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Abstract: A semi-analytic tool is developed for investigating pulse
dynamics in mode-locked lasers. It provides a set of rate equations for pulse
energy, width, and chirp, whose solutions predict how these pulse parame-
ters evolve from one round trip to the next and how they approach their final
steady-state values. An actively mode-locked laser is investigated using
this technique and the results are in excellent agreement with numerical
simulations and previous analytical studies.
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1. Introduction

Mode-locked lasers are routinely used for a wide variety of applications since they can pro-
vide optical pulses ranging in widths from a few femtoseconds to hundreds of picoseconds. As
early as 1970, an analytic theory was developed for determining pulse parameters and shape in
actively mode-locked solid-state lasers by considering the effects of the mode-locker and gain
filtering and then imposing a self-consistency criterion in the time domain [1]. In many cases,
it is possible to include the effect of chromatic dispersion on the pulse shape as well; however,
once the nonlinear effects within the cavity become important, analytic investigations begin to
falter. This is frequently the case in fiber lasers where both fiber dispersion and nonlinearity are
important.

In this work, we develop a new tool for investigating mode-locked lasers by essentially treat-
ing the mode-locked pulses as particles with a fixed analytic shape. This approach allows us to
simplify the governing nonlinear partial differential equation, often called the master equation
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of mode-locking, into a set of coupled ordinary differential equations. The resulting equations
are similar to the rate equations commonly used to describe continuously operating lasers.
They can be solved quickly using standard techniques and have the added benefit that under
steady-state conditions they reduce to algebraic equations describing pulse energy, width, and
chirp. These algebraic equations indicate the trade-offs associated with the different laser para-
meters and overcome any issues associated with computation time. Our approach represents an
application of the moment method [2], a technique used extensively within the field of telecom-
munications [3, 4], to the case of a mode-locked laser.

Aside from experimental measurements, full numerical simulations provide the best means
to determine the exact shape of a mode-locked pulse. However, numerical studies tend to be
time consuming, making extensive exploration of the parameter space difficult. This issue is
particularly acute in fiber lasers, where thousands of round trips are necessary before a stable
solution emerges. Although mode-locked pulses require characterization when used for exper-
imental purposes, the pulse parameters are usually more important than the exact pulse shape.
Moreover, pulse shape is invariably close to Gaussian or hyperbolic secant, depending on the
type of mode-locking employed, the cavity dispersion (normal vs. anomalous), and the strength
of nonlinearities. This observation is at the root of our approach since the moment method re-
quires a knowledge of the pulse shape. Despite this apparent limitation, one is able to retain
a high degree of accuracy in the pulse parameters if a judicious choice is made for the pulse
shape.

2. The master equation of mode-locking

If the dispersive and nonlinear effects are relatively weak over a single round trip, the temporal
shape and width of the pulse change little during this period (assuming the mode-locker’s effect
on the field is weak and discrete losses are minimal). Although an approximate treatment, it is
fair to model such a system by the master equation of mode-locking [5] obtained by averaging
over the round-trip cavity length LR. This equation takes the form [5, 6]

TR
∂A
∂T

+
i
2

(
β̄2 + iḡT 2

2

)
LR

∂ 2A
∂ t2 = iγ̄LR |A|2 A+

1
2

(ḡ− ᾱ )LRA+M(A, t), (1)

where T = z/vg, vg is the group velocity, and A(T, t) is the slowly varying envelope of the
electric field. As in Refs. [5,7], we have assumed second-order dispersion dominates; therefore
higher-order dispersive effects have been ignored in Eq. (1). It is important to note there are
two time scales in this equation; the time t measured in the frame of the moving pulse and the
propagation time T , often called the coarse-grained time [7]. Since we averaged over a single
round trip, T is measured in terms of the round-trip time TR = LR/vg. It is assumed that the time
scale associated with the pulse is sufficiently smaller than TR so the two times are essentially
decoupled. This treatment is valid for most lasers for which TR exceeds 1 ns and pulse widths
are typically less than 100 ps.

In rare-earth-doped fibers, the gain medium responds on a time scale much slower than the
round-trip time, and the saturated gain may be approximated by ḡ = ḡ0 (1+Pave/Psat)

−1 where
Pave represents the average power defined as

Pave =
1

Tm

∫ Tm/2

−Tm/2
|A(t,z)|2 dt. (2)

The same treatment is valid for many non-fiber lasers as well [5]. In Eq. (2) Tm = F−1
rep = m−1TR,

where m is an integer representing the harmonic the laser is mode-locked at and Frep is the repe-
tition rate of the pulses. The overbar in Eq. (1) denotes the value of the corresponding parameter
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averaged over a round trip. More specifically, β̄2 represents the averaged second-order disper-
sion of the cavity elements, while γ̄ takes into account the averaged nonlinear parameter and ᾱ
represents the averaged losses. The finite gain bandwidth is assumed to have a parabolic filter-
ing effect with a spectral full width at half maximum (FWHM) given by ∆w = 2/T2.

