
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 6, JUNE 2005 753

FM Mode-Locked Fiber Lasers Operating in the
Autosoliton Regime

Nicholas G. Usechak, Govind P. Agrawal, Fellow, IEEE, and Jonathan D. Zuegel

Abstract—A high-repetition-rate ytterbium fiber laser, harmon-
ically mode-locked using a phase modulator, is investigated experi-
mentally, numerically, and analytically. Experimental results agree
well with numerical simulations using the measured parameter
values. By employing a few approximations, our model is cast in
terms of a Ginzberg–Landau equation. This equation has known
analytic solutions that agree well with the results of the full model
in the appropriate limit. Pulse stability is also investigated numer-
ically with an emphasis on the role of third-order dispersion.

Index Terms—Autosolitons, fiber lasers, FM mode-locked lasers.

I. INTRODUCTION

I T IS WELL known that the propagation of ultrashort pulses
in optical fiber is governed by the nonlinear Schrödinger

equation (NLSE) [1]. In the anomalous-dispersion regime, this
equation allows for the fundamental-soliton solution that repre-
sents an optical pulse whose shape and width are invariant under
propagation. In the context of fiber lasers, the NLSE must be
modified to account for loss, gain, gain filtering, and a mode-
locking element. Although the resulting equation has no closed
form solution, passive mode-locking mechanisms, such as non-
linear polarization rotation, nonlinear fiber-loop mirror, and sat-
urable absorption, produce “soliton-like” pulses [2].

Contemporary investigations into actively mode-locked
lasers in the presence of dispersion and nonlinearity have not
attracted as much attention as the above-mentioned passive
techniques. This is most likely due to the shorter pulse dura-
tions that the passive approaches produce. Of course, there is
still a demand for actively mode-locking lasers since doing so
provides a simple means by which one can ensure self-starting,
increase the laser’s repetition rate (through harmonic mode
locking), and synchronize the laser pulses to a master clock
[3], [4]. In a laser devoid of dispersion and nonlinearity, both
amplitude modulation (AM) and frequency modulation (FM)
mode-locking techniques produce Gaussian pulses [5]. How-
ever, the existence of an FM mode-locked “soliton” laser in the
presence of these effects has not yet been fully investigated.
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Haus and Silberberg were the first to address the effects of
dispersion and nonlinearity on actively mode-locked lasers in
1986 [6]. They found that the pulsewidth in an AM mode-locked
laser can be reduced inside the cavity by introducing a nonlinear
medium. This effect, known as soliton pulse compression, was
first experimentally demonstrated in an actively mode-locked
fiber laser by Kafka et al. in 1989 [7]. Later, Kärtner et al. ap-
plied soliton perturbation theory to show that a stable soliton
can exist in an AM mode-locked laser which incorporates dis-
persive and nonlinear elements [8]. Other relevant work numer-
ically compared both AM and FM mode-locked lasers to show
that, in the presence of a Kerr medium, both pulse profiles be-
come increasingly “sech-like” as either the gain is increased [9]
or the modulation depth is decreased (AM only) [10]. More re-
cent efforts have addressed soliton stability in AM mode-locked,
inhomogeneously broadened, lasers [11].

Given the body of literature addressing actively mode-locked
lasers, it is surprising to note that no concentrated effort has
been directed toward FM mode-locked “soliton” lasers. Since
such a venture may seem to be a logical extension of the prior
AM efforts we point out that AM- and FM-mode-locking
schemes differ in key areas. FM mode-lockers interact with
self-phase modulation (SPM) in a direct manner, whereas AM
mode-lockers affect the cavity loss and literally carve pulses out
of CW light. As a consequence, FM mode lockers do not require
biasing while their AM counterparts do [12]. Although it is
well known that FM mode-locked lasers can jump between two
degenerate operating states [13], a dispersive laser cavity breaks
this degeneracy and suppresses the laser’s tendency to switch
states [12], [14]. Experimental work with FM mode-locked
fiber lasers has also produced quasi-transform-limited pulses
with time-bandwidth-products as low as 0.30 [15], indicating
“soliton” formation [12], [15]–[17]. Still, the lack of an analytic
theory capable of explaining FM mode-locking in fiber lasers is
not surprising in view of the difficulty in solving the governing
nonlinear equation with the inclusion of an active mode-locking
element.

