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A semianalytic approach based on the moment method is used for investigating pulse evolution in mode-locked
lasers in which intracavity dispersive and nonlinear effects play a significant role. Its application to an FM
mode-locked laser allows us to perform fast parametric studies while predicting the important pulse param-
eters. When third-order dispersive effects are negligible, a fully analytic treatment is developed that predicts
how cavity parameters affect the final steady state. Our analytic approach also allows us to predict relaxation-
oscillation behavior as the pulse approaches its steady state. We use this technique to investigate novel aspects
specific to FM mode-locked lasers such as stability of and switching between the multiple steady-state solu-
tions. All results obtained are in excellent agreement with numerical simulations. © 2005 Optical Society of

America
OCIS codes: 140.3430, 140.4050, 140.3510.

1. INTRODUCTION

Since closed-form solutions do not exist for the pulses pro-
duced by most mode-locked lasers, numerical simulations
are essential and therefore frequently used. However, nu-
merical investigations can require substantial computa-
tion time, especially in the presence of dispersive and
nonlinear effects. In view of this limitation, parametric
studies are not convenient in assisting experimentalists
in the optimization of mode-locked lasers. In our study, we
seek to overcome this limitation by using the moment
method® in conjunction with the master equation govern-
ing the mode-locking phenomenon. This approach reduces
the underlying partial differential equation into a few
coupled algebraic equations. Since these equations can be
solved rapidly, they allow parametric studies to be per-
formed without the issues relating to computation time or
complexity that plague rigorous numerical simulations.
This technique should be attractive to experimentalists
working in the field, since it provides immediate informa-
tion on how to best optimize a particular laser. It also pro-
vides an alternate framework in which to view the opera-
tion of a mode-locked laser.

Although our approach is general and may be applied
to any type of mode-locking mechanism, we chose to focus
on FM mode locking. FM mode locking was first demon-
strated by Harris and Targ in 1964, making it the second
oldest mode-locking technique. Yet no analytic theory ca-
pable of adequately predicting pulse parameters exists for
these lasers when both dispersion and nonlinearity are
present. This shortcoming has become particularly appar-
ent following the first realization of an FM mode-locked
fiber laser in 1988.%

The time-domain description of AM and FM mode lock-
ing was developed in 1970.% Although the results from
that research are still of great use, it was not until 1986
that the effects of dispersion and nonlinearity were con-
sidered in an AM mode-locked laser.® This same problem
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was addressed using soliton perturbation theory almost a
decade later.® In 2000, another investigation of AM mode
locking presented an analytic approach,7 yet both finite
gain bandwidth and third-order dispersion (TOD) were ig-
nored. Although these efforts focused only on AM mode
locking in the soliton regime,”™” their results have obvious
implications for FM mode-locked lasers.®® Yet, only a few
analytic investigations have focused on FM mode locking
in the presence of dispersion and nonlinearity.!®" Indeed,
most theoretical investigations of FM mode-locked lasers
have primarily relied on numerical modeling to probe the
effects of dispersion, nonlinearity, and modulation
depth.>1213

The approach presented in this paper has already been
successfully applied to an AM mode-locked laser to obtain
a set of rate equations for the pulse parameters.'* How-
ever, FM mode locking has some unique features that set
it apart from AM mode locking. For example, FM mode-
locked lasers are susceptible to an instability in which
mode-locked pulses switch states between the two modu-
lator extrema.®'® In the mid 1990’s it was shown that this
tendency can be suppressed through the introduction of
second-order dispersion,lo’16 yet the role of TOD has been
considered only recently.9

In this paper, we apply the moment method to a generic
laser mode locked with an FM modulator and compare
our results with numerical simulations based on the full
model. In Section 2, the master equation governing mode
locking is presented along with the standard pulse solu-
tions commonly expected in various regimes of operation.
In Section 3, details behind the moment method are dis-
cussed. This method is then applied to an FM mode-
locked laser to obtain a set of rate equations for the pulse
parameters. Section 4 focuses on steady-state operation
and parametric studies. In Section 5, we study the ap-
proach to steady state by using a linear stability analysis
under the assumption that TOD is negligible. Finally, the
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roles of second-order dispersion and TOD are investigated
in Section 6 as they pertain to pulse stability.

2. MASTER EQUATION OF MODE LOCKING

If the dispersion and nonlinear leng‘chs17 of the cavity el-
ements are larger than the round-trip cavity length, Lp,
the temporal shape and width of the pulse evolve little
during a single round trip (assuming the mode locker’s ef-
fect on the pulse is weak and losses are minimal). Al-
though an approximate treatment, it is common to model
such a system by the so-called master equation of mode
locking®!":

A i PA 1 FA
TR% + 5(32 + lgTZ)LR? - EIBSLRE
1
=i3/LR|A|2A+§(§— a)LrRA + M(A,t), (1)

where A(T,t) is the slowly varying envelope of the electric
field, T'=z/v,, and v, is the group velocity. It is important
to note there are two time scales in this equation: the
time ¢ measured in the frame of the moving pulse and the
propagation time 7', often called the coarse-grained time.®
Since we averaged over a single round trip, 7' is measured
in terms of the round-trip time Tr=Lp/v,. It is assumed
that the time scale associated with the pulse is suffi-
ciently smaller than Tz so the two times are essentially
decoupled. This treatment is valid for most mode-locked
lasers for which Tz exceeds 1 ns and pulse widths are
typically less than 100 ps.

