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Impact of Fiber Birefringence on Optical Switching
With Nonlinear Optical Loop Mirrors

Qiang Lin and Govind P. Agrawal, Fellow, IEEE

Abstract—We use a vector theory of cross-phase modulation
to discuss how residual birefringence of the fiber loop affects the
switching performance of a nonlinear optical loop mirror. It is
found that the interaction between polarization-mode dispersion
(PMD) and cross-phase modulation transfers spatial randomness
of residual birefringence to temporal power fluctuations within
the switching window. PMD reduces the switching contrast and
the reduction depends on wavelength separation between the
signal and control pulses as well as on the magnitude of the PMD
parameter. Fluctuations in the switched power become worse
for a wavelength separation for which the PMD diffusion length
associated with birefringence fluctuations becomes comparable to
the nonlinear length associated with cross-phase modulation.

Index Terms—Cross-phase modulation (XPM), nonlinear
optical loop mirror (NOLM), optical fibers, optical switching,
polarization-mode dispersion.

I. INTRODUCTION

CROSS-PHASE modulation (XPM) inside a nonlinear op-
tical loop mirror (NOLM) is used often for ultrafast optical

switching [1]–[6]. It has been noted in several experiments that
the performance of a NOLM is significantly affected by the
residual birefringence of optical fiber used to make the Sagnac
loop [7]–[10] if a polarization-maintaining fiber is not used.
Residual birefringence was indeed used as a method to reduce
the polarization dependence of optical switching [11]. Phys-
ically, residual birefringence of optical fibers randomizes the
state of polarization (SOP) of both the signal and control pulses
and induces differential polarization variations between them
through polarization-mode dispersion (PMD) when the two have
different carrier frequencies. Since the XPM process responsible
for optical switching is polarization dependent [12], PMD in-
duces considerable random variations in the NOLM output. This
impact of PMD on optical switching becomes a serious issue for
practical implementation of such optical switches.

The scalar theory commonly used for describing NOLM op-
eration [12] cannot include the polarization effects. We have re-
cently developed a vector theory of XPM and have used it to
study the combined effects of PMD and XPM on the perfor-
mance of lightwave systems [13]. In this paper, we use the same
approach for studying the effects of PMD on optical switching
in NOLMs and show that PMD not only affects the switching
window of such devices but also induces considerable fluctu-
ations in the shape, width, and energy of switched pulses. We

Manuscript received December 31, 2003; revised July 29, 2004. This work
is supported in part by the US National Science Foundation under Grant ECS-
0320816 and Grant ECS-0334982.

The authors are with the Institute of Optics, University of Rochester,
Rochester, NY 14627 USA (e-mail: linq@optics.rochester.edu).

Digital Object Identifier 10.1109/JSTQE.2004.836024

Fig. 1. Notation used for describing optical switching in a NOLM. PC stands
for polarization controller.

quantify these fluctuations by solving the underlying equations
analytically after appropriate simplifications and compare them
with full numerical simulations.

II. THEORETICAL MODEL

Fig. 1 shows a NOLM schematically and the notation used.
The input field splits after the polarization-independent 3-dB
coupler into forward (clockwise) and backward (counterclock-
wise) components denoted as and at a dis-
tance inside the loop. An intense control pulse at a different
wavelength is injected after the coupler. It introduces different
XPM-induced phase shifts on and as it propagates only
in the forward direction. The two signal components interfere at
the 3-dB coupler after one round trip. The loop transmissivity
depends on the relative phase shift induced by XPM and be-
comes 100% for a phase shift provided both pulses maintain
their SOP along the same direction.

To include the polarization effects, we express all optical
fields by a Jones vector, denoted by , where the subscript

, , or . This notation is used often for discussing the
PMD effects [14]. Using the general form of the nonlinear
polarization for silica glass [12] and following the method used
earlier in [13], [15], we obtain the following set of three vector
equations governing the propagation of three optical fields
inside the NOLM:

(1)

(2)
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(3)

where and are the carrier frequency and the
group velocity for the control and signal pulses, respectively.
The nonlinear parameter is taken to be nearly the same for the
two waves assuming that their frequency difference
is relatively small compared with the carrier frequencies them-
selves. and are Hermitian and complex conjugate of

, respectively.