In this work, we investigate the operation of a high-repeti-
tion-rate, harmonically FM mode-locked, ytterbium fiber laser
experimentally [18], numerically, and analytically. In Section II
we describe the laser and present our experimental data. The
approach used to model the laser is discussed in Section III
where the numerically obtained results agree well with the
experimental data. The issue of pulse stability is addressed in
Section IV and the role of third-order dispersion (TOD) on
pulse switching is noted. Section V shows that averaging the
parameters, used in the model developed in Section III, over the
cavity length results in a modified Ginzburg–Landau equation.
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Fig. 1. (a) Experimental laser configuration: HR, high-reflectivity mirrors; PBS, polarizing beam splitters; WDM, wavelength division multiplexer. The double
sided arrows and the dots surrounded by circles represent the horizontal and vertical polarizations respectfully. (b) Numerically modeled laser configuration: the
coupling losses take into account all cavity losses at the respective cavity ends, including the laser outputs.

This equation is then used to argue that the mode-locked pulses
can be approximately treated as autosolitons. The results of
this approach are found to be in good agreement with the
numerical simulations when intracavity losses are reduced.

II. EXPERIMENTAL RESULTS

The FM technique has been used to mode-lock erbium fiber
lasers with time-bandwidth products as low as 0.30 [15]. Al-
though it has been suspected that this type of laser can pro-
duce hyperbolic-secant pulses [9], [12], [14], [15], neither the
shape of the output pulses nor their spectra were experimentally
investigated further than the fitting of autocorrelation traces.
Most ytterbium fiber lasers reported to-date have used a pas-
sive mode-locking mechanism to take advantage of ytterbium’s
broad gain bandwidth and generate short pulses at relatively
low repetition rates ( 100 MHz). For example, a ytterbium
fiber laser produced 36 fs mode-locked pulses [19], the shortest
to-date from any fiber laser, however, the repetition rate was
below 50 MHz.

Ytterbium’s large saturation fluence has also been exploited
in the pursuit of high-power amplifiers and lasers. This feature
also makes it an ideal gain medium for mode-locking at higher
harmonics where the laser’s power must be split among a large
number of circulating pulses. Recently, we used the FM tech-
nique in a ytterbium fiber laser to produce mode-locked pulses
at a high repetition rate exceeding 10 GHz [18]. The laser con-
figuration is shown in Fig. 1(a) where the combination of a
half-wave plate ( ) and polarizing beam splitter (PBS2) not
only provides variable output coupling, but also sets a linear po-
larization for the FM modulator and the grating pair. The mea-
sured average power at each of the three output ports is also
indicated in Fig. 1(a).

A 30-mW mode-locking threshold was measured, but the
976-nm pump laser was operated at 150 mW to maximize the
output power. All of the experimental results were obtained at

this pump power using the output from port 1. The cavity also
incorporates a grating pair to compensate the normal dispersion
introduced by 1 m of ytterbium-doped fiber and 1.2 m of fiber
associated with the 976/1050-nm wavelength division multi-
plexing (WDM) coupler. The net second- and third-order cavity
dispersions, and (where
is the distance during one round-trip within the cavity and
and are the second- and TOD parameters), were measured to
be fs and fs , respectively.
This measurement, performed using an in situ technique [20],
shows that this laser operates in the anomalous-dispersion
regime.

All intracavity losses at the grating-pair side of the cavity (in-
cluding the laser outputs) were measured individually and com-
bined for a total power loss of 96% as the pulses pass through the
grating pair, FM modulator, and the PBSs. Power losses at the
HR1 cavity end were estimated to be approximately 20%. The
small signal gain of the ytterbium-doped fiber was measured to
be m by using a narrow-band CW laser (Koheras
Y10-PM) operating at 1053 nm. The gain-bandwidth was ap-
proximated by the 25-nm full-width at half-maximum (FWHM)
of the amplified spontaneous emission (ASE) spectrum.