In rare-earth-doped fibers, as well as in most solid-
state materials, the gain medium responds on a time
scale much slower than that of the pulse width. As a re-
sult, the saturated gain may be approximated as g=g((1
+P,,o/Pg)”t, where P, is the saturation power of the
gain medium, g, is the average small-signal gain, and
P,,. represents the average power over one pulse slot of
duration T, i.e.,

1 T,,/2
P —f |A(t,2)|?dt. (2)

ave =
Tl 1 s

The overbar in Eq. (1) denotes the averaged value of the

corresponding parameter; for example, By, B3, @, and ¥
represent the second-order dispersion, TOD, loss, and
nonlinearity, respectively, averaged over the cavity
length. The gain medium’s finite bandwidth is assumed to
have a parabolic filtering effect with a spectral full width
at half-maximum (FWHM) given by A,=2/T5. Tm=F;elp
=m~!T} is the pulse slot, where F.p is the frequency at
which our laser is mode locked and m is an integer =1
representing the harmonic at which the laser is mode
locked. For an FM modulator, M(A,t)=iApy cos[w,,(t
+t,,)]JA [in Eq. (1)], where Apy; is the modulation depth,
w,, is the modulation frequency (assumed to be identical
to that of the mode-locked pulse train in this paper, i.e.,
w0, =27F,.p), and ¢, accounts for any delay between the
center of the modulation cycle and the temporal window
in which the pulses are viewed.
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Although Eq. (1) has no known analytic solution, if the
effects of TOD and the mode locker are ignored, this equa-
tion reduces to the well-known Ginzburg-Landau equa-
tion, which has the following shape-preserving solution'®
known as an autosoliton'’ or a dissipative soliton®®:

A(T,t) = a[sech(t/ ] exp(ikT), (3)
where
_T2 =
p Bt (@)
g—«a
a’= L[(q2 -2)By+35T5q] (5)
237 2 2
R - )y 2275 (6)
K= ZTRTZ q B2 g 2q )
3B, ( 3B, )2 \ " -
= + + .
7 25T> 25 T2

Despite this analytic solution, cw light is energetically fa-
vored by lasers in the absence of a mode locker. When a
mode locker is used, the master equation [Eq. (1)] differs
from the Ginzburg—Landau equation, and the solution
given in Eq. (3) may not hold. Nevertheless, the active fi-
ber will try to impose the autosoliton shape on any pulse
circulating in the cavity (in the anomalous dispersion re-
gime). This reasoning was exploited by Haus and Silber-
berg in their investigation of pulse shortening in AM
mode-locked lasers in the presence of dispersive and non-
linear elements.”

By completely ignoring the effects of the mode locker
and TOD, one immediately limits the generality of the ap-
proach; for example, stability is not expected in the ab-
sence of the mode locker. Moreover, TOD is known to
asymmetrically broaden pulses, thus shifting their arrival
time. The mode locker also plays a paramount role: creat-
ing and maintaining mode-locked pulses and providing
timing information. Thus it is important to include both

,Z%g and M(t,A) in our analytic treatment. To do so, we as-
sume TOD is weak enough that it primarily affects the ar-
rival time of the mode-locked pulses. This approximation
is reasonable for actively mode-locked lasers whose pulse
widths are typically in the picosecond regime and whose
cavities are dominated by second-order dispersion. Under
this assumption, the autosoliton shape is preserved, and
we can develop a more robust theory by extending Eq. (3)
to allow for both temporal and frequency shifts (¢ and (),
respectively):

A(T,¢t) = a{sech[(¢ - &)/7]}1*
wexp[iQ)t — &) + ik T +idg]. )

In the normal dispersion regime (B,>0), pulses pro-
duced by actively mode-locked lasers are usually more
consistent with a Gaussian shape‘l’w’20 than that of an au-
tosoliton. Therefore, we also consider a chirped Gaussian
pulse with complex amplitude
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A(T,t) = afexp[- (t - &2+
XexpliQ(t — &) +ikT +idy]. 9)

In Eq. (9), we have again allowed for both temporal and
frequency shifts through ¢ and Q.

One may ask how accurate the pulse-shape assump-
tions given in Eqs. (8) and (9) are for a realistic mode-
locked laser. To answer this question, we numerically
solved Eq. (1) using a noise seed (representing spontane-
ous emission) and the measured parameter values (see
Table 1) found for the fiber laser of Ref. 9.2 Figure 1 com-
pares the steady-state pulse shapes obtained numerically
with those of Egs. (8) and (9). We point out that more than
4000 round trips were required for the pulses to converge
to their steady state.

The dashed curves in Fig. 1 show the analytical pulse
shapes based on Egs. (8) and (9). As can be seen in Fig.
1(a), the autosoliton provides a good fit in the anomalous
dispersion regime, deviating only in the pulse wings. We
verified that this discrepancy is a consequence of finite
TOD by setting B3=0 and repeating the simulations. Un-
der these conditions, the numerically predicted pulse
shape and the autosoliton shape were almost indistin-
guishable. In the normal dispersion regime [Fig. 1(b)], the
Gaussian fit is accurate about the center of the pulse only.
This is due to self-phase modulation, which broadens the
center of the pulse in the normal dispersion regime. We
verified that as y is reduced the accuracy of the Gaussian
fit improves until it is almost indistinguishable from the
numerical results.