The main approximation made in deriving (1)–(3) is that the
control pulse is assumed to be much more intense than signal
pulses. Thus, self-phase modulation (SPM) and XPM induced
by the control pulse are included but those induced by the signal
pulse are neglected because of its weak nature. Fiber losses are
neglected because the length of the loop is typically only a few
kilometers. The effects of group-velocity dispersion (GVD) are
also ignored assuming that pulses are wide enough that dis-
persion length exceeds the loop length considerably. To solve
(1)–(3), we make one more simplification. In practice, the XPM
effects on the backward field induced by the control pulse
are so small because of the counterpropagating nature of two
pulses (walkoff length 1 cm even for a 100-ps pulse) that we
can ignore them. The backward propagating field is then
only affected by fiber birefringence, and (3) can be solved ana-
lytically after setting .

Residual birefringence of the fiber enters through the three-
dimensional (3-D) vector . This vector is written in the Stokes
space using the spin vector , whose three components represent
the three Pauli matrices [14]. Because of the counterpropagating
nature of the two signal pulses [16], [17], the Jones matrices
associated with birefringence-induced SOP evolution for

and are , and , respectively, where is the transpose

of , and is the solution of .
The solution of (3) can now be used to write at port 2 after
one round trip as

(4)

where is the input field at port 1 and is one of the Pauli
matrices [14]. The factor of results from the transfer ma-
trix of a 3-dB coupler, which not only splits the power into half
but also introduces a 2 phase shift [4]. The origin of matrix
lies in the fact that we are working in a reference frame associ-
ated with the forward-propagating pulse that flips its -axis after
a round trip (see Fig. 1). It is also useful to introduce a retarded
time in this frame as .

The NOLM output at port 4 corresponds to the switched
pulse. The power profile of this pulse is obtained by interfering

the two counterpropagating field components at the 3-dB
coupler and is given by

(5)

where denotes the real part, is the
input pulse profile at port 1 of the coupler, and the scalar quantity

describes the interference effects and is defined as

(6)

where is the complex conjugate of and we used the re-

lation since is only
affected by the XPM from the control pulse; it would remain
constant in the absence of the XPM effects. All birefringence-
induced polarization effects are included through the random
quantity .

Residual birefringence affects the NOLM output in two
ways. First, it randomizes the SOPs of the control and signal
pulses along the fiber and, thus, affects the XPM process
locally. Second, because of the interferometric nature of the
NOLM, SOP variations affect the output even in the absence
of any control pulse [16], [17]. To optimize the performance, a
polarization controller is adjusted inside the loop such that
is minimum in the absence of control pulses. Mathematically,

this is equivalent to setting [18], where

is a unit matrix and includes the SOP rotation induced
by the polarization controller. If residual birefringence varies

with time because of environmental perturbations, also
changes randomly on a time scale associated with birefringence
fluctuations. We assume that optimization is maintained by
adjusting the polarization controller adaptively and focus only
on the PMD effects on XPM inside the NOLM. The quantity

is then given by and does not

require knowledge of the matrix .

III. XPM-INDUCED SWITCHING

To calculate , we need the field after its phase
has been affected by the control pulse through XPM. However,
the XPM effects are nonuniform within the loop because PMD
changes the relative SOP of the control pulse with respect to
the signal pulse in a random fashion. Moreover, SPM and XPM
also affect the SOPs of the two pulses through a phenomenon
known as nonlinear polarization rotation (NPR). One can sim-
plify the analysis by noting that both the beat length and the cor-
relation length associated with residual birefringence are 10
m for spooled fibers [19], [28] and are much shorter than typ-
ical nonlinear lengths ( 1 km). Rapid SOP variations induced

by thus average over the nonlinear effects, leading to a
reduced nonlinear parameter defined as [20]. After

this averaging, and
evolve inside the loop as [13]

(7)

(8)
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where is the carrier frequency difference between
the two pulses and describes their group-
velocity mismatch. The birefringence vector is related to

by a rotation in the Stokes space corresponding to .
Equations (7) and (8) show that both the power and

the SOP of the control pulse affect the XPM-induced
phase shift. The power of the control pulse is given by

. Its SOP is governed by the
unit vector , representing the direction
of its Stokes vector on the Poincaré sphere. Both the control and
signal pulses maintain their shape inside the NOLM (assuming
negligible dispersion-induced pulse broadening) although two
pulses walk away from each other because of group-velocity
mismatch. Thus, in (7) and (8).
This feature simplifies the following analysis considerably.