The optical spectrum of the mode-locked pulses is shown in
Fig. 2 and has a FWHM of 0.8 nm. This spectrum is best fit
by a function of the form ,
as shown by the dotted curve in Fig. 2 (almost indistinguish-
able from the numerically obtained result which is discussed
in Section III) where . For comparison,
the dashed curve shows the poor agreement obtained when a
Gaussian fit is used. Assuming a transform-limited
pulse shape, this corresponds to a temporal pulsewidth of

ps ( ps). Interferometric autocorrelation
measurements, performed using two-photon absorption inside
a photomultiplier tube [21], yield a temporal FWHM of

ps. This measurement indicates that our pulses are close to
their transform limit.
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Fig. 2. Experimentally measured pulse spectrum (solid curve with� 55 dBm
noise background), a hyperbolic secant fit (dotted), a Gaussian fit (dashed), and
the numerically simulated spectrum (solid).

In our actively mode-locked fiber laser the characteristic dis-
persion and nonlinear lengths are much longer than the 2.2 m
of fiber in the cavity. The dispersion length, ,
for the 2-ps pulses is 45 m using the fiber’s dispersion param-
eter fs m, or 90 m when using the cavity’s
average dispersion of fs m. The non-
linear length m is calculated using a
1.13-W peak power (derived using an estimated average power
of 26.5 mW in the fiber and 2-ps hyperbolic secant pulses)
and the nonlinear parameter W m (mode field
diameter m, m W). Nonlinear po-
larization rotation of the intracavity field inside the 2.2 meters
of fiber is negligible during a single round-trip; moreover the
polarizing beam splitter, PBS1, does not allow this effect to ac-
cumulate over multiple round-trips. This viewpoint was experi-
mentally confirmed by noting that rotating the quarter waveplate
( ) does not significantly affect the mode-locking ability of
the laser, although it does affect the spectral bandwidth due to
the amount of loss introduced by PBS1. As a result, the pulse
is not strongly affected by the dispersive and nonlinear effects
during a single round-trip, although these effects are certainly
important over multiple round-trips. We stress that this is in
sharp contrast with passively mode-locked fiber lasers where
polarization can change considerably during a single round-trip
due to nonlinear effects. Moreover, in passively mode-locked
fiber lasers the nonlinear and dispersion lengths can be compa-
rable with the cavity length.

III. NUMERICAL SIMULATIONS

A vector NLSE is generally required to describe pulse prop-
agation in fiber lasers [1], however, we have already shown that
nonlinear polarization rotation in our fiber laser is negligible.
Assuming dynamic polarization effects can be neglected, the
vector equation can be reduced to the following scalar equation

(1)

where

(2)

In this equation, represents the slowly varying envelope of the
optical field, and account for the second- and third-order
fiber dispersion, and is the nonlinear parameter of the fiber.
The fiber loss is given by and the gain, whose time dependence
results from a finite gain bandwidth, is given by . Since
the gain bandwidth of our ytterbium fiber was estimated to be
25 nm ( THz) and the laser produced pulses
with less than 1 nm of bandwidth, the spectral filtering is not ex-
pected to strongly influence the pulse shape and the gain spec-
trum is approximated by a parabola .
We also assumed that the small signal gain over the 1 m of
doped fiber is approximately constant, setting . Since
the temporal separation between adjacent pulses in this laser
( 100 ps) is much shorter than the relaxation time of ytter-
bium ( 1.5 ms), the gain is saturated by the location-depen-
dent average power of the pulses as shown in (2). The location
dependent average power was determined using

(3)

where is the duration of a single modulation cycle
and is the frequency with which our modulator is driven.
The and superscripts denote the direction in which the field
propagates as defined in Fig. 1(b). In (2) was computed
by summing the average powers of the counter propagating
pulses for each spatial step using .
The gain saturation power, mW, was estimated by
requiring that the model produce the measured average output
power of mW [see Fig. 1(b)].

