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Abstract

Fiber-optic parametric amplifiers (FOPAs) can be used in lightwave systems for several signal-

processing applications including optical amplification, phase conjugation, and wavelength conversion.

In this review we focus on some of the recent advances in designing broadband FOPAs. The well-known

simple theory behind the nonlinear phenomenon of four-wave mixing is discussed first to provide the

background material. It is then used to discuss the performance of single-pump and double-pump FOPAs

and reveal the important role played by the nonlinear contribution to phase matching. We discuss the

design of dual-pump FOPAs and show how they can provide a gain spectrum that is relatively uniform

over a bandwidth larger than 100 nm. We also study the impact of fluctuations in the zero-dispersion

wavelength along the fiber length and show that fluctuations as small as±1 nm degrade severely the gain

spectrum of FOPAs because they mainly affect its central flat part. This degradation can be avoided to

a large extent by moving pump wavelengths closer. Birefringence fluctuations that occur in all practical

fibers and lead to polarization-mode dispersion (PMD) also affect the gain spectrum of FOPAs. A vector

theory based on the Jones-matrix formalism is developed for this purpose. We discuss how PMD affects

the gain spectrum and make the FOPA gain polarization dependent even when orthogonally polarized

pumps are used.
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1 Introduction

Modern optical communication systems require not only signal amplification periodically but also devices

that are capable of ultrafast, all-optical, signal processing. Fiber-optic parametric amplifiers (FOPA), based

on four-wave mixing (FWM) occurring inside optical fibers [1], are attracting considerable attention be-

cause they can provide broadband amplification and can thus replace erbium-doped fiber amplifiers used

commonly for signal amplification [2]–[6]. However, although not yet fully appreciated, FOPAs are also an

ideal candidate for ultrafast, all-optical, signal processing because of an instantaneous electronic response of

the silica nonlinearity responsible for FWM in optical fibers. Moreover, amplification provided by FOPAs

is accompanied with relatively low noise, allowing operation close to the quantum limit.

Reasonably large values of optical gain with a relatively flat and wide gain spectrum can be realized

when FOPAs are either pumped in the vicinity of zero-dispersion wavelength (ZDWL) using a single pump

laser [1]–[3] or pumped using two lasers at two well-selected wavelengths located on each side of the

ZDWL [4]–[6]. Such FOPAs have recently been used for applications such as broadband WDM amplifica-

tion, wavelength conversion, optical sampling, and pulse compression [1]–[6]. A feature unique to FOPAs

is that the idler field generated during signal amplification is phase-conjugated. Such phase conjugation

provides an efficient way for dispersion compensation [7], as already demonstrated experimentally [8]. It

can also be used to reduce timing jitter [9] as well as phase jitter [10] in long-haul lightwave systems. Al-

though FOPAs can be used to manipulate quantum noise with a proper control of phase differences among

the four interacting waves [11]–[13], modern communication systems do not yet employ phase-sensitive

amplification.

In this chapter, we review the recent progress that has been realized in the field of FOPAs. Among many

applications of such devices, we focus on signal amplification and wavelength conversion. We recall in

Section 2 the basic theory behind the nonlinear phenomenon of FWM and use it in Section 3 to discuss the

performance of single-pump FOPAs. Section 4 focuses on the more general case of dual-pump FOPAs and

shows how the use of two pumps at suitable wavelengths can provide uniform gain over a wide bandwidth.

Sections 5 and 6 discuss the impact of two major phenomena that affect the performance of all FOPA-

based devices. The ZDWL of a fiber can vary along its length in a random fashion owing to core-diameter

variations that occur invariably during fiber manufacturing; the effects of ZDWL fluctuations are discussed

in Section 5. Section 6 then focuses on birefringence fluctuations that also occur in all practical fibers and

lead to a phenomenon known as polarization-mode dispersion (PMD). The main results are summarized in

the concluding section.
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2 Theory of Four-Wave Mixing

The FWM process originates from the nonlinear response of bound electrons to intense optical waves inside

nonlinear media such as silica fibers. When two intense pump waves at frequenciesω1 andω2 copropagate

inside an optical fiber, they can force the bound electrons to oscillate almost instantaneously at any frequency

stemming from the mixing of these waves. Even though the potential provided by silica molecules confines

electrons to their original atom, electrons respond to the applied electromagnetic field by emitting secondary

waves not only at the original frequenciesω1 andω2 (linear response), but also at two new frequencies

denoted asω3 andω4 (third-order nonlinear response). Physically, two photons at the original frequencies

are scattered elastically into two new photons at frequenciesω3 andω4. The total energy and momentum

of the original two photons are conserved during FWM. Noting that photon energy and momentum areh̄ω

andh̄β , respectively, for an optical field of frequencyω propagating with the propagation constantβ , the

conservation relations take the form:

ω1 +ω2 = ω3 +ω4, β (ω1)+β (ω2) = β (ω3)+β (ω4), (1)

whereβ is the propagation constant as a function of frequency. Only the magnitude of wave vectors

appears in Eq. (1), because all four waves propagate along the same direction in single-mode fibers. Since

β (ω j) governs the phase shift experienced by thejth wave, second half of Eq. (1) is also referred to as the

phase-matching condition [14].

A question that must be answered is what determines the frequenciesω3 and ω4 during the FWM

process? If only the pump beams are incident on an optical fiber, the new waves grow from noise and their

frequencies are determined by the phase-matching condition through spontaneous FWM. In practice, the

efficiency of the FWM process is enhanced by seeding it. Seeding is accomplished by launching a signal

wave at the frequencyω3. The probability of creating photons at the frequencyω4 depends on how many

photons atω3 already exist inside the fiber. As a result, the FWM process is stimulated, and new photons

at ω3 andω4 are created with an exponential growth rate provided the phase-matching condition is nearly

satisfied. It is common to refer to the fourth wave at the frequencyω4 as theidler wave, following the

terminology used in the microwave literature. It is not obligatory to launch two separate pump beams for

FWM to occur. The same process can occur even when the two pump photons have the same frequency

(degenerate FWM). The general case of two independent pump beams is called nondegenerate FWM.

Mathematically, the description of FWM is relatively simple for optical fibers since all four waves

propagate in the form of a fiber mode and maintain their spatial profile [1]. Since they also propagate along

the same fiber axis (assumed to coincide with thez axis), transverse effects can be completely ignored, and
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one can use a one-dimensional model. Moreover, if we assume perfect cylindrical symmetry for optical

fibers (no residual birefringence), and also assume that all waves are linearly polarized in the same direction

we can employ the scalar approximation. We shall relax this approximation in Section 6 since silica fibers

do exhibit some residual birefringence that changes randomly along the fiber length.

