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Abstract—We develop a vector theory of cross-phase modula-
tion (XPM) capable of describing nonlinear coupling between two
pulses of different wavelengths and arbitrary states of polarization.
We focus for simplicity on the pump-probe configuration and use
it to investigate the temporal and spectral polarization effects oc-
curring inside an optical fiber. Using the Stokes-vector formalism
we show that the probe polarization changes in general through
XPM-induced nonlinear polarization rotation. In the absence of
dispersion-induced probe broadening, such nonlinear changes in
the probe polarization do not affect the temporal shape of the probe
pulse but produce a multipeak spectrum whose different spectral
peaks have different states of polarization. When dispersive effects
are included, even the shape of the probe pulse becomes polariza-
tion dependent, and different parts of the pulse develop different
states of polarization. Such nonlinear polarization effects lead to
novel phenomena such as polarization-dependent compression and
splitting of the probe pulse.

Index Terms—Cross-phase modulation (XPM), nonlinear optics,
optical fiber polarization, polarization.

1. INTRODUCTION

ROSS-PHASE modulation (XPM) is a nonlinear phenom-
C enon occurring when two or more optical waves are trans-
mitted simultaneously through a nonlinear medium such as an
optical fiber [1]. Physically, each intense optical wave changes
the refractive index of fiber through the Kerr effect and induces
a nonlinear phase shift on other copropagating waves. If this
wave is in the form of an optical pulse, the XPM-induced non-
linear phase shift becomes time dependent and leads to spectral
broadening of the copropagating waves. The XPM phenomenon
in optical fibers has been studied extensively over the last two
decades [2]-[12] and is widely used as a mechanism for op-
tical switching and wavelength conversion [13]-[19]. However,
much less attention has been paid to the polarization effects oc-
curring when two optical pulses at different carrier frequencies
interact with each other through XPM inside an isotropic fiber,
even though the polarization-dependent nature of XPM is well
known [20].

The theoretical development of XPM has so far considered
the nonlinear coupling either between two polarization compo-
nents of a single optical field or between the identically polar-
ized components of two optical fields at different frequencies
[1]. In the latter case, it is assumed that the two fields remain
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copolarized throughout the fiber so that a scalar theory of XPM
can be used. This assumption is questionable even for an ideal
isotropic fiber (no birefringence) when the fields are elliptically
polarized initially because of a phenomenon known as nonlinear
polarization rotation (NPR), which can change the state of po-
larization (SOP) of an optical field through XPM. In the case
of two noncopolarized optical pulses, XPM not only induces
different nonlinear phase shifts for the two polarization compo-
nents but also transfers energy between them although the total
power remains conserved. As a result, the SOP of each wave be-
comes nonuniform, both temporally and spectrally in a way that
is much different from the scalar case. It is important to inves-
tigate the XPM effect on optical pulses with arbitrary polariza-
tions because it is hard to maintain copolarization between two
pulses inside a a fiber unless a high-birefringence fiber is used.

In this paper, we develop a vector theory of XPM and use
it to investigate the temporal and spectral polarization effects
occurring when two optical pulses with different wavelengths
and different states of polarization are launched into an optical
fiber. The paper is organized as follows. We use the Jones-ma-
trix formalism in Section II to derive a set of two vector (or
four scalar) coupled nonlinear Schrédinger (NLS) equations.
In Section IIT we focus for simplicity on the pump-probe con-
figuration, neglect pulse broadening induced by group-velocity
dispersion (GVD), but include the group-velocity mismatch be-
tween the pump and probe pulses owing to their different wave-
lengths. Using the Stokes-vector formalism, we study in this
section how the SOPs of the pump and probe change on the
Poincaré sphere. Section I'V focuses on the XPM-induced spec-
tral broadening and shows that different spectral peaks of the
probe pulse in general do not have the same SOP. The GVD ef-
fects are allowed in Section V where we focus on the temporal
shape of the probe pulse and discuss intrapulse polarization ef-
fects. The main results are summarized in Section VI.

II. VECTOR THEORY OF XPM

In this section we use the Jones-matrix formalism to derive a
set of two vector NLS equations that are not only coupled non-
linearly through XPM but also include the effects of self-phase
modulation (SPM) and GVD. The SPM and XPM phenomena
have their origin in the third-order nonlinear effects [20]. As-
suming an instantaneous electronic response and neglecting the
Raman contribution, the third-order nonlinear polarization in a
medium such as silica glass is given by [1]

PO(r, 1) = cox " E(r, O E(r, ) E(r, ) )
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where €( is the vacuum permittivity, F is the electric field

vector, and the tensor ; represents the third-order suscepti-
bility of the nonlinear medium.