The output power of the switched pulse is determined by
the interference term . We use its expression together with (7)
and (8) to arrive at the following set of three closed equations:

(9)

(10)

(11)

where the vector is introduced as
. Notice that both and are

complex quantities and related through the identities
and .

Equations (9)–(11) are three linear stochastic equations and
can be easily solved numerically to find and then calculate
transmitted power for given temporal profiles, and

, for the input and control pulses, respectively. Since
fiber length is typically much longer than the correlation length
associated with birefringence fluctuations, we model as a 3-D
Markovian Gaussian process whose first- and second-order mo-
ments are given by [21], [22]

(12)

where an overbar denotes average over a birefringence en-

semble, is the 3-D unit matrix, and is the PMD parameter
of the fiber.

To show the effects of PMD on the switching window of an
NOLM, we consider a 3-km-long NOLM with W km,

ps km, ps km, and a zero-disper-
sion wavelength (ZDWL) of nm. The power
of the Gaussian-shape control pulse at 1545 nm varies as

, where ps and peak
power mW. The signal is assumed to have a
continuum-wave (CW) form at a wavelength of 1575 nm.
The switching window is defined as the loop transmissivity
as . The 30-nm wavelength difference between
the signal and control waves introduces considerable walk
off between the two and produces a nearly rectangular 40-ps
switching window shown by the dotted line in Fig. 2 when
fiber has no birefringence (the ideal case). When residual
birefringence is included by choosing ps km and

Fig. 2. Switching windows of a NOLM under the impact of residual
birefringence (solid curves) created by a Gaussian-shape control pulse. The
dotted curve shows for comparison the switching window in the absence of
residual birefringence. For all the curves, the control and signal waves are
linearly copolarized at the location where the control pulse is injected into the
loop. Parameters are given in the text.

a correlation length of 10 m, the switching window depends on
the birefringence distribution along the fiber length and varies
for each realization of the stochastic process. Fig. 2 shows some
examples of the switching window obtained by solving (1)–(3)
numerically, assuming that the signal and control are linearly
copolarized at the location where the control is injected to the
loop. A comparison of these curves with the dotted curve shows
that PMD effects not only reduce the NOLM transmission
during switching, but also make the transmissivity to vary
with time along the switching window. As a result, switching
window become distorted, and the extent of distortion depends
on the specific distribution of residual birefringence inside the
NOLM. Since this distribution will change from fiber to fiber,
different NOLMs made from the same spool of fiber would
exhibit quite different switching performances.

One may wonder what makes NOLM transmission to vary
randomly within the switching window for a given NOLM if
nothing is changing with time. More specifically, if both and

are deterministic quantities at any time , why fluctuates
in a random fashion with . From a physical standpoint, this is
a consequence of PMD-induced changes in the SOP of various
fields and resulting variations in the XPM efficiency. The combi-
nation of the two effects produces intrapulse depolarization for
the signal manifested as a random SOP of the signal along the
pulse profile [23]. In effect, spatial randomness of residual bire-
fringence is translated into temporal randomness at the NOLM
output by the Sagnac interferometer.

IV. AVERAGE OUTPUT POWER AND FLUCTUATION LEVEL

As seen in Fig. 2, the NOLM output is random in two ways
because of PMD. First, if birefringence distribution along the
fiber length is frozen and does not change with time, switching
window is distorted but is static. The output power then varies
along the switching window in a random fashion but does not
fluctuate at any given moment. Second, if birefringence distri-
bution along the fiber length changes with time in a dynamic
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fashion because of environmental perturbations, the output
power at any instant of time itself begins to fluctuate on a time
scale associated with such perturbations. Although this time
scale is relatively long (ranging from a few seconds to several
hours), such random fluctuations in the output of an NOLM
are not acceptable in practice. It is thus important to estimate
the average and variance of such environment-induced power
fluctuations. It turns out that these two moments of the output
power can be calculated in a semianalytical fashion.