The FWM analysis is simplified considerably if we assume that the signal and idler powers remain

relatively small throughout the fiber length compared with the pump powers. This amounts to assuming

that pumps are not depleted during the FWM process. The evolution of the signal and idler waves is then

governed by the following two coupled but linear equations [1]:

dB3

dz
=

i
2

κB3 +2iγB1B2B∗4, (2)

dB4

dz
=

i
2

κB4 +2iγB1B2B∗3, (3)

whereκ = ∆β + γ(P1 +P2) describes the total phase mismatch andγ is the nonlinear parameter defined as

γ = 2πn2/(λpAeff), wheren2 ≈ 2.6×10−20 m2/W is for silica fibers,λp is the average pump wavelength,

andAeff is the effective core area of the fiber. Also,∆β = β (ω3)+ β (ω4)− β (ω1)− β (ω2) is the linear

phase mismatch resulting from fiber dispersion andP1 and P2 are the input powers of two pumps. The

optical field amplitudes for the signal and idler waves,A3 and A4, are related toB3 and B4 by a phase

factor throughA j = B j exp{iz[−κ/2+2γ(P1 +P2)]}. In Eqs. (2) and (3), we have included the contribution

of self-phase modulation (SPM) and cross-phase modulation (XPM) induced by the two pumps, but these

nonlinear effects originating from the signal and idler waves are neglected. Fiber losses are ignored because

only a relatively short length of fiber (∼ 1 km) is generally used for making FOPAs.

From Eqs. (2) and (3), the signal and idler powers,P3 = |B3|2 andP4 = |B4|2, are found to satisfy the

same equation:
dP3

dz
=

dP4

dz
= 2ξ

√
P3P4sinθ , (4)

whereξ = 2γ
√

P1P2 is a measure of the FWM efficiency in the nondegenerate case andθ = φ3+φ4−φ1−φ2

describes the accumulated phase mismatch among the four waves. Hereφ j is the phase of the fieldB j , i.e.,

B j =
√

Pj exp(iφ j). When the two pumps are assumed to remain undepleted,φ1 andφ2 maintain their initial

values, and the accumulated phase mismatch is governed by

dθ

dz
= κ +ξ cosθ

(P3 +P4)√
P3P4

. (5)

Equation (4) shows clearly that the growth of the signal and idler waves inside a fiber is determined by the

phase-matching condition. Whenθ = π/2, signal and idler extract energy from the two pumps. In contrast,

whenθ =−π/2, energy can flow back to the two pumps from the signal and idler. If only the two pumps and
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the signal are launched into FOPA initially, the idler wave is automatically generated by the FWM process.

This can be seen from Eq. (3). Even ifB4 = 0 atz= 0, its derivative is not zero as long asB3(0) is finite.

If we integrate this equation over a short fiber section of length∆z, we obtain∆B4 ≈ 2iγB1B2B∗3(0)∆z. The

factor of i provides an initial value ofπ/2 for θ and shows that the correct phase difference is automatically

picked up by the FWM process [15]. Ifκ = 0 initially (perfect phase matching), Eq. (5) shows thatθ will

remain frozen at its initial value ofπ/2. However, ifκ 6= 0, θ will change along the fiber as dictated by

Eq. (5), and energy will flow back into the two pumps in a periodic fashion. Thus, phase matching is critical

for signal amplification and idler generation.

3 Single-Pump Parametric Amplifiers

In this section we focus on the degenerate FWM case in which a single intense pump is launched into a

fiber together with the signal, and a single idler wave is generated through the degenerate FWM process.

Equations (2)–(5) remain unchanged in the degenerate case provided we defineξ andκ asξ = γP1 and

κ = ∆β +2γP1. Integrating Eqs. (2) and (3) with the initial conditionB4(0) = 0, the signal power at the end

of a fiber of length ofL is found to be [1]

P3(L) = P3(0)
[
1+(1+κ

2/4g2)sinh2(gL)
]
, (6)

where the parametric gain coefficientg and the phase mismatchκ are given by

g =
√

(γP1)2− (κ/2)2, κ = ∆β +2γP1. (7)

Equation (7) shows that the parametric gain is reduced by phase mismatchκ and is maximum when

κ = 0. Both the nonlinear (SPM and XPM) and the linear effects (fiber dispersion) contribute toκ. Although

the nonlinear contribution is constant at a given pump power, the linear phase mismatch depends on the

wavelengths of the three waves. To realize net amplification of the signal, parametric gaing should be real.

Thus, tolerable values of the linear phase mismatch∆β are limited to the range−4γP1 ≤ ∆β ≤ 0. The

FOPA gain is maximum when the phase mismatchκ approaches zero, or when∆β =−2γP1. This relation

indicates that optimal operation of FOPAs requires some amount of negative linear mismatch to compensate

for the nonlinear phase mismatch. In fact, the bandwidth of the gain spectrum is determined by the pump

power and the nonlinear parameterγ. Figure 1 shows this dependence clearly by plotting the parametric

gain as a function of∆β at three different power levels of a single pump [1].

The linear phase mismatch∆β depends on the dispersion characteristics of the fiber. As the signal and

idler frequencies are located symmetrically around the pump frequency (ω4 = 2ω1−ω3), it is useful to
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expand∆β in a Taylor series around the pump frequency as [16]

∆β = β (ω3)+β (ω4)−2β (ω1) = 2
∞

∑
m=1

βmp
(ω3−ω1)2m

(2m)!
, (8)

whereβmp= (d2mβ/dω2m)ω=ω1. This equation shows that only even-order dispersion parameters evaluated

at the pump frequency contribute to the linear phase mismatch. Clearly, the choice of the pump wavelength

is very critical while designing a FOPA. The linear phase mismatch∆β is dominated by the second-order

dispersion parameterβ2p when the signal wavelength is close to the pump but by the fourth- and higher-order

dispersion parameters (β4p, β6p, etc.) when the signal deviates far from it. Thus, the ultimate FOPA band-

width depends on the spectral range over which the linear phase mismatch is negative but large enough to

balance the constant positive nonlinear phase mismatch of 2γP1. This can be achieved by slightly displacing

the pump wavelength from the ZDWL of the fiber such thatβ2p is negative butβ4p is positive.

We should relate the parametersβ2p andβ4p to the fiber-dispersion parameters,βm = (dmβ/dωm)ω=ω0,

calculated at the ZDWL of the fiber. This can be accomplished by expandingβ (ω) in a Taylor series around

ω0. If we keep terms up to fourth-order in this expansion, we obtain

β2p ≈ β3(ω1−ω0)+
β4

2
(ω1−ω0)2, β4p ≈ β4. (9)

Depending on the values of the fiber parametersβ3 andβ4, we can choose the pump frequencyω1 such that

β2p andβ4p have opposite signs. More specifically, since bothβ3 andβ4 are positive for most silica fibers,

one should chooseω1 < ω0, i.e., the pump wavelength should be longer than the ZDWL of the fiber.