In the case of two distinct optical fields propagating simul-
taneously inside an optical fiber, the total electric field can be
written as

E = Re[E; exp(—iwit) + FEs exp(—iwsat)] 2)

where Re stands for the real part and E; is the slowly varying
(complex) amplitude for the field oscillating at frequency w;
(J = 1, 2). Writing P® also in the same form as

P®) = Re[P; exp(—iwit) + Py exp(—iwst)] 3)

and assuming an isotropic nonlinear medium, the nonlinear po-
larization P; at frequency w; is found to be

€0_(3 . .

P;= ngl)ll (E;-E;)E; +2(E;-E;) E;
+2(Ey, - En)E; + 2(Ey, - E;)E7,
+2(E;, - Ej)E,,] “)

where j,m = 1 or 2 (j # m). and we used the fact that the

«— . .
tensor x ~ has only four nonzero components for an isotropic

medium and that they are related to each other as Xﬁ)m =

3 3 3
X§2)12 = X§2)21 = X§1)11/3-

The two optical fields E; and E'; evolve along the fiber length
as dictated by the combination of GVD, SPM, and XPM. It is
common to choose the z axis along the fiber axis and assume
that 1 and F lie in the z—y plane. This assumption amounts to
neglecting the longitudinal component of the field vectors and is
justified in practice as long as the spatial size of the fiber mode
is larger than the optical wavelength. We follow the notation
of [21] and employ the key vector |A) for representing a Jones
vector polarized in the x—y plane. In this notation, the two fields
at any point r inside the fiber can be written as

Ej(r,t) = Fj (z,y) |4;(2,1)) exp(if3;z) ©)

where F; (z,y) represents the fiber-mode profile and f; is the
propagation constant at the carrier frequency w;. The Jones
vector |A;) is a two-dimensional column vector representing
the two components of the electric field in the x—y plane. The
fiber-mode profiles can be taken to be nearly the same for the
two fields, Fj(z,y) = F(z,y), which amounts to assuming
the same effective core area a.g for the two waves.

Using (1)—(5) in the Maxwell equations, integrating over the
transverse coordinates in the z—y plane, and assuming |A;) to be
a slowly varying function of z so that we can neglect its second-
order derivative with respect to z, we obtain the following vector
form of the NLS equation:

o4;) | 51j0|z4j) L 25 O*145)
0z ot 2 o2

= L [204;14;) + A4S + 2(An| Am)
+ 2 A ) A + 21 45,) (A7 ]] |4) (©)
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where j,m = 1 or 2 ( # m), and the nonlinear parameter is
defined as

B 3wix ﬁ)n N

(862 ,Bj aeﬁ‘) '

Similar to the scalar case [1], the effects of fiber dispersion were
included by expanding 3; in a Taylor series around the carrier
frequency w;. The parameter 1, = 1/v; is related to the group
velocity while (; takes into account the effects of GVD inside
the fiber. (A| and |A*) are Hermitian and complex conjugates
of |A), respectively. In deriving (6), the fiber is assumed to be
cylindrically symmetric without birefringence, and fiber losses
are neglected. Real fibers have some residual birefringence that
fluctuates along the fiber length and leads to polarization-mode
dispersion (PMD). The PMD effects are well known in the ab-
sence of nonlinear effects [21] but they complicate the present
analysis considerably and will be considered in a separate paper.

Taw;

(caetr)

Vi

III. POLARIZATION EVOLUTION OF PUMP AND PROBE

Vector theory of XPM requires a solution of the two coupled
vector NLS equations given in (6). This set of equations cannot
be solved analytically, and one must use a numerical approach
in general. To isolate the XPM-induced polarization effects as
simply as possible, we make two simplifications in this section.
First, we assume that the fiber length L is much shorter than
the dispersion length Lp; = 1¢/|B2;| (j = 1,2) so that we
can neglect the effect of GVD temporarily. Second, we adopt a
pump-probe configuration and assume that | A3) is much weaker
than | A1). This is often the case in practice.