The average value and variance of the
output power are obtained from (5) and are related to the mo-
ments of as

(13)

(14)

Although the average value does not correspond to a single
experimental measurement, it provides a good indication of the
PMD effect on the switchiing performance of NOLMs. The
evolution equations for , , and can be obtained from
(9)–(11) after averaging over random residual birefringence
using a procedure described in [15]. For the mean value of ,
we obtain the following two coupled equations:

(15)

(16)

where and is the PMD diffusion
length of the relative SOP orientation between the two pulses.
Note that is not only a function of the PMD parameter of
fiber, but also depends on the the carrier frequency separation
between the control and signal pulses, which plays an important
role on the switching performance.

Following the same procedure, the second-order moment
is obtained by solving the following three coupled equations:

(17)

(18)

(19)

where and . Similarly, can be
obtained by solving

(20)

(21)

(22)

where Im , , and Im denotes the
imaginary part. All of these deterministic equations can be

solved easily on a computer. Analytical solutions can also be
obtained in some specific cases.

We first consider the loop transmissivity for a square-shape
control pulse when the control and signal wavelengths are tuned
symmetrically around the ZDWL so that their group velocities
always match. The switching window under such conditions has
the same shape and duration as the control pulse. We focus on
the same 3-km-long fiber loop used for Fig. 2, but set the control
peak power to mW, a value that represents the control
power for which the entire copolarized signal is transmitted in
the absence of residual birefringence when there is no walkoff
between the two pulses. Fig. 3(a) shows the average loop trans-
missivity (or switching contrast) defined as at the
control pulse peak by plotting as a function of signal-con-
trol wavelength detuning for three values of the
PMD parameter . Fig. 3(b) shows the fluctuation level, de-
fined as , under the same conditions. In both cases, solid
and dashed curves are respectively for the copolarized and or-
thogonally polarized control pulse with respect to the signal
SOP at the input end. Dotted curves show for comparison the
no-birefringence case for these two polarization configurations.
The control only imposes a phase shift of 3 on the signal when
the two are orthogonally polarized, resulting in only 25% trans-
mission in the ideal case (lower dotted line).

To justify the semianalytical theory presented here, we car-
ried out full numerical simulations based on (1)–(3) by dividing
the 3-km-long fiber into 10-m-long sections. Birefringence was
kept constant inside each section but both its magnitude and axes
are changed randomly from section to section. More precisely,
the magnitude of birefringence follows a Gaussian distribution
with zero mean while the principal axes are rotated uniformly
after each section. The results averaged over 300 runs are shown
as filled circles in Fig. 3. The semianalytical results agree quite
well with the Monte-Carlo numerical simulations. In particular,
the predicted average transmissivity almost coincides in the two
cases. A small discrepancy seen in the prediction of the fluctua-
tion level comes from the sample size of 300 used for numerical
simulations. It decreases as the sample size is increased but only
at the expense of a longer computational time.

As seen in Fig. 3(a), residual birefringence of the fiber
loop reduces the NOLM transmission considerably on average
for copolarized signal and control pulses, thereby degrading
the switch performance. When is small enough to make
PMD diffusion length larger than the NOLM length , the
signal and control nearly maintain their relative SOPs inside
the NOLM even though the SOP of each field can change
considerably. The switching contrast is then only affected by
reduction in by a factor of 8/9 and is reduced by a mere 3%
for or 2 nm. The similar effect in the orthogonally
polarized case increases the XPM-induced nonlinear phase
from 3 to 4 9, resulting in a loop transmissivity of 41.3%.
However, the average switching contrast changes quickly with
increase in or , as seen in Fig. 3(a). In fact, the NOLM
approaches a polarization-independent switching contrast of
75% (corresponding to a nonlinear phase shift of 2 3) for
large wavelength separations such that . These results
are qualitatively consistent with the experimental results of
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Fig. 3. Switching contrast (a) and fluctuation level of output (b) plotted as
a function of wavelength separation between the signal and control for three
values of PMD parameter D (in units of ps=

p
km) for the copolarized (solid

curves) and orthogonally polarized (dashed curves) cases. Dotted lines show
the no-birefringence case for the same two polarization configurations. Filled
circles shows the Monte-Carlo simulation results.