3. MOMENT METHOD

The analytic pulse shapes given in Egs. (8) and (9) pro-
vide an approximate form for the final pulse shape ex-
pected after a mode-locked laser reaches its steady state
but do not provide any information on how the pulse ar-
rives at that shape nor do they reveal what effect the
modulator or TOD has on such a steady-state solution.
To study the pulse evolution process under the influ-
ence of Eq. (1), without resorting to full numerical simu-
lations, we employ the moment method.! This approach
allows us to develop ordinary differential equations that
govern the evolution of the pulse parameters. These equa-
tions take into account all the terms in Eq. (1), thereby
lifting the restriction on the parameter space. However,
all of this is based on a knowledge of the exact pulse
shape. For this reason, one should carry out numerical
simulations with the full model to ensure that the actual
pulse shape does not deviate much from the ansatz in the
particular region of interest (as we did in Section 2). Ex-
perimentally, the results obtained from autocorrelation
measurements, electric field reconstruction, or an optical

Table 1. Parameter Values Used in This Paper

@=0.17m™ Bo=+1.4x10*fs?/m  B3=30x10*fs*/m
7=0.012 (m W)~1 80=0.55 m™! Ty=47 fs/rad
P, ;=25 mW Lp=4.0m Tr=40 ns
Apy=0.45 F,.p=10 GHz £,,=0 ps
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Normalized Power

Normalized Power

Time (ps)

Fig. 1. (Color online) Steady-state pulse shapes in (a) the
anomalous dispersion regime and (b) the normal dispersion re-
gime. Plot (a) is fit with the expected autosoliton, and plot (b) is
fit with the expected Gaussian.

spectrum analyzer may be used to validate a particular
ansatz. Although we chose to use the moment method,
other techniques such as the variational method or the
collective variable method can also be used to obtain or-
dinary differential equations.

If we ignore the phase 2T+ ¢, in Egs. (8) and (9), a
mode-locked pulse is fully quantified by five parameters:
pulse energy E, temporal shift ¢, frequency shift (), chirp
g, and width 7. In the moment method, the five param-
etegg are defined in terms of the temporal pulse profile
via™

E(T)=f |A(T,¢)*dt, (10
1 o0

&T)=— J tIA(T,t)|de, (11)
E —00
i “{ A aA*}

T =— A"— - A— |d¢, (12)
2E | ot ot

r i J* A*aA AaA*

q( )—E _m(t—f) % 4% de, (13)
205 (~

fZ(T)=?J (t - HA(T,1)de, (14)

where the constant C3, defined later in this section, con-
verts the root-mean-square width into pulse width 7. To
investigate how the five pulse parameters evolve during
propagation, we differentiate Eqs. (10)—(14) with respect
to T, yielding

dE  (*| A A
— = A—+A— dt, (15)
at T

d¢  1dE_ 1 (" [ A oA
— = ——¢+—| t|A"—+A—|dt, (16)
dT  Ed4T" EJ_, at at
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A  1dE i (“[ o[ oA
—=——0+—| | =la"=
ar  EdT 2E]) | or\" o
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JT ot
dg 1dE ir a(A*aA)
—_— e —— — t— JE— J—
ar-rpar?te) Y o\ A
o 0A
——(A—)}dt, (18)
JT ot
dr 1 dE
P e, (t—g)Z
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dA”
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oT

The final step consists of substituting JA/JT from Eq. (1)
into Eqgs. (15)—(19) and integrating over ¢ after assuming
a pulse shape.

For the two pulse shapes, given in Eqs. (8) and (9), all
these integrals can be done analytically. After some alge-
bra, we obtain the following equations for the evolution of
the five pulse parameters:

TRdE §T§C Lt o?) 4 202218 20
LRdT‘(g‘“) _272[ o(1+g%) + IE, (20
EE__Q =72 Q_'_i[c (1+q? +202%7], (21)
T PR L ’
TrdQ gT; Arm@n
e (140~
LpdT 7 R
Xsin[w,,(&-¢t,,)], (22)
Trdg B a7
Co(1+¢% +2027] - —-q[C,(1
Lpar~ 2rCol+a)+20°7] Fq[ i1+
YE B3
+ZQ272 +C — + 5| o~ 1+
: 2\2777' 7 |:200( “)
AFMme
+022 |+ W, cos[w,,(E-t,,)], (23)
R
TR dr BZ B _T2

Bs
C 5 a4+ Cs—qﬂ + Cocs_(c4 ), (24

LpdT

where the constants C, (n=0 to 4) are introduced such
that they all equal 1 for a Gaussian pulse. In the case of
an autosoliton, Cy=2/3, C;=1/3, CZ=\527T/3, Cy=6/2,
and C,=2. We have also introduced \If0=exp(—w3172/4)
and ¥V, =w,, 7V, for the Gaussian pulse. For the autosoli-
ton, Vo= (7w, 7/2)csch(mw,, 7/2) and vy
=[m coth(7w,,7/2)-2/(w,,7)]¥,.
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Fig. 2. Evolution of pulse energy E, width 7, and chirp ¢ over
multiple round trips in the case of anomalous (top row) and nor-
mal (bottom row) dispersion.