For simplicity, we also assume that the nonlinear parameters
are nearly the same for the two waves, i.e, 71 = 72 = 7. We
can then introduce a single nonlinear length L, = 1/(yF)
and normalize z as { = z/L,,, where P, is the peak power of
the pump pulse. Introducing a reduced time variable in a frame
moving with the probe pulse as 7 = (t — (3122) /T, where Ty is
the width of the pump pulse, (6) can be simplified and take the
form

0|A 0|A 7
|6§1> % |8T1> = §(3P0 —p3-0)|Ay) (®)
o|Ay) 2

=—[2 — -al|A 9
where t = Ly, /Ly, Ly, = To/(11 — P12) being the walkoff
length, and p(&, 7) represents the SOP of the pump pulse on the
Poincaré sphere through the Stokes vector defined as

(Ar(€, ol (€ 7))

p(¢, P,

T)=

(10)

Also, po(&,7) = (A1(§,7)|A1(&, 7))/ Po represents the nor-
malized temporal profile of the pump. The vector ¢ is defined
using the unit vectors é; in the Stokes space as ¢ = 0161 +
02€2 + o3é3, where o (j = 1,2,3) are the three Pauli ma-
trices [21]. Finally, p; = (p- é3)és is the third component of the
vector p (corresponding to circular polarization). Light is lin-
early polarized whenever p; = 0 because p then lies entirely in
the equatorial plane of the Poincaré sphere.



960

The pump equation is much easier to solve in the Stokes
space. We first use the definition of p to obtain an equation for
it. Using the identity [21]

a(a~a):aT+ia><a

the pump SOP governed by p is found to evolves as

dp dp

2
o THo- = oP3 X P.

oc " Por T3 (i

This equation is easy to solve and provides the following solu-
tion for the Stokes vector of the pump:

) = | (3) 07 =) w0 = ) (12)

where the notation exp(p;x ) is from [21] and should be inter-
preted in terms of a series expansion. Physically, it represents a
rotation of the Stokes vector around p;. This rotation is known
as NPR, as mentioned earlier.

In the absence of GVD, the pump pulse remains unchanged
along the fiber but it separates from the probe because of pulse
walkoff. Its SOP also changes because of SPM as indicated in
(12). If the pump is linearly or circularly polarized initially, its
SOP does not change along the fiber. For an elliptically polar-
ized pump, SPM-induced NPR changes its SOP continuously.
As SPM is power dependent, NPR depends on the temporal pro-
file, and different part of the pump pulse acquire different SOPs.
As will be seen later, such intrapulse polarization effects have a
profound effect on the probe evolution.

We now consider the XPM-induced polarization effects on
the probe. For this purpose, we introduce the Stokes vector of
the probe as

s ) = LhlE e )

(13)

where S represents the peak power of the probe. We then follow
the procedure used earlier for the pump to obtain the following
equation for s:

0s 4

8—52——(p—l’3)><3~ (14)

3

This equation shows that the pump rotates the probe’s Stokes
vector around p — p5, a vector that lies in the equatorial plane
of the Poincaré sphere. As a result, if the pump is circularly po-
larized initially, XPM effect becomes polarization independent
since p — p; = 0. On the other hand, if the pump is linearly
polarized, p; = 0, and p remains fixed in the Stokes space.
However, even though the pump SOP does not change in this
case, probe SOP can change through XPM-induced NPR. If the
pump wave is in the form of a pulse, XPM will induce different
amount of NPR on the different parts of the probe pulse, re-
sulting in nonuniform polarization along the probe pulse profile.
The XPM-induced NPR effects become quite complicated when
the pump is elliptically polarized since pump SOP itself changes
through SPM. Such polarization changes impact the XPM-in-
duced chirp, and the spectral profile of the probe exhibits much
more complicated structure compared with the scalar case. We
focus on the spectral effects in the next section.
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IV. POLARIZATION-DEPENDENT SPECTRAL BROADENING

In general, (9) needs to be be solved numerically except when
the pump maintains its SOP. As discussed earlier, this happens
when the pump pulse is linearly or circularly polarized initially.
In the following discussion, we focus on two specific cases. In
one case, both pump and probe are linearly polarized at the input
end but the probe is oriented at an angle 6 with respect to the
pump. In the second case, the pump SOP is elliptical initially but
the probe is linearly polarized. We use the major and minor axis
(aligned with the x and y axes, respectively) of this ellipse as the
basis in which the SOP of the pump and probe is represented in
the Jones space. Assuming a Gaussian shape for both pulses, the
Jones vectors for the two input fields have the form

isin ¢

2
|A5(0, 7)) = {Cosa} So exp (-2%> (15)

sin f
where ¢ is the ellipticity angle for the pump and r = T3 /T
is the relative width of the probe compared to the pump. Using
this form as an input, we first solve (9) numerically to obtain
|A2(&, 7)) and then calculate the spectrum for the orthogonally
polarized components of the probe by taking the Fourier trans-
form.
Consider first the case of a linearly polarized pump along the
x axis by setting ¢ = 0. As SPM does not affect the pump SOP
in this case, the analytical solution of the probe field is found to
be