Figure 2 shows the gain spectra at several different pump wavelengths in the vicinity of the ZDWLλ0

(chosen to be 1550 nm) by changing the pump detuning∆λp = λ1−λ0 in the range−0.1 to+0.15 nm. The

dotted curve shows the case∆λp = 0 for which pump wavelength coincides with the ZDWL exactly. The

peak gain is about 8 dB and the gain bandwidth is limited to below 40 nm. When pump is tuned toward

shorter-wavelength side, the bandwidth actually decreases. In contrast, both the peak gain and the bandwidth

are enhanced by tuning the pump toward the longer-wavelength side. The signal gain in the vicinity of pump

is the same regardless of pump wavelength. When signal wavelength moves away from the pump, the linear

phase mismatch∆β strongly depends on the pump wavelength. If both the third- and forth-order dispersion

parameters are positive at ZDWL, according to Eq (9) the second order dispersion at the pump is negative

when ∆λp is slightly positive, and thus can compensate for the nonlinear phase mismatch. This is the

reason why gain peak is located at a wavelength far from the pump whenλ1 > λ0. When phase matching

is perfect (κ = 0), FOPA gain grows exponentially with the fiber lengthL asG = 1+ exp(2γP1L)/4. For

the parameters used for Fig. 2, the best case occurs when∆λp = 0.106 nm. However, when∆λp < 0, both
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the second- and forth-order dispersion parameters for the pump are positive. As a result, the linear phase

mismatch adds up with with the nonlinear one, makingκ relatively large. As a result, the FOPA bandwidth

is reduced.

From a practical standpoint, one wants to maximize both the peak gain and the gain bandwidth at a

given pump powerP1. Since peak gain is approximately given byGp ≈ exp(2γP1L)/4, its value increases

exponentially asγP1L, and can be increased by increasing fiber length. However, the gain bandwidth scales

inversely withL because phase mismatch increases for longer fibers. The obvious solution is to use a fiber

as short as possible. However, as the available amount of gain is a function ofγP1L, shortening of fiber

length must be accompanied with an increase in the value ofγP1 to maintain the same amount of gain. This

behavior is illustrated in Figure 3 where the gain bandwidth is shown to increase significantly when large

value ofγP1 are combined with shorter lengths of fiber. The solid curve obtained for the 250-m-long fiber

exhibits a 50-nm region on each side of the ZDWL over which the gain is nearly flat. Therefore, a simple

rule of thumb for single-pump FOPAs is to use as high pump power as possible together with a fiber with as

large a nonlinearity as possible. Sincen2 is fixed for silica fibers, the nonlinear parameterγ can be increased

only by reducing the effective core area. Such fibers have become available in recent years and are called

high-nonlinearity fibers (HNLFs) even though it is not the material nonlinearityn2 that is enhanced in such

fibers. Values ofγ > 10 W−1/km can be realized in such fibers. Photonic crystal fibers exhibiting high

values ofγ have also been used to build FOPAs [17]

HNLFs have been used to make FOPAs with a large bandwidth. In a 2001 experiment, a 200-nm gain

bandwidth was realized by employing Raman-assisted parametric amplification inside a 20-m-long HNLF

with γ = 18 W−1/km [18]. The required pump power (∼ 10 W) was large enough that signal was also

amplified by stimulated Raman scattering when its wavelength exceeded the pump wavelength. Recent

advances in designing microstructure fibers also make it possible to use short fiber lengths. A net peak gain

of 24.5 dB over a bandwidth of 20 nm has been realized inside a 12.5-m-long microstructure fiber with

γ = 24 W−1/km pumped by high-energy pulses [17]. In another 2003 experiment, a peak gain of 43 dB

with 85 nm bandwidth was obtained by pumping the FOPA with pulses at a repetition rate of 20 Gb/s [19].

However, a pulse-pumped FOPA requires either synchronization between the pump and signal pulses or

pumping at a repetition rate much higher than that of the signal.

Another scheme for mitigating the phase-matching problem manages fiber dispersion along the fiber

length, resulting in the so-called quasi-phase matching. This can be realized either through periodic disper-

sion compensation [20], [21] or by carefully arranging different sections of fiber with different dispersion

properties [22]. As quasi-phase matching can be maintained along a fairly long length, continuous-wave
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(CW) pumps can be used and still realize considerable amount of gain. Figure 4 shows the experimental

results for such a single-pump FOPA [23] where both the net signal gain and the net conversion efficiency

at the idler wavelength are shown at several pump-power levels. At a pump power of 31.8 dBm (about

1.5 W) at 1563 nm, the FOPA provided 49-dB peak gain. It was designed using a 500-m-long HNLF

(γ = 11 W−1/km) with low dispersion (dispersion slopeS= 0.03 ps/nm2/km). The fiber was composed of

three sections with ZDWLs (1556.8, 1560.3, 1561.2 nm, respectively).

With its high gain over a wide spectrum, FOPAs have many practical applications. Simultaneous amplifi-

cation of seven channels has been realized using a CW-pumped FOPA made of HNLF [24]. The experiment

showed that dominant degradation stems from gain saturation and FWM-induced crosstalk among channels.

FOPAs have also been used as a stable source of pulses at a high repetition rate (40 Gb/s) in long-haul

transmission [25]. In another experiment, a transform-limited Gaussian-shape pulse train could be gener-

ated at a 40-Gb/s repetition when a weak CW signal was amplified using a FOPA whose pump power was

sinusoidally modulated at 40 Gb/s [26].

As discussed earlier, all FOPAs generate the idler wave during signal amplification. Since the idler is a

phase-conjugated version of the signal, it carries all the information associated with a signal and thus can

be used for wavelength conversion. Indeed, FOPAs can act as highly efficient wavelength converters with a

wide bandwidth [3]. As early as 1998, peak conversion efficiency of 28 dB was realized over 40-nm band-

width (full width of the gain spectrum) using a pulsed pump [27]. More recently, transparent wavelength

conversion (conversion efficiency> 0 dB) over 24-nm bandwidth (entire pump tuning range) was realized

using a single-pump FOPA made with just 115 m of HNLF [28]. The ultrafast nature of nonlinear response

of FOPAs is also useful for many other applications such as optical time-division demultiplexing [29] and

optical sampling [30]. FOPAs can be used to mitigate noise associated with an input signal when operat-

ing in the saturation regime [31]. A similar scheme can be used for all-optical signal regeneration using a

higher-order idler [32], [33]. FOPAs can also work in the pump-depleted region and can transfer as much as

92% of the pump power to the signal and idler fields [34]. Such FOPAs can be used to realize CW-pumped

optical parametric oscillators with 30% internal conversion efficiency and a tuning range of 80 nm [35].

The performance of single-pump FOPAs is affected by several factors that must be considered during

the design of such devices. For example, although FOPAs benefit from an ultrafast nonlinear response of

silica, they also suffer from it because any fluctuations in the pump power are transferred to the signal and

idler fields. As a result, noise in FOPAs is dominated by transfer of relative intensity noise (RIN) associated

with the pump laser [3], [36]-[38]. Moreover, since the pump beam is typically amplified using one or two

erbium-doped fiber amplifiers (EDFAs) to achieve high powers necessary for pumping an FOPA, amplified
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spontaneous emission (ASE) from EDFAs can degrade the FOPA considerably. In fact, it is essential to

block such ASE noise using optical filters. A noise figure of 4.2 dB with a maximum gain of 27.2 dB [39]

and 3.7 dB with 17 dB gain [40] have been realized for parametric amplifiers. Similarly, a noise figure of

3.8 dB with 40 dB conversion efficiency has been reported for FOPA-based wavelength converters [41] by

blocking the ASE noise through narrow-band fiber Bragg gratings. Such values of noise figure are close to

the fundamental quantum limit of 3 dB [42].