Equations (20)—(24) are analogous to the traditional
rate equations used for cw lasers, and we refer to them as
the FM mode-locking rate equations. They were numeri-
cally solved in a fraction of the time required to solve the
original equation [Eq. (1)] by using the fourth-order
Runge-Kutta method and the parameters found in Table
1.2! Figure 2 displays how pulse energy E, width 7, and
chirp ¢ change from one round trip to the next when
seeded with the initial values E(0)=1 fJ, £0)=0 fs, Q(0)
=0 GHz, 70)=0.5 ps, and ¢(0)=0. The plots for «(T) and
q(T) were combined into one phase-space plot by our plot-
ting ¢ as a function of 7. As can be seen in the first column
of Fig. 2, pulse energy increases from 1 fJ to =2.8 pJ in
less than 100 round trips but then exhibits damped oscil-
lations as it evolves over thousands of round trips. In fact,
more than 4000 round trips are necessary before the
pulse parameters converge to their steady-state values, a
situation similar to that found when we performed the
numerical simulations to create Fig. 1. The steady-state
values obtained through our rate-equation approach devi-
ate from the values obtained by directly solving Eq. (1) by
<3% in the anomalous dispersion regime and <12% in
the normal dispersion regime. This agreement justifies
the use of the moment method and the pulse shapes as-
sumed. Note that in the case of normal dispersion [Fig.
2(d)] the pulse has not reached a final steady state even
after 4000 round trips. In general, the approach to steady
state takes longer when the residual cavity dispersion is
normal, since the modulator’s compression effect must
balance both dispersive and nonlinear broadening. In
fact, it has even been reported that a train of well-
separated mode-locked pulses could not be experimen-
tally realized at a high repetition rate in this regime.!%!6
Of course, this result depends on the laser parameters: In
the presence of nonlinearity, it indicates that stronger
modulation depths are required to obtain mode locking in
the normal dispersion regime.

4. STEADY-STATE PULSE
CHARACTERISTICS

In the preceding section, the evolution of pulse param-
eters toward their steady-state values was studied by our
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Fig. 3. Pulse width predicted by our theory as a function of modulation depth in the (a) anomalous and (b) normal dispersion regimes.

In each case, we compare our predictions with numerical simulations and with the theories given in Refs. 4 and 5 (when 8,<0), and 10.

solving the mode-locking rate equations numerically. Al-
though good agreement was obtained, the true strength of
our approach lies in predicting the steady-state values for
mode-locked pulses. Assuming that the mode-locked laser
has reached a steady state, the pulse parameters may be
determined quasi-analytically by one’s setting the deriva-
tives to zero in Egs. (20)—(24). The resulting system of
nonlinear algebraic equations is easily solved using the
Newton—Raphson technique. Since this scheme converges
quickly, given a reasonable initial guess, parametric stud-
ies may be performed effortlessly.

Figure 3 demonstrates the strength of our approach by
studying the effect of modulation depth on pulse width. To
put this research in perspective, our results are pre-
sented, along with those based on previous theories, in
both anomalous and normal dispersion regimes. In both
cases, we consider a linear nondispersive cavity (squares),
a linear dispersive cavity (triangles), and a cavity with
both nonlinearity and dispersion (circles). Data points
marked with symbols were obtained using the full nu-
merical model [Eq. (1)], whereas solid curves were gener-
ated using the corresponding analytic treatment in each
case. The theory developed by Kuizenga and Siegman4
predicts the pulse width when dispersion and nonlinear-
ity are neglected. With the inclusion of dispersion,4 an ex-
tended version of this theory used by Tamura and
Nakazawa'® predicts the pulse width. Haus and Silber-
berg’s theory predicts the pulse parameters when both
nonlinearity and anomalous dispersion are included; yet,
it fails to include TOD or modulation depth and is invalid
in the normal dispersion regime.® As a result, only the
theory developed in this paper is found to be in good

agreement with the numerical results in the presence of
both nonlinearity and dispersion. Moreover, our theory re-
produces all the prior results in the appropriate limits.

A noteworthy feature of Fig. 3(a) is that for modulation
depths Apy<0.9 the mode-locked pulse experiences soli-
ton pulse compression,>>%2426 gince the pulse width be-
comes shorter than that predicted by the simplified
theory of Ref. 4. For Agy>0.9, the modulator plays an in-
creasingly dominant role. Nevertheless, excellent agree-
ment is obtained between the simulations and our theory
even for large modulation depths (1.3% error for Apy
=0.25, 7% error for Apy=10). Conversely, the agreement
in Fig. 3(b) is seen to increase with the modulation depth
(15% error for Apy=-0.25, 7% error for Apy=—10). This
behavior can be understood by one’s noting that the
modulator’s preferred shape is a Gaussian.*!® As a result,
our accuracy improves with modulation depth in the nor-
mal dispersion regime but deteriorates in the anomalous
dispersion regime.