Our model uses (1) to propagate the pulses within the laser’s
active and passive fiber sections. It
then considers the influence of the other cavity elements in-
dividually, as depicted in Fig. 1(b). For example, we assume
that the 600-grooves/mm grating pair acts as a dispersive el-
ement introducing single-pass second-order dispersion (

fs ) and TOD ( fs ) into the cavity
based on its configuration (30 incident angle, 12-cm sepa-
ration) [22]. The losses associated with the grating pair were
lumped into a combined loss at the end mirror HR2, as previ-
ously noted in Section II.

The FM modulator was treated as if it modified an incident
field according to [5]

(4)

where is the modulation frequency, assumed
throughout this work to be a harmonic of the laser’s fundamental
repetition rate. Any time delay between the modulator and the
pulse reference frame is accounted for by in (4), which was set
to zero unless otherwise noted. Using a high-resolution optical
spectrum analyzer and a continuous-wave semiconductor laser
(Sacher Lasertechnik TEC 500) operating at 1.05 m, the mod-
ulation depth, , was measured when driving the mod-
ulator with the same frequency (10.3 GHz) and power (10 W)
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TABLE I
PARAMETER VALUES USED IN NUMERICAL SIMULATIONS

Fig. 3. Numerically predicted temporal profile of mode-locked pulses (solid),
hyperbolic secant fit (dotted), and a Gaussian fit (dashed).

used to mode-lock the laser. All of the parameter values used in
our simulations are summarized in Table I for convenience.

The model considers a laser mode-locked at its 281st har-
monic by using a 97-ps temporal simulation window together
with periodic boundary conditions. This simplification is com-
monly used and justified, in this case, through the experimental
observation of low pulse-pulse amplitude and timing jitter. Fur-
thermore, a side-mode suppression measured to be 70 dB in-
dicates that neighboring pulses exhibit a high degree of simi-
larity [18].

Fig. 1(b) shows the block diagram used to model the laser
shown in Fig. 1(a). The model “unfolds” the laser cavity, passing
the slowly varying field, , through each cavity component
twice during a single round-trip. The numerical results, taken at
“output 1” [specified in Fig. 1(b)] and shown by the solid curve
in Fig. 2 (the experimental results were also extracted from the
same location), were obtained by solving this problem using
the symmetric split-step method [1] on a 1024-point temporal
grid with 200 spatial steps per round-trip. The simulated spec-
trum matches the fit to the
experimental results, shown by the dotted curve (see Fig. 2),
revealing excellent agreement.

Fig. 3 shows the corresponding pulse in the time domain.
A Gaussian fit to the numerical data is once again quite poor,
whereas a hyperbolic secant fit is found to agree well. The model
predicts 1.57-ps hyperbolic secant pulses, which is consistent
with the experimental measurements of Section II. Fig. 4 shows
a simulated mode-locked pulse building up from noise (using a
1 photon/mode strength, complex, Gaussian-distributed, noise

Fig. 4. Numerically simulated pulse formation from noise. Note that the laser
has not converged to a steady state even after 2500 round-trips.

Fig. 5. Pulse temporal FWHM as a function of round-trip showing the
numerical model converges to a steady state solution only after 5000
round-trips.

seed) over the first 2500 round-trips, while Fig. 5 shows the con-
vergence of the pulsewidth to its steady state value. The large
number of round-trips necessary before the mode-locked pulse
converges is expected since the nonlinear and dispersive effects
are weak over a single round-trip. As a consequence, many
round-trips are required before the effects of nonlinearity and
dispersion balance. Finally, the FWHM as a function of cavity
location (after the model converged) varied by 2% revealing
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that the pulse does not experience any large changes in width
during a single round-trip.

IV. STABILITY

In the absence of dispersion and nonlinearity, an FM mode-
locked laser will form pulses at either extreme [ or

in (4)] of the modulation cycle. This behavior has been exper-
imentally observed in lasers where the mode-locked pulse train
shifts between these two temporal locations in a random fashion
[13]. In their pioneering work [5], Kuizenga and Siegman noted
that the degeneracy between these two states is broken when
the modulation frequency is detuned from the laser’s longitu-
dinal mode spacing. This enables the gain medium to exhibit
a dispersive effect. However they were unable to suppress this
switching experimentally [13]. Later, Tamura and Nakazawa
showed that the switching between the two states is suppressed
in lasers with “large” intracavity dispersion, resulting in stable
laser operation [14]. Depending on the sign of the cavity dis-
persion, the pulse at one of the two extremum will be spec-
trally broadened with respect to the other. The broader spectrum
will experience more attenuation due to spectral filtering and the
laser will operate in the other state to minimize loss [12], [14].
For example, mode-locked pulses pass through the modulator
acquiring a positive chirp ( ) in an anomalously dis-
persive cavity, while the modulator-induced chirp will be nega-
tive ( ) in a normally dispersive cavity [12], [14].

