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Vector theory of four-wave mixing: polarization
effects in fiber-optic parametric amplifiers
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We present a vector theory of four-wave mixing and use it to study the polarization-dependent nature of four-
wave mixing and the conditions under which the gain of a dual-pump fiber-optic parametric amplifier becomes
polarization independent. We find that in the absence of self- and cross-phase modulations, any pair of or-
thogonally polarized pumps can provide polarization-independent gain, but this gain is minimum for linearly
polarized pumps and becomes maximum when the two pumps are circularly polarized. Self-and cross-phase
modulations induce nonlinear polarization rotation and change the orthogonality between the two pump po-
larizations. We discuss the general case of elliptically polarized cases and show that only linearly and circu-
larly polarized pumps can maintain their orthogonality along the fiber. A stability analysis shows that the
case of linearly polarized pumps is more stable than the circular one against small deviations from the ideal
case but that the latter provides much more amplification. © 2004 Optical Society of America
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1. INTRODUCTION
Fiber-optic parametric amplifiers (FOPAs), based on four-
wave mixing (FWM) occurring inside optical fibers, can
provide high gain with a relatively flat and wide spectrum
when they are pumped in the vicinity of a zero-dispersion
wavelength1–3 or pumped at two well-selected frequencies
in this region.4–7 Recently dual-pump FOPAs have at-
tracted considerable attention because of their potential
applications for wideband amplification, wavelength con-
version, optical sampling, etc.1–7 Unfortunately, the
parametric gain is strongly polarization dependent be-
cause of an intrinsic angular-momentum conservation
requirement,3 and this polarization sensitivity is an ob-
stacle to the practical implementation of FOPAs in optical
communication systems. The techniques proposed to
solve this problem make use of either polarization
diversity8,9 or linearly orthogonal polarized pumps.10,11

However, the first technique reduces the gain because
half of the pump power propagates in the backward direc-
tion inside the diversity loop,8,9 whereas the nonlinear
coupling efficiency is reduced dramatically when the sec-
ond technique is used.10,11 In both cases, the amount of
FOPA gain or wavelength-conversion efficiency is reduced
to relatively small values unless one employs unrealisti-
cally high pump powers. It was shown recently that the
use of circularly orthogonal polarized pumps can enhance
the FWM efficiency.12

A natural question one may ask is how does the effi-
ciency of the FWM process in a FOPA depend on the state
of polarization (SOP) associated with the two pumps and
the signal launched. The existing theory of FWM devel-
oped for optical fibers3 cannot answer this question be-
cause it makes the scalar approximation for all electro-
magnetic fields. What is needed is a full vector theory of
the FWM process in optical fibers. In this paper we de-
velop such a vector theory and use it to investigate thor-
oughly the polarization properties of a FOPA used either
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for signal amplification or for wavelength conversion.
Our theory shows that the nonlinear phenomena of self-
phase and cross-phase modulations (SPM and XPM) play
an important role in the performance of FOPAs because
they can affect the orthogonal nature of the pump SOPs
when the pumps are chosen to be orthogonally polarized
at the input end. The paper is organized as follows. We
first derive in Section 2 the four vector equations govern-
ing the FWM process. To gain some physical insight, we
first solve them analytically in Section 3 for the special
case in which the effects of SPM and XPM are ignored.
These nonlinear effects are included in Section 4 to show
how the SOP of the two pumps is affected by SPM and
XPM. In Section 5 we analyze the general case in which
the two pumps and the input signal are elliptically polar-
ized and discuss the conditions under which the FOPA
performance can be improved. The main results are
summarized in Section 6.

2. VECTOR THEORY OF FOUR-WAVE
MIXING
A complete description of dual-pump FOPAs should in-
clude all parametric processes originating from degener-
ate as well as nondegenerate FWM.4,5 In most experi-
mental situations, the two pumps are located
symmetrically 30–40 nm away from the zero-dispersion
wavelength of the fiber.5–7 The resulting gain spectrum
exhibits a central flat region in which the dominant con-
tribution comes from a single nondegenerate FWM pro-
cess corresponding to v1 1 v2 → vs 1 v i , where v1 , v2 ,
vs , and v i are the optical frequencies of the two pumps,
signal, and idler, respectively. Other FWM processes af-
fect wings of the gain spectrum but leave its flat portion
unchanged. Since the flat part is used in practice, we fo-
cus only on the above nondegenerate process in the fol-
lowing analysis. Furthermore, we neglect pump deple-
2004 Optical Society of America
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tion because pump powers are much larger than the
signal and idler powers in practice. For the same reason,
SPM and XPM effects induced by pumps are included, but
those induced by signal and idler waves are neglected.