) T2
|A2(&,7)) = \/570 [COSQeXp (&H exp (—W) (16)

sin 6 exp ( 3

where ®,,(¢,7) = 2 f(f po(&',7)d¢ is the XPM-induced non-
linear phase shift. The probe pulse shape does not change in the
absence of GVD, as expected. However, its SOP changes and it
acquires a nonlinear time-dependent phase shift that chirps the
probe pulse and leads to spectral broadening. Notice that the
XPM-induced phase shift for the y-polarized component is one
third of that the copolarized one because of the reduction in the
XPM coupling efficiency. This is a well-known feature of XPM
[1].

Fig. 1(a) shows the probe spectra along the x (solid curve) and
y (dashed curve) axes for a fiber of length L = 57 L,, (£ = 57)
assuming that the probe is polarized at § = 45° and that the two
input pulses have the same width (» = 1). The walkoff length is
chosen to be one half of the total fiber length (L,, = L/2). The
copolarized component has a much broader spectrum with an
oscillatory structure than the orthogonally polarized one. When
the spectrum is measured without placing a polarizer in front of
the photodetector, one would record the total spectral intensity
shown by a thin solid line in Fig. 1. However, it is important
to realize that the SOP is not the same for all spectral peaks.
As seen in Fig. 1, The leftmost peak is = polarized whereas the
dominant peak in the center is mostly y polarized in this case.
This spectral nonuniformity of the SOP is a direct consequence
of the XPM-induced NPR.

When the SOP of the input pump is changed to elliptical, the
XPM effect changes considerably because even the pump SOP



LIN AND AGRAWAL: VECTOR THEORY OF XPM

2.0 . . . . . . T T T r T
1.8 | \ -
| r=1 ﬂ‘ ]
1-6- /A\ ]
— 4l A
:i1.4- ' g,
I |
212- i -
210- ! ]
g 1
£
£
13
Q
Q
»n

14 F -

12

0.8 -

0.6 -

0.4

Spectral Intensity (a.u.)

02

0.0

Fig. 1. Spectral broadening of a probe pulse linearly polarized at § = 45 °
when pump pulse is (a) linearly polarized along the z axis or is (b) elliptically
polarized. The solid and dashed curves show the spectra for x- and y- polarized
components of the probe, respectively. The thin solid curve shows the whole
probe spectrum.

is not maintained along the fiber. The probe pulse spectra in
this case are shown in Fig. 1(b) for an input ellipticity angle of
¢ = 20°. All other parameters are kept the same. A comparison
of Fig. 1(a) and (b) gives an idea how much probe spectrum can
change with a small change in the pump SOP. A new feature is
that even the temporal probe profiles are now different for the x
and y polarized components even though the total power profile
remains the same as long as GVD effects are negligible. This
feature is shown in Fig. 2. The pulse shapes for the two polar-
ized components exhibit a multipeak structure such that the total
power at any time adds up to the input value. The physical origin
of this behavior is the SPM-induced NPR for the pump pulse.
As the pump SOP evolves, the probe SOP changes in a complex
manner. Fig. 2 shows the temporal evolution of the SOP for the
pump (gray curve) and probe (black curve). The left and right

961

14
©
T

Pump -

o
o
T

1N
'S
T

Normalized Pulse Profile (a.u.)
o
N
T

0.0

-3

[='=.
Bh!

it

/
i

(
[

Fig. 2. Temporal profiles of x-polarized (solid curve) and y-polarized (dashed
curve) components of the probe under conditions of Fig. 1(b). The thin solid
curve shows the total probe power. The dotted curve shows pump pulse assumed
to be elliptically polarized. Temporal evolution of the SOP of the pump (gray
curve) and probe (black curve). The left and right parts show the front and back
faces of the sphere, respectively.

parts show the front and back faces of the Poincaré sphere, re-
spectively. The pump Stokes vector traces a circle in time as it
rotates around the é3 axis. However, the time-dependent probe
Stokes vector follows the black trajectory and exhibits a quite
complicated pattern. The temporal structure seen in Fig. 2 stems
from this complex polarization behavior.