In this section we verify that our numerical model agrees
with the findings of Tamura and Nakazawa [12], [14] by sub-
jecting a mode-locked pulse to an abrupt phase jump in the
modulator’s driving electronics. This allows us to investigate the
pulse switching mechanism in action, as well as the dynamical
switching behavior. Using this approach we are able to identify
two completely different pulse switching mechanisms.

To verify the numerical model predicts both stable and
unstable temporal operating locations, the modulator’s phase
is abruptly changed after a mode-locked pulse is first formed.
The theory, mentioned above, predicts that stable mode-locked
pulses only form under the positive cycle of the FM modulator
(in our anomalously dispersive cavity) and so the pulse is
expected to temporally shift. In order to keep the pulses located
within the central region of our simulation window, all the
simulations in this section use [see (4)] which locates
the extremum of the modulator at ps. Fig. 6 shows the
effect of a half-cycle clock phase shift (48.5 ps at 10.3 GHz
or ) on a mode-locked pulse. When the clock
phase is shifted, at the 2000th round-trip, the pulse temporally
broadens and eventually its power is redistributed amongst the
two nearest stable modulator extremum. Although the pulse
switches as expected, it only does so after first switching to
what appears to be an unstable state, as shown by the constant
pulse shape in Fig. 6 between round-trips 2500–6000.

To examine the switching mechanism in more detail, the
temporal and spectral FWHM of the pulse were plotted as
functions of round-trip and are shown in Fig. 7. After shifting
the modulator’s phase by , the pulse experiences a short
period of spectral compression whereas the pulse temporally
broadens immediately; both are followed by a constant period

Fig. 6. Demonstration of pulse switching. The phase of the FM modulator
was changed by � at the 2000th round-trip, shifting the location of the stable
operating points, which have been identified by the solid lines to provide a
convenient visual reference.

Fig. 7. Temporal and spectral FWHM as a function of round-trip,
corresponding to the data plotted in Fig. 6. The location where the modulator’s
phase was shifted is identified as well as the stable and unstable operating
regimes for case where noise was ignored. The same data is also plotted when
noise was included in the numerical simulations and is labeled “including
noise.”

of broader bandwidth. To verify that this behavior is not related
to a numerical anomaly, a noise term was added to (1) and the
simulations were repeated. These results, labeled “including
noise” in Fig. 7, reveal that even in the presence of noise there
is a region after 2500 round-trips where the pulse spectrum
and width stabilize. To explain this switching behavior, we
note that the reduced spectral width found in the first transi-
tion region, between 2000 and 2500 round-trips, ensures that
the effect of spectral filtering on the temporally broadening
pulse is weaker than its effect on either the original pulse
or the (newly shifted) stable pulse. This enables the pulse to
continue broadening unabated. Since the pulse passes through
the modulator extremum associated with an unstable state,
it starts acquiring an unbalanced modulator-induced chirp.
This chirp results in a drastic increase in the pulse spectrum
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Fig. 8. Effect of TOD on pulse switching when the cavity’s TOD > 0. The
pulse remains intact while temporally shifting to sync up with the (new) stable
cycle of the modulator where it is once again stable.

around 2500 round-trips. Instead of this broadening continuing
until the pulse switches states, the pulse becomes trapped in
a local (globally unstable) potential due to an equalization
between second-order dispersion, modulator-induced chirp,
nonlinearity, and spectral filtering. The pulse remains in this
unstable state, without changing shape, until it is destabilized
by the formation of a stable pulse. The stable pulse has less
bandwidth (0.8 nm compared to 2.26 nm see Fig. 7) than its
unstable counterpart. As a consequence of spectral filtering, the
stable pulse will experience less loss than the unstable pulse,
thus providing the laser the incentive necessary to switch states.
The only remaining question is how the laser actually switches
between these two temporally displaced states. In our simula-
tions we find that the stable pulses are seeded by the wings of
the unstable pulse and by noise. As a consequence, when the
noise was ignored many round-trips were required to reach a
new equilibrium, whereas faster switching was observed in the
presence of noise, since it provided a stronger seed (see Fig. 7).