An important question we can answer with our semi-
analytic approach [Egs. (20)—(24)] is how the residual cav-
ity dispersion B, and the nonlinear parameter ¥ affect the
final steady-state pulses. Figure 4 shows how the pulse

parameters 7, ¢, £ and Q vary with B, in the anomalous
(top row) and normal (bottom row) dispersion regimes.
The shortest pulses are obtained in the case of anomalous
dispersion for small values of |B,|: Pulse FWHM reduces
to below 1 ps for |B,/<0.01ps?/m. In contrast, pulse
FWHM exceeds 4 ps in the normal dispersion case and in-
creases as [, increases. Notice that, when |By
<0.01 ps?/m, the pulse position shifts because TOD plays
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an increasing role in the laser (especially in the anoma-
lous dispersion regime where the pulse spectrum is
broader). Figure 5 shows the effect on the pulse param-
eters when the nonlinear parameter 7 is varied for a fixed
value of B; dispersion is anomalous for the top row and
normal for the bottom row. In the case of anomalous dis-
persion, the pulse becomes shorter for larger values of .
The situation is opposite in the case of normal dispersion.

12 0.04
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1
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m
2038 o
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-t T
(@ -
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3
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g N
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(c)
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Figure 5 also reveals the interesting result that chirp, g,
is essentially independent of 7.

5. APPROXIMATE STEADY-STATE PULSE
PARAMETERS

In an effort to obtain a semianalytic result, we turn our
attention to the case in which the effect of TOD is negli-
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Fig. 4. Steady-state pulse width 7, chirp ¢ (left column), temporal shift ¢, and frequency shift Q) (right column) in the anomalous (top

row) and normal (bottom row) dispersion regimes.
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Fig. 5. Same as Fig. 4 except the pulse parameters are plotted as a function of the nonlinear parameter.
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gible, as is frequently the case for actively mode-locked la-
sers. Under such conditions, both £ and (0=0 in the steady
state, and Eqs. (20)—(24) reduce to a set of three equations
for E, q, and 7. After a large number of round trips, we can
set the derivatives to zero and obtain

TR dE _ gssTg

——=g.—a- Co(1+4¢2%)=0, 25
LR dT 8ss— 2755 0( qss) ( )
TR dq B2 gssTg
—— = C(1+¢%) - ——qCi(1+ 2
LRdT 755 0( qss) 7'25 9ss 1( qss)

YE App®,, T

+C2 ’_ss + FM%m SS‘I’1=O, (26)

\"’2777'55 LR
Trdr_¢ Bode + CoC gssTg(c 2)20.  (27)
—_— = + - =V.
LpdT 3P2qss T Lol 9 470

If we go one step further and assume that g, and E
are known quantities, as assumed in previous analytic
studies,4’5’10 we are able to obtain, for what we believe to
be the first time, a fully analytic description of FM mode-
locked lasers in the presence of dispersion, nonlinearity,
and modulation depth. Equation (27) can be written as
q%>-2dq-C,=0, where d=,Z%2/(CO§SSTg) is a dimensionless
dispersion parameter. The steady-state chirp parameter
is then given by

qss = d=+ \"d2 + C47 (28)

and the pulse width is found by one’s solving Eq. (26) for
T It is imperative to point out that Eq. (26) predicts mul-
tiple solutions are possible, in principle, for a given set of
laser parameters. The stability of these solutions is dis-
cussed in detail in Section 6. Here we point out that only
one solution dominates in practice, and we focus on it for
the time being. Interestingly, Eq. (28) shows that chirp is
independent of the nonlinear parameter y. It is also inde-
pendent of the modulation parameters, a somewhat sur-
prising feature for FM modulation, which affects the op-
tical phase directly. Despite the fact that TOD was
ignored, this finding agrees with Fig. 5, in which all ef-
fects were included yet chirp was essentially independent
of .

Equation (25) predicts the extent to which the mode-
locking threshold exceeds the cw value @. More specifi-
cally,

272 272

Ss SSs

_ _ COT% 2 - — COT%& 2
g.=all1- 1+q%) | =~a+ 1+q5). (29)

Since V1+q§S/frSs is related to pulse spectral width, this
equation has a simple interpretation: The threshold gain
for an FM mode-locked laser exceeds the total cavity loss
by an amount that depends on the fraction of the gain
spectrum occupied by the mode-locked pulse spectrum. A
similar result is obtained for AM mode locking, although
modulator loss is important in that case. !t

As noted in Section 4, our theory reproduces previously
known results in the appropriate limits. If the effect of the
modulator is ignored, by setting Agpy=0, we find that our
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results collapse to those of Ref. 5 in the anomalous disper-
sion regime. If nonlinearity is ignored, by setting y=0, we
obtain the results of Ref. 10. If we go one step further and
also neglect second-order dispersion and TOD, we should
recover the ﬁsults of Ref. 4. Under such conditions, d=0
and g¢=+\VC,. Of course, in the absence of nonlinearity,
we expect a chirped Gaussian pulse and C,=1, yielding
qss=+1. The temporal FWHM (after Taylor expansion of
the ¥, term) of the Gaussian pulse is then simply given
by

= gssLR v T2 12
Trwam = 2[ V2 111(2)]1/2(A_> — . (30)

W,

This equation is identical to the result obtained in Ref. 4.

