence of fiber nonlinearities. We use frequency-
domain analysis and derive a new expression for the timing
jitter after the photodetector. This expression shows that, when
chromatic dispersion is fully compensated in the optical domain
so that the pulse width at the receiver is fully recovered, the
timing jitter is quite small because it grows only linearly with
link length. In contrast, timing jitter grows with link length in
a cubic fashion when dispersion is only partially compensated
along the link, and the effects of residual dispersion are miti-
gated by means of electrical equalization.

We have also addressed the issue of optimum pulse width
and how it can be used to reduce timing jitter. We show
that there exists an optimum pulse width that minimizes the
timing jitter due to ASE noise and chromatic dispersion. This
optimum pulse width depends on the residual dispersion and
on the link length. If we were to adjust the pulse width ac-
cording to the transmission distance, we can attain a quadratic
growth for the timing jitter even in the presence of residual
dispersion.

The main conclusion of our work is that the cubic growth of
timing jitter limits our ability to overcome chromatic dispersion
electronically after photodetection. Our results imply that the
best approach is to develop optical dispersion-compensation
devices that can compensate the chromatic dispersion fully.
At bit rates of 40 Gb/s or more that are planned for the
near future, one must employ dynamic and tunable dispersion
optical compensation to ensure that timing jitter is kept to a
minimum after photodetection.
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APPENDIX A
ACCUMULATED ASE NOISE AT THE END

OF OPTICAL LINK

The accumulated ASE noise at the end of the optical link
N(ω) is given by (10). Assuming that the noise generated in
each amplifier is statistically independent of the noise generated
in all other amplifiers, the average value and correlation of
N(ω) are found to be, respectively

N(ω) =
M∑

k=1

Nk(ω)H(L− kLA, ω)

=
M∑

k=1

Nk(ω)H(L− kLA, ω)

= 0 (26)

and

N(ω1)N ∗(ω2)

=
M∑

k=1

Nk(ω1)H(L−kLA, ω1)
M∑
l=1

N ∗
l (ω2)H∗(L−kLA, ω2)

=
M∑

k=1

M∑
l=1

Nk(ω1)N ∗
l (ω2)H(L−kLA, ω1)H∗(L−kLA, ω2)

=
M∑

k=1

Nk(ω1)N ∗
k(ω2)H(L−kLA, ω1)H∗(L−kLA, ω2)

=
M∑

k=1

σ2
kδ(ω1−ω2)H(L−kLA, ω1)H∗(L−kLA, ω2)

=Mσ2
kδ(ω1−ω2)

=
L

LA
σ2

kδ(ω1−ω2)

=σ2δ(ω1−ω2). (27)

The effect of fiber dispersion on the kth amplifier noise
Nk(ω) is to produce a frequency-dependent phase shift. The
amount of this phase shift depends on the distance from the
kth amplifier to the end of the system. It is obvious that this
phase shift does not change the statistics of Nk(ω). Therefore,
an alternative way to obtain (26) and (27) is to assume that
the real and imaginary parts of N(ω) are the result of a sum
of L/LA statistically independent Gaussian random variables
with zero mean and variance σ2

k/2. Representing the real and
imaginary parts of N(ω) by R(ω) and I(ω), and the real and
imaginary parts of Nk(ω) by Rk(ω) and Ik(ω), we obtain

N(ω)=R(ω)+iI(ω)=
L

LA

[
Rk(ω)+iIk(ω)

]
=0 (28)

and

N(ω1)N ∗(ω2)

=[R(ω1)+iI(ω1)] [R(ω2)−iI(ω2)]

=R(ω1)R(ω2)+I(ω1)I(ω2)+iI(ω1)R(ω2)−iI(ω2)R(ω1)

=
L

LA
Rk(ω1)Rk(ω2)+

L

LA
Ik(ω1)Ik(ω2)

=
L

LA

σ2
k

2
δ(ω1−ω2)+

L

LA

σ2
k

2
δ(ω1−ω2)

=
L

LA
σ2

kδ(ω1−ω2)

=σ2δ(ω1−ω2). (29)

Taking into consideration that R(ω) and I(ω) are statisti-
cally independent random Gaussian variables with zero mean
and variance given by (L/LA)(σ2

k/2), and that they are also
statistically independent of all other R(ω) and I(ω) at different
frequencies, the following relations can be readily obtained, i.e.,

N ∗(ω) = 0 (30)

N(ω1)N(ω2) = 0 (31)

N ∗(ω1)N ∗(ω2) = 0 (32)

∂N(ω)
∂ω

= 0 (33)

∂N(ω1)
∂ω1

∂N(ω2)
∂ω2

= 0. (34)

From (27), taking the derivative in order to ω1, we obtain

∂N(ω1)
∂ω1

N ∗(ω2) = σ2 ∂δ(ω1 − ω2)
∂ω1

(35)

and in an analogous way

N ∗(ω1)
∂N(ω2)
∂ω2

= σ2 ∂δ(ω2 − ω1)
∂ω2

. (36)

