April 15, 2005 / Vol. 30, No. 8 / OPTICS LETTERS 821

Intrapulse depolarization in optical fibers: a
classical analog of spin decoherence
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We show that the combination of cross-phase modulation and polarization-mode dispersion inside optical
fibers leads to a novel phenomenon of intrapulse depolarization manifested as different random states of
polarization across the pulse profile. Such polarization evolution of optical pulses is directly analogous to the
phenomenon of spin decoherence in semiconductors or pseudospin relaxation in atoms. © 2005 Optical So-

ciety of America
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Some physical systems, although quite different in
their origins, can exhibit the same dynamic behavior.
A well-known example is the similarity between the
spin precession of an electron in a magnetic field'”
and the 1nteract10n of a two-level atom with an opti-
cal field.>® An electron in a superposition state
of Zeeman sublevels precesses its spin at a Larmor
frequency untll environmental factors induce
decoherence.’™ In the case of a two-level atom (mod-
eled as a pseudospin) an optical field induces Rabi os-
cillations of the atomic dipole, while vacuum or laser
fluctuations or atomic collisions relax the pseudospin
motion.>® Spin and pseudospin decoherence is con-
sidered to be a universal phenomenon associated
with two-level quantum systems. Here we show that
it has a classical analog in the polarization evolution
of an optical pulse propagating inside a fiber in the
presence of both polarization-mode dispersion (PMD)
and cross-phase modulation (XPM). The combined ef-
fect of these two mechanisms leads to a novel phe-
nomenon of intrapulse depolarization in a fashion
analogous to spin decoherence in quantum systems.
To illustrate the underlying physics as simply as
possible, we consider a pump-probe configuration
with two copropagating waves at frequencies , and
w;. The pump wave has a peak power much higher
than the probe (called signal from now on), such that
it modulates the phases of both waves through self-
phase modulation and XPM, but those induced by the
signal are assumed to be negligible. Considering the
third-order instantaneous nonlinear response of
silica glass, we obtain the following vector equations
governing wave propagation inside an optical fiber”:
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where |A,) and |A,) are the Jones vectors for the
pump and the signal,® respectively, & describes the
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group-velocity mismatch (GVM) between them; vy is
the nonhnear parameter; and o is the Pauli spin
vector.® We ignored the group-velocity dispersion as-
suming that pulses are relatively wide and experi-
ence little broadening. We also neglected PMD-
induced differential group delay within each wave
because it is negligible for the fiber lengths consid-
ered here (a few kilometers).

Vector B represents random birefringence. It in-
duces fast variations in the state of polarization
(SOP) on a length scale related to birefringence cor-
relation length [, (~10 m),’ typically much shorter
than the length over which the nonlinear effects oc-
cur (~1 km for a modest peak power). As a result,
rapid SOP variations average over the nonlinear ef-
fects and lead to_a polarization-independent self-
phase modulation.” After a rotating frame in which
the pump SOP does not change is chosen, Eqgs. (1)
and (2) reduce to’
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where y,=8y/9, Q=w;-w,, P=(A,|A,) is the pump
power, and unit vector p=(A,|o|A,)/P represents the
pump SOP on the Poincaré sphere.®

Random birefringence enters through vector b(z),
related to B(z) by a rotation in the Stokes space. Be-
cause fiber length and nonlinear length are both typi-
cally much longer than birefringence correlation
length [., the situation we encounter here corre-
sponds to the motional narrowing regime of spin
relaxation.™® As a result, we can model b as a three-
dimensional Markovian process whose first- and
second-order moments are given by b(z)=0 and

b(zl)b(ZQ)=(D12,/3)f5(z2—21), where the overbar de-
notes an average over birefringence fluctuations, Tis
the third-order unit tensor, and D,=(l.[b[>)"? is the
PMD parameter of the fiber.

Equations (3) and (4) show that P(z,7)=P(0, - 6z),
but signal power profile S(z,7)=(A,|A)=S(0,7).
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However, the signal SOP changes in a random fash-
ion. To consider polarization effects for the signal, we
convert Eq. (4) into Stokes space by introducing a
unit Stokes vector as §=(A/|0]A,)/S. From Eq. (4),

3(z,7) is found to satisfy

/32 = (b — v,Pp) X 8. (5)

The pump pulse changes the signal SOP through
XPM-induced nonlinear polarization rotation,
whereas PMD perturbs it randomly at a rate dictated
by the magnitude of Qb.