[11]. The level of PMD-induced fluctuations depends on the
length ratio , where is the
nonlinear length for XPM-induced phase shift. It becomes
maximum when 1, resulting in a peak value of about
9% in Fig. 3(b). Around the spectral region where 1, the
NOLM is most susceptible to environmental perturbations. The
qualitative behavior is similar for all values of . The only
difference is that the peak in Fig. 3(b) shifts to smaller values
of for larger values of .

The PMD-induced reduction in the switching contrast can be
compensated to some extent by increasing the control power

. This increase in control power was observed in the exper-
iment of [9]. Of course, the optimum value of power depends
on both the wavelength separation and the value of the
PMD parameter . Moreover, it is not possible to realize 100%
switching contrast even with this optimization. The solid and

Fig. 4. (a) Maximum switching contrast (solid curves) and optimum control
power (dashed curves) as a function of wavelength separation between the
signal and control (both linearly copolarized initially) for three values of PMD
parameter D (in units of ps=

p
km). (b) Output fluctuation level under the

optimum conditions.

dashed curves in Fig. 4(a) show, respectively, the optimized
switching contrast and the control power required for it as a
function of for copolarized control and signal at the input
end. When , the reduction in can be overcome by in-
creasing from 262 to 295 mW for complete switching. How-
ever, this power level increases to 380 mW for nm in-
side a fiber with ps km, even if there is no walk off
between the two waves. Complete switching with 100% contrast
becomes difficult to realize when 1. As seen in Fig. 4(a),
the optimized switching contrast is close to 92% when is close
to 1. Fig. 4(b) shows the the fluctuation level under optimum
conditions. It is reduced considerably compared with the values
seen in Fig. 3(b). Maximum fluctuation level is about 4.5% and
occurs again when is close to 1.

V. SWITCHING WINDOW

We now consider the temporal switching window and as-
sume that the NOLM output is being switched for a short du-
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ration using control pulses of Gaussian shape with ps
and a peak power of 262 mW. The control wavelength of 1545
nm is 5-nm shorter than the 1550-nm ZDWL of the fiber loop.
The signal is again in the CW form, but our results also apply
for a pulsed signal as long as the signal pulse is much wider
than the control pulse. The two waves are linearly copolarized
at the location where the control is injected to the loop. The
signal wavelength is varied from 1555 to 1575 nm to study the
impact of the group-velocity mismatch, whose magnitude can
be calculated from the third-order dispersion of the fiber using

, where
is the zero-dispersion frequency. The fiber is as-

sumed to have a third-order dispersion of ps at
ZDWL. The GVD-induced pulse broadening can be neglected
because the dispersion lengths exceed 50 km in all cases.

Solid curves in Fig. 5(a) show the “averaged” switching
window by plotting average value of the NOLM transmissivity

as a function of time for three signal wavelengths
separated from the control wavelength by 10, 20, and 30 nm.
All NOLM parameters are the same as those used for Fig. 3 ex-
cept for ps km. Dotted curves show the switching
window in the absence of residual birefringence. The switching
window is relatively narrow and has 100% contrast at its peak
for nm because the walkoff effects disappear when
the control and signal wavelengths are located symmetrically
around the ZDWL. The walkoff effects broaden the switching
window and reduce the transmissivity as increases to 20
and 30 nm. The PMD effects make the situation worse because
they reduce the transmissivity even further and also make the
switching window asymmetric. The asymmetry is related to
the fact that control pulse overlaps with different slices of the
signal pulse at different locations inside the fiber.

When nm, a value for which 1, only 60% of
signal power can be switched to output port on average and this
value drops to below 15% for nm. Fig. 5(b) shows the
fluctuation level within the switching window under the condi-
tions of Fig. 5(a). The peak fluctuation level is under 5% for

nm, increases to around 9% for nm and
then drops to below 3% for nm. This behavior is sim-
ilar to that seen in Fig. 3 but is modified significantly because of
the reduction in the XPM effects induced by pulse walkoff. For

ps km, large fluctuations occur for nm
but are reduced considerably for smaller or larger wavelength
separations. Again, the analytical results agree well with the
numerical ones based on full Monte-Carlo simulations (filled
circles). Note that the fluctuation level depends on the control
peak power as well as the loop length. If the control peak power
is increased to achieve a maximum peak switching contrast as
shown in Fig. 2 for nm, the fluctuation level will in-
crease considerably.