It was previously found that the inclusion of SPM, whose
sign is always positive, can prohibit mode-locking in the normal
dispersion regime. This occurs because the modulator’s pulse
forming effect must overcome the pulse broadening effects of
dispersion, nonlinearity, and spectral filtering in the normal dis-
persion regime for mode-locking to be possible. Although our
laser operates in the anomalous dispersion regime, we can still
investigate the role nonlinear effects play on the pulse switching
by artificially doubling the saturation power while holding all
other parameters constant. Fig. 8, which plots contours of con-
stant intensity, examines this increased energy scenario using
the same phase shift as before. This figure reveals a different
switching mechanism where the pulse remains intact, shifting
to the right side of the temporal window and settling down after
about 2000 round-trips, but only after following a zig-zag path
indicative of relaxation oscillations.

The pulse shift to the right side of the window in Fig. 8 is
not incidental; it is governed by the sign of the cavity’s net
TOD. When the signs of the TOD for both fibers and the grating

Fig. 9. Depiction of the energy transfer between modulation cycle locations
when the driving frequency is abruptly changed by a half-clock cycle for the
case where (a) SPM effects are weak and (b) SPM effects are important and
TOD > 0. The darkened trace in both plots, at the 100th round-trip, represents
the location where the modulator’s phase is shifted. The solid lines in (a) show
how the energy from each pulse is redistributed.

pair are flipped, the pulse moves to the left side of the temporal
window while exhibiting identical dynamic features. These re-
sults, which constitute a temporal analog of a mirror image, can
be understood by noting that the group velocity of a pulse is af-
fected by finite values of TOD.

Although TOD was included in the model used to generate
Fig. 6, the effect of SPM on the pulse was not strong enough
to keep it intact when the modulator’s phase was shifted; in-
stead the pulse broadened while remaining centered on .
Fig. 9 summarizes our results using a cartoon (not a simula-
tion) to focus on the effects of an abrupt phase change on two
pulses in a harmonically mode-locked pulse train. Fig. 9(a) dia-
grammatically shows the effect of this switching mechanism on
pulse energy when the switching is governed by the growth of a
new pulse from the wings of the initial pulse and/or from noise.
Fig. 9(b) examines the behavior found with increased power and
positive TOD; the pulses shift in the opposite direction when
TOD is negative. With their increased peak powers, the pulses
seen in Figs. 8 and 9(b) can be viewed as “solitons,” which
are able to maintain their shape through the interplay between
second-order dispersion and SPM, despite the perturbation from
the FM modulator. They avoid dispersing long enough to expe-
rience the temporal kick of TOD, which sends these pulses to
the stable operating points. In the absence of SPM, the pulses
immediately broaden, as depicted in Fig. 9(a), and the effects
of TOD are weakened. Larger values of TOD will encourage
even these pulses to remain intact by “pushing” them toward
a new equilibrium with increasing strength. However, a single
pulse’s energy will still be distributed between the two nearest
final pulses. In this case the energy splitting will become asym-
metric (from the perspective of the seed pulse), favoring one op-
erating point over the other depending on the sign of the TOD. It
is also noted that arbitrarily increasing the TOD will eventually
disrupt the modulator’s ability to synchronize the pulses, thus
disabling the mode-locking mechanism altogether.