The second factor that affects FOPAs is the nonlinear phenomenon of stimulated Brillouin scattering

(SBS). The SBS threshold is around 10 mW for long fibers (>10 km) and increases to∼0.1 W for fiber

lengths of 1 km or so [1]. Since FOPAs require pump-power levels approaching 1 W, a suitable technique

is needed that raises the threshold of SBS and suppresses it over the FOPA length. The techniques used

in practice include control of temperature distribution along the fiber length [28] and phase modulation of

the pump either at several fixed frequencies [23] or over a broad frequency range (using a pseudo-random

bit pattern) [41]. The later technique suppresses SBS by broadening the pump spectrum. Although the

amplified signal is affected little by spectral broadening of pump, unless group-velocity mismatch between

pump and signal is relatively large [43], idler is affected much more drastically. In fact, the spectrum of

idler can become twice as broad as the pump if the signal spectrum is narrow. This follows directly from the

energy conservation or Eq. (1). The broadening of idler is not of concern when FOPAs are used for signal

amplification but becomes a serious issue when they are used as wavelength converters. This problem can

be solved by modulating the phases of the signal or the pumps synchronously. These techniques will be

discussed in the following section.

The third issue associated with the single-pump FOPA is that its gain spectrum is not as uniform as

one would like. In practice, only the pump wavelength can be adjusted to optimize the gain spectrum. As

discussed before, the phase mismatchκ should be zero at the gain peak. However, Eq. (8) shows that it

is hard to maintain this phase-matching condition over a wide bandwidth in a single-pump FOPA. Since

∆β → 0 when the signal wavelength approaches the pump wavelength,κ → 2γP1. This value ofκ is quite

large and results in only a linear growth of gain (G = 1+ γP1L). The net result is that the signal gain is

considerably reduced in the vicinity of the pump wavelength, and the gain spectrum exhibits a dip. Figure 5

shows how variations in the phase mismatchκ affect the FOPA gain. Althoughκ can be close to zero in the

spectral region where the FOPA gain peaks, it changes over a large range within the whole gain spectrum.

The nonuniform gain of single-pump FOPAs is a consequence of suchκ variations. Although amplification

over a range as wide as 200 nm is possible, the gain spectrum remains highly nonuniform [18]. In practice,

the usable bandwidth is limited to a much smaller region of the whole gain bandwidth. This problem can
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be solved to some extent by manipulating fiber dispersion [20]–[22]. It is predicted theoretically that a

fairly flat gain spectrum is possible by using several fiber sections of suitable lengths and properly selecting

dispersive properties of these fiber sections [44], [45]. However, such a scheme is difficult to implement

in practice because dispersive properties of HNLFs are rarely known with sufficient precision. The current

practical solution is to make use of dual-pumped FOPAs discussed in the next section.

The fourth serious issue is the polarization dependence of the FOPA gain. The theoretical analysis in

this section is based on the assumption that all optical fields are linearly polarized initially and maintain

their state of polarization (SOP) during propagation inside the fiber. In practice, the SOP of the input signal

can be arbitrary. The FWM process is highly polarization dependent because it requires angular momentum

conservation among the four interacting photons [46]. Polarization-independent operation of single-pump

FOPAs can be realized by employing a polarization-diversity loop [47], [48]. In this approach, the pump

beam is split into its orthogonally polarized components with equal amount of powers, which counterprop-

agate inside a Sagnac loop. When the signal enter the loop, it is also split into its orthogonally polarized

components, each of which copropagates with the identically polarized pump. The two polarization com-

ponents of the signal are then recombined after the polarization-diversity loop. Such polarization-diversity

loops have been used for optical sampling at 80 Gb/s with a residual polarization dependence of only 0.7 dB

[49]. By using a polarization-maintaining HNLF inside such a loop, the wavelengths of 32 channels, each

operating at 10 Gb/s, were converted simultaneously with a polarization dependence of only 0.2 dB [50].

4 Dual-Pump Parametric Amplifiers

Dual-pump FOPAs employ the nondegenerate FWM process using two pumps with different frequencies

[51]. The properties of such FOPAs have been analyzed in recent years [4]–[6]. The most interesting aspect

is that they can provide relatively flat gain over a much wider bandwidth than that possible for single-pump

FOPAs. In the case of nondegenerate FWM, two distinct photon, one from each pump, are used to create

the signal and idler photons as shown in Eq. (1). The parametric gain coefficient in this case can be obtained

from the simple theory of Section 2 and is found to be [1]

g =
√

(2γ)2P1P2− (κ/2)2, (10)

where the phase mismatchκ = ∆β +γ(P1+P2) andP1 andP2 are the input pump powers, assumed to remain

undepleted.

Similar to the single-pump case, one can expand the linear phase mismatch∆β = β (ω3) + β (ω4)−

β (ω1)−β (ω2) in a Taylor series. A simple solution is to introduceωc = (ω1+ω2)/2 as the mean frequency
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of the two pumps andωd = (ω1−ω2)/2 as the half of their frequency difference, and expand∆β aroundωc

[52]:

∆β = 2
∞

∑
m=1

1
(2m)!

(
d2mβ

dω2m

)
ω=ωc

[
(ω3−ωc)2m−ω

2m
d

]
. (11)

This equation differs from Eq. (8) by the last term. Thisωd term contributes only when two pumps are

used and is independent of the signal and idler frequencies. This difference provides the main advantage

of dual-pump FOPAs over single-pump FOPAs as theωd term can be used to control the phase mismatch.

By properly choosing the pump wavelengths, it is possible to use this term for compensating the nonlinear

phase mismatchγ(P1 + P2) stemming from SPM and XPM. As a result, the total phase mismatchκ can

be maintained close to zero over a quite wide spectral range after the first term is made small by balancing

carefully different orders of fiber dispersion.

The most commonly used configuration of dual-pump FOPAs employs a relatively large wavelength

difference between the two pumps for realizing flat gain over a wide spectral range. This increases the

magnitude of theωd term so that linear phase mismatch is large enough to compensate for nonlinear phase

mismatch. At the same time, the mean frequency of the two pumpsωc is set close to the ZDWL of the

fiber so that the linear phase mismatch in Eq. (11) is kept constant over a broad range ofω3. Therefore, to

achieve a fairly wide phase matching range, the two pump wavelengths should be located on the opposite

sides of the ZDWL in a symmetric fashion, but should be reasonably far from it [4]. Figure 5 shows how

κ can be reduced to zero over a wide wavelength range using such a scheme, resulting in a flat broadband

gain spectrum. Comparing the single-pump and dual-pump cases, it can be seen that although single-pump

FOPAs may provide nonuniform gain over a wider bandwidth under certain conditions, the dual-pump FOPA

provide much more uniform in general.