VI. CONCLUSION

In this paper, we have presented a vector theory of XPM that
is capable of including the PMD effects while describing the
switching performance of an NOLM. The interaction between
the PMD and XPM phenomena transfers the spatial random-
ness of residual birefringence to temporal fluctuations on the

Fig. 5. Switching windows (a) and fluctuation level of output (b) for three
values of wavelength separation between the signal and control waves. The
control is fixed at 1545 nm, but the signal wavelengths are 1555, 1565, 1575 nm
for the three cases, respectively. In each case, NOLM transmissivity is plotted
as a function of time for Gaussian-shape control pulses. Solid lines show the
analytical results and dotted lines show for comparison the no-birefringence
case. Filled circles show the Monte-Carlo simulation results, which overlap with
the solid curves in most of the cases.vsk

switched-pulse profile. Physically speaking, the combination of
PMD and XPM induces intrapulse depolarization on the signal
in the sense that different parts of the signal pulse have dif-
ferent randomly varying SOPs. Because of this depolarization,
PMD reduces the switching contrast and the polarization de-
pendence when signal and control wavelengths are chosen to be
further apart than a few nanometers. The contrast can be im-
proved to some extent by increasing the control power but it
cannot be made 100% in the spectral region where the PMD
diffusion length becomes comparable to the nonlinear length.
Under environmental perturbations, PMD induced fluctuations
on the switched pulse can be up to 9% of the input power, de-
pending on the fiber length and the value of the PMD parameter
for that fiber. Our results qualitatively agree with the existing
experimental observations [9], [11]. Further experiments would
help to verify our predictions.
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The use of a polarization-diversity loop has been proposed to
reduce the polarization dependence of an NOLM-vased optical
switch [10], [24]. Our analysis shows that such a loop cannot
mitigate the PMD effects on XPM because of the PMD and
XPM effects interact locally all along the loop length. For the
same reason, a Faraday mirror inside a folded ultrafast nonlinear
interferometer can reduce the effect of global SOP evolution in-
duced by linear birefringence [9], [25] but it cannot eliminate
the degradation induced by local interaction between the PMD
and XPM. For these reasons, PMD is likely to remain a limiting
factor for XPM-based optical switching whenever fiber-loop
lengths exceeds a few kilometers. The ultimate solution of this
problem relies on the availability of fibers with ultralow PMD
and high nonlinearity. Even though the intrinsic nonlinearity
of silica, governed by the parameter, cannot be changed,
the nonlinear parameter can be enhanced by reducing the ef-
fective core area of the fiber since the two are related as

[12]. A fiber with large values of is re-
ferred to as a highly nonlinear fiber. An increase in by a factor
of 8–10 will reduce the loop length of NOLMs to below 400 m
and will help to increase the device performance considerably
[26], [27].

We should stress that our analytic theory is based on the
assumption of a delta-function correlation among residual bire-
fringence fluctuations. We have performed numerical simula-
tions to judge the validity of this approximation by changing
the birefringence correlation length . The results shown in
Figs. 3–5 change only by a small amount even when is
increased up to 100 m. Numerical simulations show that our
analytic theory works reasonably well when the NOLM length
is 10 to 15 larger than the birefringence correlation length. In
the case of highly nonlinear fibers, loop lengths of less than
100 m may be sufficient for optical switching. Similarly, for
pulses shorter than a few picoseconds, loop length is gener-
ally kept short as 100 m to prevent pulse broadening. In
these cases, residual birefringence fluctuations cannot be treated
as delta-correlated (white noise), and a numerical approach
should be used. On the other hand, even though it is easy to
include numerically pulse broadening induced by GVD and
higher-order dispersion, we have not done so since the loop
length is generally kept shorter than the dispersion length in
almost all practical situations.
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