Expressions (28) and (29) are coupled; however, in most
practical cases g exceeds @ by <0.5%. Using the param-
eter values of Table 1 and solving Egs. (26)—(28), we find
that g =a+2.02X10"* m™!, confirming that this is in-
deed true here. Therefore, to facilitate a fully analytic ap-
proach, we assume g~ @, which introduces only a slight
penalty in accuracy. Under this assumption, our rate-
equation approach predicts a steady-state chirp of g
=0.0179 and a pulse width of 7,=0.787 ps (FWHM
=1.767). These values agree well with those found by
one’s directly solving Eq. (1) (7,=0.798 ps, q.=0.0174).
The good agreement found here justifies the g~ a ap-
proximation as well as the simplified approach of ignoring
the ¢ and () equations adopted in this section.

The mode-locking rate equations can also provide infor-
mation on the approach to the steady state, which fre-
quently involves relaxation oscillations as seen in Fig. 2.
We have performed a linear stability analysis on Egs. (26)
and (27) to obtain the following expression for the
relaxation-oscillation frequency associated with small
perturbations:

Ly
, = VBC -D?, (31)
ToL R
where
Cy _ s
B=- T_(IBZ - COgTqus)7 (32)
Ss

Ss

= + , 33
J2m CsLp (33)
1 - — 2 2

= ;[25200(155 -8T5C1(1+3q;,)]. (34)

However, to obtain these results in a compact form it was
necessary to Taylor expand W, to first order in 7=7.
Equation (31) predicts an oscillation frequency of 230 kHz
by using the parameters of Table 1 and g~ @. This result
agrees well with the 235 kHz value obtained through nu-
merically solving Eq. (1), again justifying the use of the
approximations made.
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6. STABILITY OF STEADY-STATE
SOLUTIONS

It is well known that FM mode-locked lasers can operate
with pulses at either modulator extremum.®*!® These
two possible operating states correspond to w,,(t-t,,)=0
and w,(t-t,,)=m; they also make FM mode-locked lasers
prone to a switching instability.*1%!%1® Our theory pre-
dicts pulse formation at both of these locations, as it
should. For example, pulse chirp g in Eq. (28) has two
possible steady-state values. In a linear nondispersive
cavity, a single pulse width 7is associated with each value
of chirp q.4 However, the presence of dispersive and non-
linear terms in Eq. (26) allows multiple solutions for 7 for
each value of q.

Figure 6 shows how the two solutions for g vary with

the residual cavity dispersion B, [via Eq. (28)]. The curve
labeled Agy >0 represents the chirp imposed on the pulse
located at the w,,(t—t,,)=0 modulator extremum, and the
curve labeled Apy <0 represents the chirp imposed on the
pulse at the other extremum. In a linear nondispersive
cavity g=+1. However, Fig. 6 shows that by one’s intro-
ducing residual second-order dispersion into the cavity
the pulse chirp in FM mode-locked lasers can be reduced
significantly to g =0. This result, which could be inferred
from Figs. 4 and 5, is also in agreement with the experi-
mental findings of many groups.>116:202427 Apother in-
teresting feature to note is that the two states are tempo-
rally separated from each other: As cavity dispersion is
increased from anomalous to normal, a pulse must tem-
porally shift to align itself with the modulator’s other ex-
trema. Two shifting mechanisms have previously been
identified through numerical simulations: shifting initi-
ated through noise (or growth from pulse wings) and
shifting initiated by TOD.?

In Section 5, we focused on the Apy>0 case in the
anomalous dispersion regime (characterized by 7
=0.787 ps and ¢=0.0179). In this section, we start with
the physical explanation as to why one state dominates in
an FM mode-locked laser; we then use the moment
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Fig. 6. Chirp as a function of average dispersion B, from Eq.
(28).

Vol. 22, No. 12/December 2005/J. Opt. Soc. Am. B 2577

method to map out the stable and unstable points of op-
eration in a visually intuitive fashion. Focusing again on
the anomalous dispersion regime and the laser whose pa-
rameters are given in Table 1, we find that the chip pa-
rameter can be either small (¢=0.0179) or large
(g=-111.73). When Agy=0.45, we find a solution (7
=0.787 ps) only for the ¢=0.0179 case. The situation is
much more complicated for Apy=-045 [i.e,,
W, (t—t,,)=7]. We now find five possible solutions, each
with a different pulse width. For ¢=0.0179, three solu-
tions are found: 7=0.94, 1.5, and 149 ps. When
q=-111.73, two solutions are found: 7=16.2 and 93.3 ps.
Although these results were obtained using Eqs. (26) and
(28), they were also verified by our solving the full system
of Eqgs. (20)—(24) in the steady state. Only one among
these five potential solutions for Agy=-0.45 is likely to be
stable. Indeed, a stability analysis reveals that all three
states found for ¢=0.0179 are unstable (a simple way to
perform such an analysis is discussed later in this sec-
tion). Among the remaining two states, the solution with
7=93.3 ps is not physical at our 10 GHz repetition rate,
since these pulses extend outside the pulse slot. There-
fore, we are left with only one stable solution when Apy
=-0.45: 7=16.2 ps and ¢=-111.73.