The spectral asymmetry seen in Fig. 1 is a direct consequence
of pulse walk off [1]. When the pump and probe pulses sep-
arate rapidly because of a short walkoff length, the main af-
fect of XPM is to induce a spectral shift without changing the
pulse spectrum drastically. The NPR effects studied here lead to
different XPM-induced spectral shifts for the two polarization
components of the probe. This feature is seen clearly in Fig. 3
obtained using the same parameters as in Fig. 1 except that the
probe pulse is half as wide as pump (r = 1/2) and, thus, sepa-
rates rapidly from the pump pulse. The pump is assumed to be
linearly polarized at the input end. The whole spectrum of the
probe pulse (thin solid line) exhibits a two-peak structure. How-
ever, the two spectral peaks are orthogonally polarized. Indeed,
the individual spectra for the two polarization components are
not broadened much (solid and dashed curves) except that their
central frequencies are shifted by different amounts because of
the XPM effects. As expected, the copolarized component un-
dergoes a much larger shift compared with the orthogonally po-
larized one. This effect may be useful for polarization-induced
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Fig.3. Probe spectra under conditions of Fig. 1(a) except that the probe is only
half as wide as the pump pulse (+ = 0.5).

switching. By placing a filter at the shifted position, the probe
pulse can be turned on or off by simply changing the pump (or
signal) polarization.

V. POLARIZATION-DEPENDENT PULSE SPLITTING AND PULSE
COMPRESSION

The preceding analysis assumed that the fiber was much
shorter than the dispersion length such that both the pump and
probe pulses maintained their temporal profile. In this section
we relax this assumption and focus on the XPM-induced
polarization-dependent temporal effects. In the presence of
GVD, an extra term appears in (8) and (9)

8|A1> 8|A1> i771 82|A1> - 7
8|A2> 2'772 82|A2> . 21
9 T2 oz ~ 3 pot(pops)-o]ldz)

(18)

where n; = L,,/Ly; is inversely related to the dispersion length
Lagj = TE/|B2j (G = 1,2). In the following discussion, we
assume for simplicity that 821 = [oo = [ so that Ly; =
Lgs = L. This is the case for a dispersion-flattened fiber or
when the pump and probe wavelengths do not differ by more
than a few nanometers.

Three length scales—nonlinear length L,,, walkofflength L,,,,
and dispersion length L ;—characterize the interplay between
GVD and XPM. It is well known that XPM-induced chirp can
cause the probe pulse to break up or to compress depending on the
relative magnitudes of the three lengths [1]. If L,, < L, < Ly
and the fiber exhibits normal dispersion, small dispersion will
cause probe pulse to break asymmetrically. If L,, > L4 and the
fiber dispersion is anomalous, probe pulse can be compressed
through XPM-induced chirp. As we shall see in this section,
situation becomes more complicated in the vector case since
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Fig. 4. Temporal profiles of x-polarized (solid curve) and y-polarized
(dashed curve) components of the probe under conditions of Fig. 1(a) at a
distance of 50L,, in the normal GVD regime. The pump and probe pulses
have a Gaussian shape and the same initial width. The solid and dashed curves
show the copolarized and orthogonally polarized component, respectively.
The dotted curves shows the initially identical probe pulse profile for both
polarization components (6 = 45 °).

the two polarization components of the probe propagate in
qualitatively different ways under the combined effect of fiber
dispersion and XPM. We study the polarization effects by
solving the two vector NLS equations numerically using the
split-step Fourier method [1]. Note that this amounts to solving
four coupled NLS equations.

We first consider the normal-dispersion case (32 > 0). Fig. 4
shows an example of pulse breakup inside a fiber of length
L = 50L,, for the linear and elliptically polarized pumps
using Ly, = 100L,, and L,, = 10L,,. Normal dispersion of
the fiber causes the probe pulse to break up asymmetrically. An
oscillatory structures develops near the leading or tailing edge
of the probe pulse depending on how the pump walks away
from the probe pulse. However, the details of wave breaking
are quite different for the two polarization components of the
probe. In the case of a linearly polarized pump, the copolarized
component (solid curve) of the probe exhibits much more
oscillatory structure than the orthogonally polarized one (dashed
curve) because the XPM-induced chirp and spectral broadening
is larger for it. This feature can be verified experimentally
by placing a polarizer before the photodetector and noticing
that the oscillatory structure changes as polarizer is rotated.
When the pump pulse is elliptically polarized, the polarization
dependence of probe profile is reduced but remains measurable.