The preceding discussion is based on the assumption that only the nondegenerate FWM process con-

tributes to FOPA gain. However, the situation is much more complicated for dual-pump FOPAs because the

degenerate FWM process associated with each intense pump always occurs simultaneously with the non-

degenerate one. In fact, it turns out that the combination of degenerate and nondegenerate FWM processes

can create eight other idler fields besides the one at the frequencyω4 [2]. Only four among these idlers,

say at frequenciesω5, ω6, ω7, andω8, are significantly relevant for describing the gain spectrum of FOPA

because they are related to the signal frequency through the relations:

2ω1 → ω3 +ω5, 2ω2 → ω3 +ω6, (12)

ω1 +ω3 → ω2 +ω7, ω2 +ω3 → ω1 +ω8. (13)
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Although these degenerate and nondegenerate FWM processes look as simple as Eq. (1) at the first glance,

they do not occur independently because energy conversion is also maintained among the following pro-

cesses:

2ω1 → ω4 +ω7, 2ω2 → ω4 +ω8, (14)

ω1 +ω2 → ω5 +ω8, ω1 +ω2 → ω6 +ω7, (15)

ω1 +ω4 → ω2 +ω5, ω1 +ω6 → ω2 +ω4. (16)

All of these processes involve at least two photons from one or both intense pumps and will occur in the

same order as the process in Eq (1) as long as their phase matching conditions are satisfied. As a result,

a complete description of the FWM processes inside dual-pump FOPA becomes quite complicated [4].

Fortunately, a detailed analysis shows that the phase matching conditions associated with these processes

are quite different. When the two pumps are located symmetrically far from the ZDWL of the fiber, the

ten FWM processes shown in Eqs. (12)–(16) can only occur when the signal is in the vicinity of the two

pumps. Thus, they leave unaffected the central flat part of the parametric gain spectrum resulting from the

the process shown in Eq. (1), which is mainly used in practice. Figure 6 compares the FOPA gain spectrum

obtained numerically using a complete analysis that includes all five idlers model (Solid curve) with that

obtained using the sole nondegenerate FWM process of Eq. (1). It can be seen clearly that the flat portion

of the gain spectrum has its origin in the single FWM process of Eq. (1). Other 10 processes only affect the

edges of gain spectrum and reduce the gain bandwidth by 10–20%. We thus conclude that a model based on

Eq. (1) is sufficient to describe the performance of dual-pump FOPAs as long as the central flat gain region

is used experimentally.

Dual-pump FOPAs provide several degrees of freedom to realize a flat gain spectrum using just a single

piece of fiber. By symmetrically assigning the two pumps on the opposite side of the ZDWL, a flat spectrum

with high gain value has been obtained [53]. Since the two pumps are at the edge of the gain spectrum,

pump blocking is no longer necessary, unlike the case of single-pump FOPAs. Moreover, as the pump

power is distributed over two lasers in a dual pump FOPA, the required launched power for each pump

laser is only half of that of the single-pump case. Figure 7 shows the data obtained in a recent experiment

[54]. By using two pumps with powers of 600 mW at 1559 nm and 200 mW at 1610 nm, a gain of more

than 40-dB over a 33.8-nm bandwidth was obtained inside a 1-km-long HNLF for whichγ = 17 W−1/km,

ZDWL = 1583.5 nm,β3 = 0.055 ps3/km andβ4 = 2.35×10−4 ps4/km. The solid curve shows the theoretical

prediction.

Although phase modulation of the pumps is still necessary to suppress SBS, spectral broadening of the
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idler is no longer a problem when the phases of signal or two pumps can be manipulated such that a specific

idler is not broadened, depending on which idler is used for wavelength conversion. Ifω4 in Eq. (1) is used

for wavelength conversion, the two pumps should be modulated out of phase [55] or using binary phase shift

keying two pump phases can be altered in phase byπ [56]. However, ifω7 or ω8 in Eq. (13) is used, the two

pumps should be modulated in phase [57]. In the case of single pump FOPA, idler spectrum broadening can

also be eliminated by modulating the signal phase at a rate twice of that used for modulating the pump phase

[58], [59]. When counterphase modulation is used, higher-order idler generation in a dual-pump FOPA is

shown to provide optical regeneration with a high extinction ratio and without spectral broadening [60].

Similar to the single-pump case, the gain in Dual-pump FOPAs is also strongly polarization dependent

if no precaution is taken to mitigate the polarization effects [6], [46], [61]. Apart from the polarization-

diversity loop used for single-pump FOPAs, polarization independent operation of a dual-pump FOPA can

also be realized by using orthogonally polarized pumps [46], [56], [62]-[65]. When the two pumps are

linearly but orthogonally polarized, the nondegenerate FWM process becomes completely polarization in-

dependent. In one experiment, a small polarization-dependent gain (PDG) of only 1 dB was observed when

the signal was amplified by 15 dB over 20-nm bandwidth [65].

A practical issue associated with dual-pump FOPA is the Raman-induced power transfer between the

two pumps. As shown in Eq. (4), the FWM efficiencyξ is proportional to
√

P1P2 for a nondegenerate process

and is maximized when the two pump powers are the same (P1 = P2). However, as the two pumps are far

from each other but still within the bandwidth of the Raman-gain spectrum, stimulated Raman scattering

can transfer energy from the pump of high frequency to that of low frequency. Since the two pumps cannot

maintain equality in their powers along the fiber, a significant reduction occurs in the FWM efficiency even

though the total power of the two pumps remains constant. To reduce this effect, the power of high-frequency

pump is chosen to be higher than that of the low-frequency pump at the input end of the fiber. With this

scheme, the two pump can maintain their powers close to each other over most of the fiber. Although

Raman-induced pump power transfer reduces the FOPA gain by a considerable amount, it does not affect

the shape of the gain spectrum since phase matching depends on the total power of the two pumps which is

conserved inside FOPA as long as the two pumps are not depleted too much.

5 Fluctuations of Zero-Dispersion Wavelength

In the preceding sections, the fiber used to make an FOPA was assumed to be free from any fluctuations in

its material properties. However, it is difficult to realize such ideal conditions. In practice, optical waves
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in a realistic fiber undergo random perturbations originating from imperfections in the fiber. Two such

imperfections are related to random variations along the fiber length in the ZDWL and residual birefringence,

both of which originate partly from random changes in the core shape and size. In this section, we focus

on ZDWL variations and consider the effects of residual birefringence in the next section. As dual-pump

FOPAs provide much flatter gain spectra and are more likely to be used for telecommunication applications,

we consider such FOPAs but limit our attention to the sole nondegenerate FWM process given in Eq. (1).

As pointed out in the last section, this process is sufficient to describe the main flat portion of FOPA gain as

long as the two pumps are located far from each other.

As seen clearly in Fig. 2, FOPA gain spectrum is extremely sensitive to dispersion parameters of the

fiber. Changes in the ZDWL by as small as 0.05 nm change the gain spectrum considerably. Broad and flat

gain spectra for dual-pump FOPAs were obtained in Section 4 by assuming that the dispersion characteristics

of the fiber do not change along the fiber. However, this is not the case in reality. Fluctuations in the core

shape and size along the fiber length make the ZDWL of the fiber to change randomly. As such perturbations

typically occur during the drawing process, they are expected to have a small correlation length (∼ 1 m).