Having found a unique solution for positive and nega-
tive values of Apy, we now investigate their relative sta-
bility. The pulse spectra are quite different for these two
solutions. Indeed, the spectral FWHM is 0.23 THz when
Apy=0.45 but broadens to 2.17 THz when Apy=-0.45.
Pulses with narrower spectra will clearly incur less loss
due to the finite gain bandwidth [see expression (29)] and
any other wavelength-dependent loss in the cavity; they
are therefore favored by the laser. For this reason, we call
this solution dominant and the other, higher loss, solution
secondary. The dominant mode-locked pulses always form
under modulator cycles satisfying the condition ApyBs
<0. This behavior, first alluded to by Kuizenga and
Siegman,! was investigated in a series of papers by Na-
kazawa and co-workers'®1®2027 in the mid 1990’s. Fur-
thermore, Tamura and Nakazawa’s argument that the
switching tendency is suppressed in the presence of
strong dispersion10 is verified by Fig. 6 if one recalls that
the pulse spectra is proportional to V1 +¢2%/7and then ap-
plies the spectral filtering argument.

We now turn our attention to the effects of dispersion
on pulse stability, as predicted by the moment method.
Equations (20)—(24) reveal that changes in ¢ and () do not
have a strong effect on the other pulse parameters so long
as 207<C,. Figures 4 and 5 show that Qr<1072 over a
broad range of operating conditions. Since Cy<1, we can
assume pulse energy, width, and chirp are approximately
independent of ) and & Doing so allows us to solve Eq.
(22) analytically and obtain

AFMmez
CoLggT5(1+4¢%
CoLrgT5(1+q%
—T ,
2T

Q(ﬂ = \I[O Sin[wm(é: - tm)]

+ Cexp[— (35)

where C is an integration constant. Noting the second
term vanishes for 7> T'p, we substitute Eq. (35) into Eq.
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Fig. 7. (Color online) Temporal shift per round trip as a function

of pulse-modulator detuning using the dominant pulse param-

eters (7=0.787 ps, ¢=0.0179). These figures identify the stable

(squares) and unstable (circles) operating locations as well as the

strength and direction of the pulse velocity for the following

cases: (a) By<0 and B3=0, (b) B<0 and B3>0, (c) B,<0 and

B5<0, and (d) B,>0 and B;>0. The imaginary part of the modu-
lator’s signal is plotted by the dashed curve to aid in location
identification for a fixed modulation depth of Apy=0.45.

(21) to obtain the following equation for Trdé/dT, a quan-
tity we refer to as the temporal shift per round trip of the
pulse relative to the modulation cycle:

d§ _ 2 AFM(Dm’T2
Tr— =Lp(B2-8T5q)

— IMPT g sinfwp (b,
T CoLag i1+ gt 0 Sinken(&=tn)]

+ LRf_; Co(1+4>

2020278
=+
CEL2E*T5(1+ ¢*)?

Vi sin*[w,(§-t,)] (. (36)

By varying the detuning between the pulse location and
the modulator extrema, ¢é-t,,, we map out the magnitude
of this shift, along with arrows indicating its direction, in
Fig. 7, where four different regimes are shown for the
dominant mode-locked solution (7=0.787 ps and g
=0.0179). In Fig. 7, the stable and unstable locations are
identified with squares and circles, respectively, and they
occur at pulse-modulator detunings where the pulse does
not experience a temporal shift. The stable points occur at
locations where a slight perturbation results in a tempo-
ral shift that restores the initial state. Unstable states, on
the other hand, are identified where a slight perturbation
sends the pulse to a different state. TOD manifests itself
by making the magnitude of d¢/dT asymmetric about the
stable and unstable points depending on its sign as can be
seen by comparing Figs. 7(a)-7(c). In Fig. 7(a), where B;
=0, the magnitude of the temporal shift experienced by
the pulse is symmetric about the stable and unstable op-
erating points. In contrast, pulse shift becomes asymmet-

ric in Figs. 7(b) and 7(c), where B3# 0. Depending on the
sign of B;, pulses temporally shift faster in one direction;

this intuitive result was previously reported through nu-
merical simulations.’
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Equation (36) also provides a simple way to investigate
the stability of the pulse solutions by using the values ob-
tained for 7 and ¢ in this equation and plotting the re-
sults. These plots immediately reveal that the three Apy;
<0 and ¢=0.0179 solutions (previously noted) are un-
stable; full numerical simulations of Eq. (1) were also
used to verify this claim.

To demonstrate what happens in the normal dispersion

regime, Fig. 7(d) shows the case 8,>0. As can be seen in
the figure, the Apy<0 extremum of the modulation cycle
represents the stable location for pulse formation. We
point out that this result agrees with the simple rule

AppB2 <0 and has been confirmed numerically.