APPENDIX B
TIMING JITTER IN THE PRESENCE OF CHROMATIC

DISPERSION AND NOISE

Here, we present a detailed derivation of the timing jitter
expression given in Section IV. Replacing U(z = L, ω) by
S(L, ω) + N(ω) in (4), we obtain

tp = − i

2πEp

+∞∫
−∞

[
S∗(L, ω)

∂S(L, ω)
∂ω

+ S∗(L, ω)
∂N(ω)
∂ω

]
dω

− i

2πEp

+∞∫
−∞

[
N ∗(ω)

∂S(L, ω)
∂ω

+ N ∗(ω)
∂N(ω)
∂ω

]
dω (37)
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with

Ep =
1
2π

+∞∫
−∞

|S(L, ω)|2 dω. (38)

From (37), the average value of the pulse central position is
given by

tp = − i

2πEp

+∞∫
−∞

S∗(L, ω)
∂S(L, ω)

∂ω
dω

− i

2πEp

+∞∫
−∞

S∗(L, ω)
∂N(ω)
∂ω

dω

− i

2πEp

+∞∫
−∞

N ∗(ω)
∂S(L, ω)

∂ω
dω

− i

2πEp

+∞∫
−∞

N ∗(ω)
∂N(ω)
∂ω

dω. (39)

Making use of (30) and (33), we readily obtain (15). From
(37) and (15), we have

tp − tp = − i

2πEp

+∞∫
−∞

S∗(L, ω)
∂N(ω)
∂ω

dω

− i

2πEp

+∞∫
−∞

N ∗(ω)
∂S(L, ω)

∂ω
dω

− i

2πEp

+∞∫
−∞

N ∗(ω)
∂N(ω)
∂ω

dω

+
i

2πEp

+∞∫
−∞

N ∗(ω)
∂N(ω)
∂ω

dω. (40)

The third and forth terms that appear in (40) are due to the
ASE–ASE beating, and their contribution tends to be much
smaller than that of the first two terms if a narrowband optical
filter is placed before the photodetector. In fact, the average in
the fourth term is readily proved to be zero in view of (35).
Keeping only the first two terms, the square of timing jitter is
given by

(tp − tp)2 = − 1
4π2E2

p

+∞∫
−∞

+∞∫
−∞

S∗(L, ω1)S∗(L, ω2)

× ∂N(ω1)
∂ω1

∂N(ω2)
∂ω2

dω1dω2

− 1
4π2E2

p

+∞∫
−∞

+∞∫
−∞

∂S(L, ω1)
∂ω1

∂S(L, ω2)
∂ω2

×N ∗(ω1)N ∗(ω2)dω1dω2

− 1
4π2E2

p

+∞∫
−∞

+∞∫
−∞

S∗(L, ω1)

× ∂S(L, ω2)
∂ω2

N ∗(ω2)
∂N(ω1)
∂ω1

dω1dω2

− 1
4π2E2

p

+∞∫
−∞

+∞∫
−∞

S∗(L, ω2)
∂S(L, ω1)

∂ω1
N ∗(ω1)

× ∂N(ω2)
∂ω2

dω1dω2. (41)

The variance of tp is obtained by averaging (41). Making use
of (32), (34), (35), and (36), we obtain

σ2
t = (t− tp)2

= − 1
4π2E2

p

+∞∫
−∞

+∞∫
−∞

S∗(L, ω1)

× ∂S(L, ω2)
∂ω2

σ2 ∂δ(ω1 − ω2)
∂ω1

dω1dω2

− 1
4π2E2

p

+∞∫
−∞

+∞∫
−∞

S∗(L, ω2)

× ∂S(L, ω1)
∂ω1

σ2 ∂δ(ω2 − ω1)
∂ω2

dω1dω2

= − σ2

2π2E2
p

+∞∫
−∞

∂S(L, ω2)
∂ω2

+∞∫
−∞

S∗(L, ω1)

× ∂δ(ω1 − ω2)
∂ω1

dω1dω2. (42)

Integrating by parts the integral over ω1 and making use of
Parseval’s theorem, we obtain

σ2
t =

σ2

2π2E2
p

+∞∫
−∞

+∞∫
−∞

∂S(L, ω2)
∂ω2

∂S∗(L, ω1)
∂ω1

× δ(ω1 − ω2)dω1dω2

=
σ2

2π2E2
p

+∞∫
−∞

∣∣∣∣∂S(L, ω)
∂ω

∣∣∣∣
2

dω

=
σ2

πE2
p

+∞∫
−∞

t2 |s(L, t)|2 dt. (43)

Recalling the definition of the rms pulse width, this expression
can be written in the simple form

σ2
t =

σ2

πEp
T 2

r (L) (44)

where Tr is the rms value of the pulse width at z = L, defined
as in (17).
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