In the absence of the mode-locker, Eq. (1) reduces to the well-known Ginzberg–Landau equa-
tion, which supports a shape-preserving solution in the anomalous-dispersion regime known as
the autosoliton and given by [6]

A(T, t) = a [sech(t/τ )]1+iq exp [iφ(T )] , (3)

where the pulse parameters a, τ , q, and φ(T ) are determined uniquely by the parameters ap-
pearing in Eq. (1). In the absence of a mode-locker, a stable pulse will neither form nor survive
multiple round trips in the cavity. However, the active fiber will try to impose the autosoliton
shape on any pulse circulating in such a laser. This fact was previously exploited by Haus and
Silberberg in their investigation of pulse shortening in AM mode-locked lasers in the presence
of dispersive and nonlinear elements [5]. In this work we assume that the laser is mode-locked
with the autosoliton shape; we then seek to include the effects of the mode-locker on the pulse
energy, width, and chirp. To extend our analysis to the normal-dispersion regime, we also con-
sider a chirped Gaussian pulse

A(T, t) = a
[
exp

(−t2/2τ 2)]1+iq
exp [iφ(T )] . (4)

3. The moment method

In an effort to study the pulse evolution process under the influence of Eq. (1), without resort-
ing to full numerical simulations, we have employed the moment method [2–4]. This approach
allows us to develop ordinary differential equations that govern the evolution of the pulse para-
meters. These equations can be solved quickly, yielding the information of experimental inter-
est. All of this, however, is based on a knowledge of the exact pulse shape. For this reason, one
should also solve Eq. (1) to ensure that the actual pulse shape does not deviate much from the
assumed pulse shape. Experimentally, the results obtained from autocorrelation measurements,
electric-field reconstruction, or an optical spectrum analyzer may be used to validate a particu-
lar ansatz.

As seen in Eqs. (3) and (4), a mode-locked pulse is characterized by four parameters, am-
plitude a, width τ , chirp q, and phase φ(T ). The phase is rarely of physical interest in lasers
producing picosecond pulses, and we ignore it in the following discussion for brevity. The am-
plitude can easily be related to energy and so we focus on pulse energy E, width τ , and chirp q.
These parameters can be defined as moments of A(T, t) [4]:

E(T ) =
∫ ∞

−∞
|A(T, t)|2 dt, (5)

τ 2(T ) =
2

C1E

∫ ∞

−∞
t2 |A(T, t)|2 dt, (6)

q(T ) =
i
E

∫ ∞

−∞
t

[
A∗ ∂A

∂ t
−A

∂A∗

∂ t

]
dt, (7)

where the constant C1, defined in the next section, converts the root-mean-square width into
pulse width τ . To investigate how our pulse parameters evolve during propagation, we differ-
entiate Eqs. (5)–(7) with respect to T yielding

dE
dT

=
∫ ∞

−∞

[
A∗ ∂A

∂T
+A

∂A∗

∂T

]
dt, (8)
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dq
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= − 1
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dE
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q+
i
E

∫ ∞

−∞
t

[
∂

∂T

(
A∗ ∂A

∂ t

)
− ∂

∂T

(
A

∂A∗

∂ t

)]
dt. (10)

The final step consists of substituting ∂A/∂T from Eq. (1) into Eqs. (8)–(10), picking a pulse
shape such as those given in Eq. (3) or (4), and integrating over t using a specific mode-locking
mechanism.

4. Mode-locking rate equations

To continue, we need to specify the mechanism used to mode-lock the laser. Mode-locking
via amplitude modulation (AM) is one of the oldest techniques; we focus on it to illustrate
our approach by using M(A, t) = −∆AM [1− cos(ωmt)]A in Eq. (1), where ∆AM is the modu-
lation depth experienced by a pulse during a single round trip, ωm = 2π/Tm is the modula-
tion frequency (assumed to be identical to the repetition rate of the mode-locked pulse train),
and the average loss of modulator has been incorporated into ᾱ . Assuming that the mode-
locked pulses are much shorter than Tm, we approximate the effect of the AM mode-locker as
M(A, t) ≈ −∆AMω2

mt2/2A. Although this approximation is not required, it simplifies the ap-
pearance of the equations in the rest of this paper and is applicable in most cases of practical
interest.