With the Gaussian ansatz, temporal shift per round
trip can also be plotted for a nondispersive linear cavity,
by setting Ba=B5=%=0 and using Eq. (36). In this case,
pulse width and chirp are found to be 7=0.7432 ps and
g==1 by using Eqgs. (28) and (30). The absence of disper-
sion and nonlinearity has caused the dominant and sec-
ondary solutions to collapse into one solution differing
only in the sign of the chirp. As a consequence, neither so-
lution dominates, and we expect pulses to simultaneously
exist under both modulator extrema. Experimentally,
however, the laser randomly switches through noise-
induced perturbations between the two states; to our
knowledge they have not been found to coexist.'®

If the parameters of the secondary pulse (7=16.2 ps
and g=-111.73) are used instead of those of the dominant
pulse, the results shown in Fig. 8 are obtained. Figures
8(a) and 8(b) show that the secondary pulses exist at the
opposite modulator extrema as that of the dominant
pulses, as expected. By comparing Figs. 8(a) and 8(b) with
Figs. 7(a) and 7(b), we find the temporal shifts experi-
enced by the pulses during a single round trip are much
stronger for dominant pulses than those experienced by
secondary pulses. That is, our theory shows dominant
pulses are bound more tightly to their stable operating

Modulation Depth

Temporal Shift/Round Trip (ps)

-80 0 20 20 0 2 m 50 30
Pulse-Modulator Detuning (ps)

Fig. 8. (Color online) Temporal shift per round trip as a function
of pulse-modulator detuning using the secondary pulse param-
eters (7p=16.2 ps, qg=-111.73). These figures identify the stable
(squares) and unstable (circles) operating locations as well as the
strength and direction of the pulse velocity for the following
cases: (a) 8,<0 and B5=0, (b) 8,<0 and B3>0, and (¢) result of
large TOD on stable pulses. The imaginary part of the modula-
tor’s signal is plotted by the dashed curve to aid in location iden-
tification for a fixed modulation depth of Apy=0.45.
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points than secondary pulses. This is expected on physical
grounds and is a direct consequence of second-order dis-
persion and spectral filtering.

Once again we see that TOD has added an asymmetry
to the strength of the pulse shift by comparing Figs. 8(a)
and 8(b). Since the laser needs a finite amount of time to
switch between states, it becomes possible to observe the
secondary state, at least through numerical simulations.
Despite the fact that this state is not dominant, numeri-
cal evidence for its transient existence has been confirmed
by consideration of the effect of an abrupt half-clock-cycle
phase shift in the driving electronics on the dominant
pulse.9 It was found that the pulse shifts under the influ-
ence of the TOD, resynchronizing with the stable modu-
lation extrema, while essentially retaining its shape. If
the TOD is weak, or the pulse is unable to survive the per-
turbation intact, it broadens instead of shifting. In Ref. 9
the pulse broadened but then became trapped in a local
potential until it was destabilized by the reformation of
the dominant pulse, which was seeded by the pulse wings
and noise. The transient state found in that study is just
what we have referred to as the secondary state here.

According to the current paper, it follows from Fig. 7(b)
that if the pulse survives the modulator-induced pertur-
bation and retains its width and chirp, its center would be
subject to the temporal shift identified in that figure. To
clarify our meaning, consider what happens if a steady-
state mode-locked pulse located at é-t,,=-48 ps is sub-
jected to a 7 phase shift through the driving electronics.
According to Fig. 7(b), the pulse would physically shift to
relocate itself under the correct modulation cycle (¢é-¢,,
=0 ps). If, however, the pulse cannot survive the pertur-
bation, it will broaden while remaining centered on ¢
—t,,=—48 ps. Instead of broadening unabated, it will be-
come trapped in a local potential associated with the sec-
ondary state [7=16.2 ps and ¢=-111.73, see Fig. 8(b)]. At
this point, the pulse is locally stable. The laser will return
to its dominant steady-state mode-locked pulse only when
the secondary state is destabilized by the laser’s choice to
operate in the lower-loss state located at é-¢,,=0 ps (in
this case, the stable pulse grows from noise). By an in-
crease in pulse energy, the pulse may remain intact
through solitonic shaping, despite the modulator-induced
perturbation. Such a pulse would then switch out of the
shallow secondary-state potential. Comparing Figs. 7(b)
and 7(c), we further expect that the direction of the pulse-
center shift should depend on the sign of the TOD. All of
these effects were numerically observed and explored in
Ref. 9.

Finally, Fig. 8(c) answers the question as to what hap-
pens when TOD is increased. In this case, TOD was in-
creased by a factor of 10 to B3=300X 10* fs?/m, and we
find that mode-locked operation is no longer possible,
since the shifting effect of the TOD is stronger than the
modulator’s ability to synchronize the pulses.

7. CONCLUSION

In conclusion, by applying the moment method to the
master equation governing pulse formation in mode-
locked fiber lasers, we derived a set of five coupled ordi-
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nary differential equations for the pulse parameters.
These equations can be solved rapidly on a computer by
using well-known techniques. Furthermore, they reduce
to algebraic equations in the steady state, which enables
one to quickly obtain solutions. This method was applied
to an FM mode-locked laser, allowing us to obtain analytic
expressions for pulse parameters. We were able to map
out the dynamics experienced by mode-locked pulses and
predict the stable and unstable operating locations rela-
tive to the modulator’s cycle. This approach also allowed
us to study the effects of second- and third-order disper-
sions on pulse stability.

The rate-equation approach used in this paper is likely
to be useful in the field of mode-locked lasers. Moreover,
the analytic results obtained by its application to stan-
dard mode-locking techniques appear to be a useful tool
for experimentalists.
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