When the modulator’s phase was abruptly changed, it was
found that the (shifted) stable operating states were reached
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more quickly with an increase in either the modulation depth
or the anomalous dispersion value. The stable operating states
were also reached more quickly when a spectral filter was used
or the gain bandwidth was otherwise decreased. However, the
repetition rate becomes important since it governs the temporal
separation between the stable and unstable states. At lower
repetition rates, the pulses are more prone to decay since they
must shift between modulator extremum temporally separated
by larger amounts. We also note that the effect of TOD on
the picosecond pulses simulated is weak, and so switching
should occur more quickly for femtosecond pulses. The large
phase jump, used in this section for demonstration purposes,
is impractical in a mode-locked laser under normal operating
conditions. However, the different switching mechanisms iden-
tified in this section will still occur for smaller phase jumps (due
to electronic noise, thermal effects, etc.) although it becomes
more difficult to differentiate between them.

V. GINZBERG–LANDAU EQUATION

Although passive optical fibers support solitons in the
anomalous-dispersion regime, (1) does not have a standard
soliton solution because of the presence of gain and loss. In
addition to this, none of the parameters , , , , or
are constants, rather they all vary over the cavity length. This
situation is analogous to long-haul lightwave systems in which
fibers of two or more types are used to form a periodic disper-
sion map [24]. In such systems new types of solitons, known
as dispersion-managed solitons, exist in the form of chirped
Gaussian pulses [25]. We can, however, rule this possibility
out in our fiber laser because the nonlinear and dispersive
effects are relatively weak, and because the pulsewidth barely
changes during a single round-trip. This is in sharp contrast
to dispersion-managed lightwave systems where pulse width
changes considerably. Of course the presence of a hyperbolic
secant spectrum also clearly indicates that a Gaussian solution
is not appropriate.

Another class of solitons exists in optical systems in which
pulses experience gain and loss as they propagate. Such soli-
tons are known as autosolitons [22] or dissipative solitons [26].
Since simulations show the pulsewidth does not change much
during a single round-trip, and our output spectrum has a hy-
perbolic secant profile, the pulses emitted by our laser are more
consistent with autosolitons than with dispersion-managed soli-
tons. Recent investigations into fiber lasers mode-locked with
multiple pulses also support this conclusion through the study
of pulse interactions [27], [28]. To justify this claim, we average
all the parameters used in Section III over one round-trip and
write the resulting equation in the form [22], [23]

(5)

where the overbar denotes the averaged value of the cor-
responding parameter, i.e., and
so on. Finite gain bandwidth is again assumed to have a
parabolic filtering effect with a spectral width given by

fs rad. The averaged saturated gain is
given by where , the average
intracavity power, is now a constant and, therefore, location
independent.

The strength of the modulation term in (5) was computation-
ally found to have only a weak effect on the final pulse shape
and width, so by assuming that we already have a pulse the
modulator’s effect can be neglected in this equation. We also
note that actively mode-locked lasers are usually dominated by
second-order dispersion and rarely produce pulses in the fem-
tosecond regime. One can use this as an argument to ignore the
effects of TOD. Under such conditions, this equation reduces
to the well known Ginzburg–Landau equation which has the
shape-preserving autosoliton [22] solution

(6)

where

(7)

(8)

(9)

(10)

Equations (7)–(10) require the value of which depends on
, itself a function of [(7)] and [(8)], and so we have

an underdetermined system. In order to circumvent this problem
without introducing error, the value of was obtained by numer-
ically solving (5). The resulting value was then used in (7)–(10)
to determine the parameters for the shape of the temporal field.

This analytic solution should be compared with the numer-
ical results obtained in Section III before one can claim that our
mode-locked laser emits autosolitons. To facilitate such a com-
parison, we note that the chirp parameter, , may be computa-
tionally determined for an autosoliton via

(11)

Using the values fs m,
fs m, W m,

m , and m , the au-
tosoliton approach predicts ps, and .
To compare these values with the numerical model we extract
the field at “output 2” [See Fig. 1(b)] where it is expected
to have the minimal (map-induced) chirp and, therefore, be
consistent with an autosoliton. The numerical model predicts
pulses with ps and , yielding less than
ideal agreement with the autosoliton theory.