Using Eqs. (3) and (4) for the pulse shape, and performing the integration in Eqs. (8)–(10)
we obtain the following equations:

TR

E
dE
dT

= (ḡ− ᾱ )LR −C0
ḡT 2

2 LR

2τ 2

(
1+q2)− 1

2
C1∆AMω2

mτ 2, (11)

2τTR
dτ
dT

=
(
2β̄2LR

/
C1)q+C2ḡT 2

2 LR
(
C3 −q2)−C4∆AMω2

mτ 4, (12)

τ 2TR
dq
dT

= C0β̄2LR
(
1+q2)−C5ḡT 2

2 LR
(
1+q2)q+C6

γ̄LREτ√
2π

−C1∆AMω2
mτ 4q, (13)

where the constants Cn (n = 0 to 6) are introduced such that they all equal 1 for a Gaussian
pulse. In the case of an autosoliton, C0 = 2/3, C1 = π2/6, C2 = 4/π2, C3 = 2, C4 = 4π2/15,
C5 = 1/3, and C6 =

√
2π/3.

Equations (11)–(13) are analogous to the rate equations used for continuous-wave lasers in
the sense that they describe how the pulse parameters E, τ , and q change from one round trip to
the next. For example, Eq. (11) shows that the energy is enhanced by the gain (first term) but re-
duced by both the gain filtering (second term) and the AM mode-locker (third term). Similarly,
Eq. (12) shows that the modulator shortens optical pulses as they pass through it (last term).

To illustrate pulse dynamics, we solve Eqs. (11)–(13) for a fiber-ring laser using real-
istic parameter values. More specifically, we use β̄2 = ±0.014 ps2/m, γ̄ = 0.012 W−1/m,
ḡ0 = 0.55 m−1, ᾱ = 0.17 m−1, T2 = 47 fs/rad, Psat = 12.5 mW, Frep = 10 GHz, LR = 4 m,
TR = 40 ns, and ∆AM = 0.3. Figure 1 shows the approach to steady state in both the normal-
and anomalous-dispersion regimes. It reveals that the pulse converges quickly in the normal-
dispersion region but takes > 1000 round trips before converging in the anomalous-dispersion
region. Although the rate of convergence depends on the initial conditions used (E = 1 fJ, q = 0,
and τ = 0.5 ps), this type of behavior is expected since the nonlinear effects are weaker in the
normal dispersion region. In the normal-dispersion regime the nonlinear effects add to the effect
of dispersion and broaden the pulse to τ = 3.73 ps, thus reducing its peak power and the role
played by nonlinearity. In the anomalous-dispersion regime the interplay between dispersion
and nonlinearity prolongs the convergence. We also point out the robustness of our approach
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Fig. 1. Changes in pulse energy, width, and chirp over multiple round trips assuming a
Gaussian pulse in the normal dispersion regime (top row) and an autosoliton shape in the
anomalous-dispersion region (bottom row). The energy scale has been magnified to illus-
trate that the oscillatory behavior persists for more than 1000 round trips.

since the initial energy used is more than 2500 times smaller than the steady state value ob-
tained.

To quantify the accuracy of our rate-equation model, we solved Eq. (1) numerically with
the above parameter values and a 1 photon/mode strength, complex, Gaussian-distributed noise
seed. We found that the approach to steady state follows a pattern that is quite close to that
seen in Fig. 1. The final steady-state value of pulse width agrees within 2.5% in the case of
anomalous dispersion. The agreement is not as good in the case of normal dispersion although
it is within 9%. This is a consequence of the pulse shape, which deviates from the Gaussian
shape assumed due to nonlinearity, especially for small modulation depths ∆AM .

Figure 1 also reveals the mode-locked pulse in the normal-dispersion regime is chirped
(q � 2), whereas the chirp is nearly zero (q ≈ 0) in the anomalous-dispersion regime. This
behavior is a consequence of the interplay between dispersion and nonlinearity. In the anom-
alous regime, the two effects produce chirps with opposite signs, which partially cancel one
another, whereas, the chirps add in the normal-dispersion regime [6].