Long-term variations may also cause the ZDWL to vary over length scales comparable to fiber lengths used

for FOPAs [66]. In general, ZDWL fluctuates only by a few nanometers, and the standard deviation of such

fluctuations is a small fraction (<0.1%) of the mean ZDWL of the fiber.

In the presence of random ZDWL variations along the fiber, the growth of signal and idler waves is still

governed by Eqs. (2) and (3) but the linear phase mismatch∆β becomes a random function ofz. As discussed

before, considerable amount of linear phase mismatch should be maintained over the main portion of the

bandwidth to optimize and flatten the FOPA gain spectrum. Since the contribution of ZDWL fluctuations

δλ0 is much smaller than the average value of linear phase mismatch, we can expand∆β in a Taylor series

to the first order as

∆β ≈ K1 +K2δλ0, (17)

whereK1 = 〈∆β 〉 is the average value andK2 can be obtained from Eq. (8) or (11). The random variableδλ0

can be modelled as a Gaussian stochastic process. If the correlation lengthlc of ZDWL fluctuations is much

smaller than the fiber length used for FOPA, the first order and second order moments ofδλ0 are given by

〈δλ0〉= 0, 〈δλ0(z)δλ0(z′)〉= D2
λ

δ (z−z′), (18)

where the diffusion coefficientDλ is related to the standard deviationσλ of ZDWL fluctuations and their

correlation lengthlc asD2
λ

= σ2
λ
lc.

The main question is how the gain spectrum is affected by ZDWL fluctuations. It turns out that the
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average value of signal or idler power can be found analytically [67]. After averaging Eqs. (2) and (3)

over random ZDWL fluctuations [68], the evolution of the average signal/idler power is governed by the

following three equations:

d〈S0〉
dz

= −2ξ 〈S3〉, (19)

d〈S2〉
dz

= −1
2

D2
λ
K2

2〈S2〉+κa〈S3〉, (20)

d〈S3〉
dz

= −2ξ 〈S0〉−
1
2

D2
λ
K2

2〈S3〉−κa〈S2〉, (21)

whereκa = K1+γ(P1+P2) is the average phase-mismatch parameter,S0(z) = P3(z)+P4(z) = 2P3(z)−P3(0)

represents the sum of signal and idler powers and the auxiliary variablesS2 andS3 are introduced using

S2− iS3 = 2B3B4. By solving Eqs. (19)–(21), we obtain the average gain spectrumGav = 〈P3(L)〉/P3(0)

under the impact of ZDWL fluctuations, and it can be written as

Gav =
1
2

[
3

∑
i=1

(4g2 +a jak)eaiL

(ai −a j)(ai −ak)
+1

]
, (22)

wherei 6= j 6= k andai are the roots of the cubic polynomiala3 + 4(Dλ K2)2a2 +(4D4
λ
K4

2 + κ2
a −4ξ 2)a−

8(Dλ K2ξ )2.

The solid curves in Fig. 8 shows the average gain spectrum obtained using Eq. (22) for a FOPA operating

under the conditions of Fig. 6 usingσλ = 1 nm andlc = 5 and 50 m. The dashed curves show for comparison

the results obtained numerically by solving the stochastic equations (2) and (3) and averaging over 100

random realizations. Clearly, the agreement is quite good. However, the analytical theory becomes less

accurate for larger correlation lengths. All of these curves should be compared with the dotted flat curve

obtained in the case of a constant value of ZDWL. Clearly, ZDWL fluctuations are detrimental for FOPAs as

they affect mainly the flat portion of the gain spectrum. As discussed in the preceding section, the flat-gain

region is obtained by carefully optimizing the linear phase mismatch∆β so that it compensates the nonlinear

part and results in the total phase mismatchκ ≈ 0 over a fairly broad spectral range. Thus, it is not surprising

that ZDWL fluctuations deteriorate mainly the flat portion of FOPA gain spectrum. Figure 8 shows that

ZDWL variations of even±1 nm eliminate the flat portion of the gain spectrum and produce two narrow

peaks in the vicinity of each pump wavelength because ZDWL fluctuations do not affect the gain around the

two pumps. The analytical result agrees well with numerical simulation when the ZDWL correlation length

is much shorter than the total fiber length but begins to deviate when the two are comparable. In the later

case, analytical theory overestimates the degradation caused by random ZDWL variations.

The gain spectra shown in Fig. 8 do not show the spectrum expected for a specific FOPA but rather

represent an ensemble average. In practice, the gain spectrum will vary over a wide range for an ensemble
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of FOPAs that are otherwise identical. Figure 9(a) shows the individual gain spectra for 100 realizations

obtained numerically by solving the stochastic equations (2) and (3). The parameters are identical to those

used for the solid curves in Fig. 8 withlc = 5 m that represents the average of these 100 spectra. It is

evident that amplified signal can fluctuate over a wide range for different members of the ensemble even

whenσλ = 1 nm. The important question is how one can design FOPAs that can tolerate ZDWL variations

∼1 nm? The answer turns out to be that the wavelength separation between the two pumps should be

reduced significantly so that the second term in Eq. (11) does not play a major role. Of course, the whole

gain spectrum is then much narrower, and the FOPA bandwidth is significantly reduced. However, this

reduced-bandwidth gain spectrum is much more tolerant of ZDWL fluctuations. This is evident in Fig. 9(b)

obtained under conditions identical to those of Fig. 9(a) except that the two pump wavelengths are separated

by 50 nm rather than 98 nm. The innermost curves in Fig. 8 shows the average spectrum in this case.

Flatness of the average gain spectrum is nearly maintained under such conditions but the spectrum is much

narrower.

Comparing Figs. 9(a) and 9(b) and their averages given in Fig. 8, it is clear that smaller the fluctuations

in the gain spectra, the flatter is the average gain spectrum. In the presence of ZDWL fluctuations, gain is

not changed close to pump wavelengths, and at the center of the spectrum gain can only be lower than the

no-fluctuation case. As a result, if one can adjust the pump wavelengths so that the average gain spectrum

given by Eq. (22) is flat and close to the maximum available gain, i.e, closer to the dotted curve in Fig. 8,

the fluctuations in the gain spectra should be minimum. In order to quantify the flatness of the average gain

spectrum we define a “degree of flatness” asF = Gmin/GmaxwhereGmin andGmaxare the minimum and the

maximum values of the average gain between the two pump wavelengths. Figure 10 shows how the degree

of flatness changes as a function of pump wavelength separation for several values ofσλ . The parameters

used for Fig 10 are the same as the ones used for Fig. 9(b). The main conclusion of is that by reducing the

pump separation it is possible to make the gain spectrum insensitive to ZDWL fluctuations (at the expense of

a narrow gain bandwidth). The larger the fluctuations the narrower must be the pump wavelength separation.

We conclude this section by emphasizing that ZDWL fluctuations will limit in practice the usable bandwidth

of a FOPA.