Next we focus on the XPM-induced pulse compression in a
fiber with anomalous dispersion (2 < 0). Fig. 5 shows the re-
sults obtained under the conditions identical of Fig. 4 except
that dispersion length is only five times as long as the non-
linear length (L4 = 5L,,). When the pump is linearly polarized,
the combined effects of XPM and GVD compress the copolar-
ized component of the probe by a large amount (solid curve).
However, at the same time, the orthogonally polarized compo-
nent undergoes severe broadening (dashed curve). This strange
behavior is related to the reduced XPM interaction occurring
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Fig. 5. Same as in Fig. 4 except that L, = 5L,, and both pulses propagate

in the anomalous-GVD regime of the fiber. The solid and dashed curves show
the copolarized and orthogonally polarized component, respectively. The dotted
curves shows the initially identical probe pulse profile for both polarization
components (6 = 45°).

when the pump and probe are orthogonally polarized. The total
probe profile exhibits a narrow central copolarized peak with a
wide wing that is orthogonally polarized. The wing can be sup-
pressed by using a polarizer aligned with the pump SOP. When
the pump is elliptically polarized, such polarization effects per-
sist but become less dramatic because of SPM-induced changes
in the pump SOP.
Finally, we consider XPM-induced splitting of a probe pulse.
As discussed in Section III, polarization-dependent XPM not
only change the spectrum of the probe, but also shift its cen-
tral frequency. This is seen clearly in Fig. 5 where the probe
has moved away from its initial position because of the spec-
tral shift. In general, this spectral shift is different for the two
polarization components of the probe. This spectral difference
is transferred to the pulse position through differential group
delay since the two polarization components propagate with dif-
ferent group velocities. Fig. 6 shows an example of pulse split-
ting under the same conditions used for Fig. 5 except that the
fiber exhibits weak anomalous dispersion and the dispersion
length for the pump pulse is 400 times longer than the nonlinear
length (Ly = 400L,,). As the width of the probe pulse is half
of the pump, its own dispersion length is 100 times longer than
the nonlinear length. When the pump is linearly polarized, the
spectral shift of the copolarized component (solid curve) occurs
toward the low-frequency side and is much larger than that of
the orthogonally polarized one (dashed curve). As a result, the
copolarized component of the probe pulse propagates slower
than the orthogonally polarized one, and the two are separated in
the time domain, as seen in Fig. 6. The probe pulse will appear
to have two distinct peaks when its total intensity is measured
as a function of time. However, the two peaks have orthogonal
polarizations, and can be separated by using a polarizing beam
splitter. Similar features are observed for an elliptically polar-
ized pump, although the separation between the two peaks de-
pends on the ellipticity angle.
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Fig. 6. Same as in Fig. 4 except that both pulses propagate in the
anomalous-GVD regime of the fiber and probe pulse is only half as wide as
the pump pulse (»r = 0.5). The solid and dashed curves show the copolarized
and orthogonally polarized component, respectively. The dotted curves shows
the initially identical probe pulse profile for both polarization components
@ = 45°).

VI. CONCLUSION

In this paper we have developed a vector theory of XPM ca-
pable of describing nonlinear coupling between two pulses of
different wavelengths and arbitrary states of polarization. We
have focused for simplicity on the pump-probe configuration
in which probe pulse is much weaker than the pump pulse and
used it to investigate the temporal and spectral polarization ef-
fects occurring inside an optical fiber. Using the Stokes-vector
formalism we show that pump polarization does not change
when pump pulse is linearly or circularly polarized. However,
the probe polarization changes in general through XPM-induced
NPR. In the absence of dispersion-induced probe broadening,
such nonlinear changes in the probe polarization do not affect
the temporal shape of the probe pulse but produce a multipeak
spectrum whose different spectral peaks have different states
of polarization. When dispersive effects are included, even the
shape of the probe pulse becomes polarization dependent, i.e.,
different parts of the pulse have different states of polarization.
Such nonlinear polarization effects lead to novel phenomena
such as polarization-dependent compression and splitting of the
probe pulse.
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