Equation (5) is isomorphic to the Bloch eqluatlon
governing the motion of spin density in a solid.”™ The
pump acts like a static magnetic field, and perturba-
tions induced by PMD correspond to a fluctuating
magnetic field induced by nuclei or phonons. Clearly
the signal polarization would evolve along the fiber
statistically in a fashion similar to the phenomenon
of spin decoherence in time. This can be seen clearl ly
when Eq. (5) is averaged over random b to obtain™

%/ ﬁz——ns v.Pp X §, where 7 is the polarization re-
laxation rate related to PMD diffusion length L; as
n=1/L,;=(D,0)?/3. Statistically, PMD causes signal
polarization to relax along the fiber. However, XPM
forces signal polarization to precess around pump
Stokes vector p with a Larmor frequency of

v.P. The global SOP of the signal, S(z)
o [*2(A | olAyd T/ [T7{A|Ag)dT, would evolve analo-
gous to macroscopic magnetization in semiconduc-
tors.

There is one crucial difference between quantum
spin dynamics and classical pulse propagation. In a
quantum system, spin flipping requires energy dissi-
pation, resulting in different longitudinal and trans-
versal relaxation times, and electrons relax eventu-
ally to a thermal equ111br1um among the Zeeman
sublevels.'™ However, no such levels exist in a clas-
sical system, and PMD-induced polarization relax-
ation is uniform in three dimensions of the Stokes
space. The signal SOP is completely randomized on
the Poincaré sphere after a sufficiently long distance.
In the absence of a pump, PMD changes the signal
SOP randomly but uniformly across the entire signal
pulse, resulting in no intrapulse decoherence. Simi-
larly, in the absence of PMD, a pump pulse induces
inhomogeneous but coherent polarization precession
across the signal pulse, again creating no intrapulse
decoherence. However, the combination of XPM and
PMD produces a new effect that we refer to as intra-
pulse depolarization (IPD).

IPD can be quantified by the relative orientation of
the signal SOPs at two different times. Defining §;
=5(z, ) and S9=5(z,79), we introduce a scalar aver-
aged quantity d=§,-8, as the IPD coefficient. Note
that $; and §, evolve according to Eq. (5) with differ-
ent pump powers. Even though they are defined in a
relative rotating frame, d is invariant to such a glo-
bal polarlzatlon rotatlon Averaging over the random
b1refr1ngence 1% we obtain the following equations
governing the evolution of the IPD coefficient:

odloz = v,P_U, (6)
oU/l9z = - nU + v,P_(V -d), (7)
WVloz=—39V + 1d, (8)

where P_=P(z,7)-P(z,7), and U and V were intro-
duced as U=p- (81X 8y) and V=p-(889)p.

To show how d(z, 7, ) changes along the fiber, we
consider first the case of a signal pulse much wider
than the pump pulse and neglect GVM for simplicity
(6=0, corresponding to choosing wavelengths of two
waves symmetrically around the zero-dispersion
wavelength A(). Time 7 is set outside the pump pulse
(no XPM), but 75 is set at the peak of the pump pulse
where XPM is maximum. Figure 1 shows d as a func-
tion of ¢=z/L,, for three values of the ratio u=L,/L,,
where the nonlinear length is defined as L,
=(y,P,)~! and P, is the peak power of the pump pulse.
The ratio u plays an important role as it governs the
relative length scales of the PMD and XPM pro-
cesses. Numerical simulations based on Egs. (1) and
(2) are also presented in Fig. 1. Simulations were car-
ried out for a 5-km-long fiber with y=2 W~1/km, D,
=02 ps/(km)”2, [,=10m, \y=1550 nm, and ,6’3
=0.1 ps®/km. For completeness, group-velocity dis-
persion, which as well as GVM can be obtained from
B3, was indeed included in the simulations. The fiber
is divided into 10-m-long sections with birefringence
varying randomly from section to section. The
FWHM of the Gaussian pump pulse is 166.5 ps. Sta-
tistical averages are computed with 1000 realiza-
tions. The good agreement justifies the use of a
simple model based on Eqgs. (6)—(8).