6 Effect of Residual Fiber Birefringence

Most fibers exhibit residual birefringence that fluctuates randomly along the fiber length. Such birefrin-

gence fluctuations induce polarization-mode dispersion (PMD) and randomize the SOP of any optical wave
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propagating through the fiber [69, 70]. They change the relative orientation of the four waves, affect the

angular-momentum conservation among the four photons during the FWM process, and thus seriously de-

grade the performance of FOPAs [6], [71], [72]. Because, the nonlinear processes contributing to parametric

amplification depend on the SOPs of the fields, a vector theory of FWM is needed. In this section we present

such a theory and discuss its impact on FOPA performance.

Adopting the Jones-vector notation for vector fields used in Ref. [69], the four equations governing the

propagation of two pumps, signal and idler in presence of randomly fluctuating birefringence can be written

as follows [73]

∂ |A1〉
∂z

= (b0σ1 +β1)|A1〉+
iγ
3

(
|A∗1〉〈A∗1|+2|A2〉〈A2|+2|A∗2〉〈A∗2|

)
|A1〉, (23)

∂ |A2〉
∂z

= [b0σ1 +b1(ω2−ω1)σ1 +β2]|A2〉+
iγ
3

(
|A∗2〉〈A∗2|+2|A1〉〈A1|+2|A∗1〉〈A∗1|

)
|A2〉, (24)

∂ |A3〉
∂z

= [b0σ1 +b1(ω3−ω1)σ1 +β3]|A3〉+
2iγ
3

[ 2

∑
j=1

(
|A j〉〈A j |+ |A∗j 〉〈A∗j |

)]
|A3〉

+
2iγ
3

(
|A1〉〈A∗2|+ |A2〉〈A∗1|+ 〈A∗1|A2〉

)
|A∗4〉, (25)

∂ |A4〉
∂z

= [b0σ1 +b1(ω4−ω1)σ1 +β4]|A4〉+
2iγ
3

[ 2

∑
j=1

(
|A j〉〈A j |+ |A∗j 〉〈A∗j |

)]
|A4〉

+
2iγ
3

(
|A1〉〈A∗2|+ |A2〉〈A∗1|+ 〈A∗1|A2〉

)
|A∗3〉, (26)

where|A j〉 ( j = 1 to 4) represents the Jones vector apart from a constant phase factor that depends on the

total pump power andσ1 is one of the 2× 2 diagonal Pauli matrix with elements 1 and−1. The effects

of residual birefringence are included through two random variablesb0 andb1. They are defined using the

Taylor expansionb(ω) ≈ b0 + b1(ω −ω1), whereb(ω) = ωδn(ω)/c andδn(ω) denotes refractive-index

fluctuations. The vector equations for the case of single pump can be deduced from these equations after

minor modifications [74].

It is clear from Eqs. (23)–(26) that in the absence ofb1, all the fields will change their SOP in the same

way. These equations are written using first pump as a reference. As a result, other three fields change

their SOPs around the first pump at a rate given by the frequency differenceω j −ω1, where j = 2, 3, or 4.

The random variableb1 is also responsible for difference in the group velocity between pulses of different

polarization and leads to PMD. In fact, the variance ofb1 is related to the PMD parameterDp through the

expression〈b2
1〉 = D2

p/lc [75], wherelc is the correlation length over whichb0 andb1 change. Bothb0 and

b1 obey Gaussian statistics with zero mean.

Similar to the case of ZDWL fluctuations, one can use the stochastic equations (23)–(26) to calculate

the average gain spectrum in the presence of PMD. In the case of single-pump FOPA, the average can be
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performed analytically [74]. Figure 11 shows the analytic results (solid curves) and compares them with the

direct numerical simulations (dashed curves) forDp = 0.05 and 0.15 ps/
√

km. The dotted curve represents

the expected gain in the absence of birefringence fluctuations. It is evident that random fluctuations of bire-

fringence severely impact the FOPA gain spectrum. Random variablesb0 andb1 affect the FOPA through

two different mechanisms. Whileb0 rotates the SOP of all four fields in the same manner and thus reduces

the available average gain roughly by the same amount at all frequencies,b1 causes pump and signal SOPs

to drift from each other at a rate that depends on their frequency difference.

It is useful to define a diffusion lengthLd asLd = 3/(Dp∆ω)2; it quantifies the length scale over which

two fields that has same SOPs initially develop random SOPs with respect to each other [76]. WhenLd is

much larger than the total fiber length, effects ofb1 are negligible. In a typical fiber,b0 changes the SOP

of fields over a length scale of 10 m. Because such changes take place over a much shorter scale than the

nonlinear length and are same for all the fields, Eqs. (23)–(26) can be averaged overb0. The main effect

of b0 is that the nonlinear parameterγ is reduced by a factor of 8/9. Since the efficiency of both FWM

and XPM is reduced, the gain is lowered at the peaks from 28 to 24.5 dB but by only 1 dB in the central

region. In Figure 11, the gain curve forDp = 0.05 ps/
√

km follows very closely this prediction. This is

not surprising becauseLd = 2.1 km for this low value ofDp is comparable to the total fiber length of 2 km

even for as large as 30 nm separation between pump and signal. However,Ld is reduced to 0.24 km when

Dp = 0.15 ps/
√

km, and the effects ofb1 takes over. As seen in Fig. 11, the gain is reduced by more than

10 dB and the spectrum is distorted considerably.

In the case of dual-pump FOPAs, the complexity of Eqs. (23-26) hinders an analytic treatment. For this

reason, we solve these equations numerically for three different values ofDp. Figure 12 shows fluctuations in

gain forDp = 0.1 ps/
√

km for 50 different realizations of random birefringence. Note that the birefringence

parameters can change with time for a given fiber on a time scale ranging from seconds to hours. For this

reason, gain fluctuations seen in Fig. 12 can also be viewed as fluctuations with time for a given FOPA. The

average gain obtained from 50 realizations is shown in Figure 13 for three different values ofDp. The ideal

case of isotropic fiber is also shown for comparison as a solid curve. Similar to the case of single-pump

FOPA, the effect ofb0 is just to reduce the nonlinear coefficientγ by a factor 8/9 [75]. For the parameters

used in Fig. 13, the lower value ofγ reduces the peak gain from 37 to 33 dB but keeps the spectrum flat.

The central dip seen in Fig. 13 results fromb1. The reason behind this dip can be understood as follows.

When the signal frequency is close to one of the pumps, that pump provides the dominant contribution.

However, as signal frequency moves towards the center of spectrum, neither of the two pumps remains

oriented parallel to the signal, and the gain is reduced.
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As discussed earlier, it is important that FOPAs provide gain that does not depend on the SOP of the

input signal, and two methods are commonly used for this purpose. However, the random residual birefrin-

gence prevents these methods from working perfectly. The polarization-diversity method relies critically

on the assumption that the signal and pump maintain their identical SOPs throughout the fiber. The sec-

ond method utilizes orthogonal pumps and works only under the assumption that the pumps maintain their

orthogonal SOPs throughout the fiber. It was already noted that fields with different frequencies change

their SOP at different rates in the presence of PMD. It is thus evident that both of these schemes will intro-

duce polarization-dependent gain (PDG). This was also observed experimentally when second method was

implemented [72].