5. Steady-state

As seen in Fig. 1, all pulse parameters converge toward a constant value after a sufficiently
large number of round trips. Under steady-state conditions, the derivatives in Eqs. (11)–(13)
can be set to zero. This allows us to obtain the following set of coupled algebraic equations for
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the saturated gain, pulse width, and chirp:

ḡss =
(

ᾱ +
∆AMω2τ 2

ss

2C5LR

)[
1− T 2

2

2τ 2
ss

(
1+q2

ss

)]−1

, (14)

τss =
(
C4∆AMω2

m/LR
)−1/4 [(

2β̄2/C1
)

qss +C2ḡssT
2

2

(
C3 −q2

ss

)]1/4
, (15)

qss = −d ±
[
d2 +C3 +C6γ̄Eτss/

(
C5β̄2

√
2π

)]1/2
, (16)

where the dimensionless parameter d is defined as

d =
1

2β̄2

[
(1+C3) ḡssT

2
2 +

(
C1

C5
− C4

C2

)
∆AMω2

mτ 4
ss

LR

]
. (17)

Equation (14) reveals that the saturated gain is determined by the cavity losses, the modulator,
and the mode-locked pulse spectrum. Equations (16) and (17) show how the chirp is affected by
changing the cavity losses, nonlinearity, or the modulation depth. For example, if the nonlinear
parameter is set to zero pulses remain chirped, however, if dispersion is also set to zero, d → ∞
and qss = 0 is the only physically valid solution. Of course, we should use the Gaussian pulse
shape under such conditions. Setting Cn = 1 in Eq. (15), we find that the steady state pulse
width in the absence of dispersive and nonlinear effects is given by

τss =
(

ḡLR

∆AM

)1/4 √
T2

ωm
. (18)

This equation is identical to the result first found by Kuizenga and Siegman [1].
The most powerful feature of Eqs. (14)–(16) is that they can be used to instantly (Our theoret-

ical results shown in Fig. 2 took � 1 second to generate) predict the impact of fiber dispersion
and nonlinearity as well as modulation depth and frequency on the mode-locked pulses. Fig-
ure 2 shows the results obtained as β̄2 and γ̄ are varied. Plots (a) and (b) investigate the case
where dispersion is normal (β̄2 > 0); they also reveal a discrepancy between our theory and the
full model [i.e. the solution to Eq. (1)]. This error, which is <15%, is again due to the pulse
shape which deviates from the assumed Gaussian shape. Plots (c) and (d), both made assuming
anomalous dispersion, exhibit excellent agreement between our theory and the full model even
over the large parameter space explored. Comparing Figs. 2(a) and (c) it is found that as the
magnitude of dispersion is decreased, pulse width is reduced but chirp increases. Qualitatively,
this behavior is the same in both regions. Comparing Figs. 2(b) and (d), however, we observe
an interesting feature. Increasing the nonlinearity in the normal-dispersion region results in a
large increase in both pulse width and chirp. However, in the anomalous-dispersion regime, an
increase in nonlinearity reduces the pulse width while the chirp increases only slightly. For ex-
ample, pulse width τss, is reduced below 1 ps for γ̄ > 0.012 W−1/m while chirp is nearly zero. If
the nonlinearity is increased to γ̄ = 0.028 W−1/m the theory predicts pulses with τss = 0.36 ps
indicating a pulse 3 times smaller than those predicted by the Kuizenga–Siegman limit [1]. This
result was also verified by the full model.

This demonstrates that femtosecond pulses can be realized in actively mode-locked lasers by
incorporating elements with large values of γ̄ into the cavity. Photonic-crystal fibers or tapered
fibers can be used for this purpose. Since chirp can be nearly eliminated in the anomalous-
dispersion regime, optimized actively mode-locked fiber lasers should produce near transform-
limited femtosecond pulses.

6. Conclusion

By applying the moment method to the master equation of mode-locking, we have derived a set
of three ordinary differential equations for pulse energy, width, and chirp. These equations play
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Fig. 2. Steady-state pulse width and chirp as functions of β̄2 (left column) and nonlinear
parameter γ̄ (right column). Dispersion is normal for the top row and anomalous for the
bottom row. The discrete markers come from solving Eq. (1) while the solid lines come
from solving Eqs. (14)–(16).

the role of rate equations for mode-locked lasers. Their solution shows that, although a steady
state is eventually reached after sufficiently large number of round trips (in all cases of practical
interest), the approach to steady state can be quite different depending on whether the average
cavity dispersion is normal or anomalous.

The rate equations reduce to three algebraic equations in the steady state, which were used
to study the dependance of pulse width and chirp on cavity dispersion and nonlinearity. We
also verified that in the absence of dispersive and nonlinear effects, our analytic result reduces
to that obtained in Ref. [1]. Although we have focused on the case of AM mode locking, our
approach is quite general and can be applied to all actively and passively mode-locked lasers.
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