Although we have been advocating the idea that the mode-
locked pulses are autosolitons, based on the governing equation
and recent work [27], [28], the merits of treating the pulses as
fundamental solitons may also be investigated. By substituting
( ) into (3), using both

(since the power is constant in the
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Fig. 10. Temporal profile of the numerically simulated pulse (solid) and the
predicted autosoliton (dotted).

average model) and the fundamental soliton condition (
), we arrive at the pulsewidth predicted by conventional

soliton theory (assuming the cavity dispersion is anomalous)

(12)

Using our numerically obtained average power,
mW, and assuming a standard soliton we find that

ps and of course . Although neither
prediction is accurate, the autosoliton theory is 30% closer to
the numerically obtained width than the soliton theory. This
indicates that there is certainly a distinction to be made between
these two types of solitons in fiber lasers.

Further investigation shows that the poor agreement between
autosoliton theory and numerical modeling can be attributed to
the high intracavity losses in our laser, which makes the use of
the average model questionable. To model a laser with lower in-
tracavity losses, the fraction of the power re-entering the fiber
in the HR2 arm was increased from 4% to 60% and the gain
was decreased to m , in order to maintain the same
power level. Using these parameters the full model gives a tem-
poral pulsewidth of ps and a chirp parameter

, whereas the autosoliton theory predicts a pulsewidth of
ps, and a pulse chirp parameter . Fig. 10

compares the pulse shape obtained from the full model to the
pulse predicted by autosoliton theory using these values. Al-
though excellent agreement is obtained for the pulsewidth and
temporal shape (as seen in Fig. 10), the chirp parameters are
once again in poor agreement.

Our results suggest that the existence of a dispersion map is
at the root of the poor agreement for the chirp parameter ; after
all the dispersion map causes to vary within the cavity. We
verified this statement by eliminating the grating pair and ad-
justing the dispersion such that it is constant inside the laser
in the numerical model of Section III. Under such conditions,
the predictions of autosoliton theory agree with the numerical
model within a few percent. Although perfect agreement is not
expected due to the effects of TOD (which is primarily respon-
sible for the deviation between pulse shapes seen in Fig. 10) and

the mode-locker, which were both ignored in assuming the au-
tosoliton pulse shape, we conclude that the mode-locked pulses
emitted by our laser are essentially in the form of autosolitons.
Despite the autosoliton solution, a laser will not form mode-
locked pulses on its own; a mode-locking element is always
required. However, the active fiber will always try to impose
the autosoliton shape on any pulse circulating within the cavity.
We point out that this reasoning was previously used by Haus
and Silberberg in their investigation of AM mode-locking in the
anomalous-dispersion regime with nonlinearity [6]. Therefore,
if the effect of the mode-locking element on the field is weaker
than this active fiber shaping mechanism, as is frequently the
case in FM mode-locking, this shaping mechanism will domi-
nate and we will essentially end up with autosolitons.

VI. CONCLUSION

In conclusion, this work examined a high-repetition-rate,
harmonically, FM-mode-locked, ytterbium fiber laser exper-
imentally, numerically, and analytically. Pulse stability was
investigated and the role of TOD and the unstable modulator
extremum on abrupt phase jumps in an FM mode-locked laser
was investigated for what we believe to be the first time. The
short cavity length and low peak powers allowed us to ap-
proximate the pulse dynamics with an average model given
by a modified Ginzberg–Landau equation. The averaged equa-
tion was then analytically investigated assuming the laser is
mode-locked with an autosoliton. The results of this analytic
theory were compared to the numerical results and found to
be in good agreement in a lower-loss laser cavity. Such a
treatment of the laser also shows that the effect of the FM
modulator on the field is much weaker than the active fiber
and thus appears only as a small perturbation. This fact reveals
that active-fiber based pulse shaping is the overriding pulse
shaping mechanism in this laser.

Strictly speaking, this type of laser is expected to have a pulse
consistent with an autosoliton, as opposed to a standard soliton.
In fact any deviation from the autosoliton shape may be at-
tributed to the fact that this laser does, in reality, have a disper-
sion map with finite TOD, an FM modulator, and discreet losses.
Although the distinction between these two types of solitons
is subtle for actively mode-locked lasers producing picosecond
pulses, we believe that it should be more pronounced at higher
modulation frequencies which are able to produce shorter pulses
that will experience stronger spectral filtering, resulting in a
larger gain/loss imbalance and, hence, an increased chirp.
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