If the pump and signal are copolarized at the input
end (solid curves), a situation that corresponds to the
Faraday geometry in the spin analogy,3 little nonlin-
ear precession of SOP occurs. When L;>L, (u<1),d
decays slowly along the fiber as PMD effects occur
over a length scale much longer than L,. When the
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Fig. 1. IPD coefficient d for three values of u=L,/L, . Solid
and dashed curves show the Faraday and Voigt geometries,
respectively. Symbols show the simulation results per-
formed with Py=1.41 W. ©=0.02,1,20 corresponding to
0/27=0.31, 2.19, 9.77 THz, respectively.
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Fig. 2. IPD coefficient d as a function of 1/u=7,PyL, for
three fiber lengths in the Faraday geometry.
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Fig. 3. IPD across the signal pulse for three walk-off
lengths L,,. L=nL, and w=1. Simulation results (circles)
use /27=1.09 THz and Py=0.353 W in the same fiber as
Fig. 1. The width of the pump pulse is T(=FWHM/1.665.

two lengths become comparable (u=1), XPM and
PMD affect each other strongly, resulting in consid-
erable IPD. As seen in Fig. 1, d decreases rapidly and
becomes almost zero for £>2. However, when L,
<L, (u>1), § changes randomly within a diffusion
length even before XPM has any chance to act. Be-
cause of its averaging, the XPM effects become polar-
ization independent, and the intrapulse polarization
coherence is significantly recovered.

When p and § are initially orthogonal (correspond-
ing to the Voigt geometry in spin precession®), the
dashed curve for ©=0.02 in Fig. 1 shows that d ex-
hibits relaxation oscillations that are analogous to
the free-induction decay in spin (pseudospin) relax-
ation dynamics.l’5 These oscillations are suppressed
by PMD, and maximum IPD occurs when u=1. In
contrast, when u>1, not only are precessions sup-
pressed, but IPD is also considerably reduced be-
cause PMD-induced rapid SOP variations average
out the XPM-induced nonlinear polarization rotation.

IPD strongly depends on the pump power. Figure 2
shows d as a function of 1/ u=y,PyL, for a fixed L; in
the Faraday geometry (a similar behavior occurs for
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the Voigt geometry). If the pump power is small, little
IPD occurs even for L>L,, although the global SOP
of the signal varies randomly. IPD increases dramati-
cally with pump power, and d —0 when u'=0.7 for
L=47mL,. Spin decoherence induced by a magnetic
field and its effects on photoluminescence (the Hanle
effect) are widely used for measuring the spin relax-
ation time.?? Analogously, the sensitivity of IPD to
pump power might provide a simple means of PMD
characterization.

Evolution of the signal polarization depends on the
local interaction between PMD and XPM along the fi-
ber. Interplay between PMD and XPM transfers spa-
tial randomness of fiber birefringence into temporal
randomness of signal polarization. Figure 3 shows
IPD induced by a Gaussian pump pulse. In the tem-
poral region outside the pump pulse, the signal only
experiences PMD, and thus no IPD occurs. But
within the overlap region, the signal SOP is affected
by both PMD and XPM. If walk-off is zero, IPD is
relatively large in the vicinity of the pump peak.
Pulse walk-off broadens the depolarization region but
reduces the IPD magnitude because of a decrease in
the XPM strength.

In conclusion, we have shown that the combination
of XPM and PMD leads to the novel phenomenon of
intrapulse depolarization. We have also discussed
how this behavior is analogous to spin and pseu-
dospin decoherence in two-level quantum systems.
From a practical perspective, such intrapulse depo-
larization affects the phase and chirp imposed on the
signal pulse and leads to spectral distortion. It would
affect the performance of XPM-based nonlinear fiber
devices such as optical switches and wavelength con-
verters. It would also affect PMD monitoring and
PMD compensation in communication systems based
on the measurement of degree of polarization.
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