To illustrate the performance of the second method in the presence of PMD, we have performed nu-

merical simulations using two pumps with linear but orthogonal SOPs initially. For each realization, signal

is launched at an angle ofθ = 0, 45 and 900 from the pump at the shorter wavelength. Figure 14 shows

the results for a PMD parameterDp = 0.1 ps/
√

km. The expected gain curve in the absence of PMD is

also shown as a dotted curve. For certain signal wavelengths, PDG can be as large as 12 dB, where PDG

is defined as the difference between the maximum and minimum gain as the signal SOP is changed. PDG

increases as the signal wavelength gets closer to either of the pumps. The same behavior was also observed

in a 2003 experiment [72]. In physical terms, the reason why the largest PDG occurs for a signal close to

pump wavelength can be understood as follows. If the signal has a wavelength close to one pump, their

relative orientation does not change along the fiber but it decorrelates with the other pump rapidly because

they are at the different edges of the spectrum. As a result, whatever the initial polarization of the second

pump, the signal can only sense its average effect. However, because it keeps its relative orientation with the

first pump, the signal experiences the highest or smallest gain depending on if it was initially parallel or or-

thogonal to the first pump. The reason why the overall gain is smallest in the case of isotropic fiber is that the

FWM efficiency is the smallest when the pumps are orthogonal. PMD can make the pumps non-orthogonal

(and even parallel occasionally) and hence, increases the gain.

7 Summary

In this review on FOPAs we have focused on some of the recent advances that have advanced considerably

the state of the art for parametric amplifiers. The well-known simple theory behind the nonlinear phe-

nomenon of FWM was discussed first to provide the background material. It was then used to discuss the

performance of single-pump FOPAs and reveal the important role played by the nonlinear contribution to the
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phase-matching condition. The same scalar theory was used to discuss the more general case of dual-pump

FOPAs and show that the gain spectrum in such amplifiers results from several degenerate and nondegener-

ate FWM processes. However, it turns out that only a single nondegenerate process dominates in the case

of FOPAs pumped at two wavelengths relatively far apart from each other and located on opposite sides of

the ZDWL. We discuss the design of such FOPAs and show how they can be designed to provide a gain

spectrum that is relatively uniform over a bandwidth larger than 100 nm.

The experiments on dual-pump FOPAs have shown that flat gain over a bandwidth of 40 nm or so can

be realized in practice. To resolve this discrepancy between the theoretical and experimental results, we

study impact of two unavoidable phenomena that affect the performance of all FOPA-based devices. First,

the ZDWL of a fiber can vary along its length in a random fashion owing to core-diameter variations that

occur invariably during fiber manufacturing. We show that ZDWL fluctuations as small as±1 nm degrade

severely the gain spectrum of FOPAs because they mainly affect its central flat part. This degradation can be

avoided to a large extent by moving pump wavelengths closer so that they are separated by about 40 to 50 nm

instead of 100 nm or more. This appears to be the main reason why experiments have realized flat gain only

over 40 nm or so. Second, birefringence fluctuations that occur in all practical fibers and lead to PMD also

affect the gain spectrum of FOPAs. Their inclusion requires the development of a vector theory based on

the Jones-matrix formalism that can also be related to the rotation of the SOP of each optical field on the

Poincaŕe sphere. We discuss how PMD affects the gain spectrum and make the FOPA gain polarization

dependent even when orthogonally polarized pumps are used.
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Figure Captions

1. Parametric gain for a single-pump FOPA as a function of linear phase mismatch at three pump powers

P0 for a fiber withγ = 10 W−1/km.

2. Gain spectra for a single-pump FOPA for several values of pump detuning∆λp = λp−λ0 from the

ZDWL λ0. The parameters used areγ = 2 W−1/km, P1 = 0.5 W, L = 2.5 km, β3 = 0.1 ps3/km, and

β4 = 10−4 ps4/km.

3. Gain spectra for single-pump FOPAs of three different lengths. The productγP1L = 6 is kept constant

for all curves. Other parameters are the same as those used for Figure 2.

4. (a) Measured signal gain and (b) idler conversion efficiency for a single-pump FOPA at several pump

powers. Solid curves show the theoretically expected results. (Adapted from Ref. [23])

5. Optimized gain spectra for single-pump and dual-pump FOPAs and corresponding phase-mismatch

κ. Same amount of total pump power was used in both cases.

6. Gain spectra for a dual-pump FOPA including the contribution of all idlers (solid curve). The dotted

curve shows gain spectrum when only a single idler corresponding to the dominant nondegenerate

FWM process is included. The parameters used areL = 0.5 km, γ = 10 W−1/km, P1 = 0.5 W,

P2 = 0.5 W,β3 = 0.1 ps3/km,β4 = 10−4 ps4/km,λ1 = 1502.6 nm,λ2 = 1600.6 nm, andλ0 = 1550 nm.

7. Measured (diamonds) and calculated (solid) gain spectrum as a function of signal wavelength for a

dual-pump FOPA.

8. Average gain spectra for a dual-pump FOPA in which ZDWL varies randomly along the fiber with

a standard deviation of 1 nm forlc = 5 and 50 m. In each case, analytical and numerical results are

compared. The thin solid curve shows the gain in the absence of fluctuations. The innermost curve

shows the results forlc = 5 m when pumps are spaced apart by only 50 nm. All other parameters are

identical to those used for Fig. 6.

9. Changes expected in the gain spectra from fiber to fiber because of ZDWL fluctuations (σλ = 1 nm

andlc = 5 m) when pump spacing is 98 nm (top) or 50 nm (bottom). All other parameters are identical

to those used for Fig. 6.

10. Degree of flatness plotted as a function of separation between pump wavelengths for several values of

σλ .
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11. Average gain spectrum for a single-pump FOPA for two values of the PMD parameterDp. Solid and

dashed curves compare the analytical and numerical results. Dotted curve shows the no-PMD case.

Parameters values used areγ = 2 W−1/km, L = 2 km, λ0 = 1550 nm,β3 = 0.1 ps3/km, β4 = 10−4

ps4/km, andP1 = 1 W.

12. Changes in gain spectra with birefringence fluctuations for a dual-pump FOPA forDp = 0.1 ps/
√

km.

Other parameters are same as used in Fig. 6. Both pumps and the signal have the same SOP initially.

13. Average gain spectra for a dual-pump FOPA for three values of the PMD parameter with the same

parameter values used in Fig. 6. Solid curve shows for comparison the no-PMD case.

14. Average gain versus signal wavelength for three different initial linear SOP of the signal whenDp =

0.1 ps/
√

km; θ represents the angle between the linear SOPs of signal and the shorter-wavelength

pump. The other pump is orthogonally polarized. Dotted curve shows for comparison the no-PMD

case.
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Figure 4 of Yaman et al.
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Figure 5 of Yaman et al.
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Figure 6 of Yaman et al.
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Figure 9 of Yaman et al.
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Figure 10 of Yaman et al.
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