Assuming that the instantaneous electronic response
dominates and neglecting the Raman contribution, we
find that the third-order nonlinear polarization in a me-
dium such as silica glass is given by3

P~3 !~r, t ! 5 e0xJ ~3 !AE~r, t !E~r, t !E~r, t !, (1)

where xJ (3) is the third-order nonlinear susceptibility. If
we assume that the nonlinear response is isotropic for
silica fibers, the xJ (3) has 21 nonzero components,13 among
which only four are independent, which are related to
each other as x1122

(3) 5 x1212
(3) 5 x1221

(3) 5 x1111
(3) /3. Thus the

third-order nonlinear properties of silica fibers can be ex-
pressed in terms of a single parameter x1111

(3) .
In the case of nondegenerate FWM, four distinct optical

fields propagate simultaneously inside the optical fiber,
and the total electric field satisfying the Maxwell wave
equation can be decomposed as

E 5 Re@E1 exp~2iv1t ! 1 E2 exp~2iv2t !

1 Es exp~2ivst ! 1 Ei exp~2iv it !#, (2)

where Re stands for the real part and Ej ( j 5 1, 2, s, i) is
the slowly varying (complex) amplitudes for the field os-
cillating at the frequency v j . Writing the nonlinear po-
larization P(3) also in the same form as

P~3 ! 5 Re@P1 exp~2iv1t ! 1 P2 exp~2iv2t !

1 Ps exp~2ivst ! 1 Pi exp~2iv it !#, (3)

we find that the slowly varying part at the pump frequen-
cies is given by (ignoring pump depletion)

Pj~v j! 5
e0x111

~3 !

4
@~Ej • Ej!Ej* 1 2~Ej* • Ej!Ej 1 2~Em*

• Em!Ej 1 2~Em • Ej!Em* 1 2~Em* • Ej!Em#,

(4)

where j, m 5 1 or 2 ( j Þ m).
By use of the same process, the nonlinear polarization

at the signal and idler frequencies is found to be

Pj~v j! 5
e0x1111

~3 !

2
@~E1* • E1!Ej 1 ~E1 • Ej!E1*

1 ~E1* • Ej!E1 1 ~E2* • E2!Ej 1 ~E2 • Ej!E2*

1 ~E2* • Ej!E2 1 ~Em* • E1!E2 1 ~Em* • E2!E1

1 ~E1 • E2!Em* #, (5)

where j, m 5 s or i ( j Þ m). In Eqs. (4) and (5) the
SPM and XPM effects induced by pumps are included, but
those induced by signal and idler waves are neglected be-
cause of their relatively low power levels.

The four optical fields Ej ( j 5 1, 2, s, i) evolve along
the fiber length according to the Maxwell wave equation.
For solving this equation, it is common to choose the z
axis along the fiber axis and assume that the vector Ej
lies in the x –y plane. This assumption amounts to ne-
glecting the longitudinal component of the field vectors
and is justified in practice as long as the spatial size of the
fiber mode is larger than the optical wavelength. To ac-
count for the polarization changes, we represent each
field as a Jones vector and employ the bra and ket nota-
tion of Ref. 14. More specifically, we write the four fields
at any point r inside the fiber as

Ej~r! 5 Fj~x, y !uAj~z !&exp~ib jz !, (6)

where Fj(x, y) represents the fiber-mode profile, b j is the
propagation constant at the carrier frequency v j , and the
Jones vector uAj& is a two-dimensional column vector rep-
resenting the two components of the electric field in the
x –y plane. The fiber-mode profiles can be taken to be
nearly the same for the four fields, Fj(x, y) [ F(x, y),
which amounts to assuming the same effective core area
aeff for the four waves.

Using Eqs. (1)–(6) in the Maxwell wave equation, inte-
grating over the transverse-mode distribution in the x –y
plane, and assuming uAj& to be slowly varying functions of
z so that we can neglect its second-order derivative with
respect to z, we find that the two pump waves evolve as

duAj&

dz
5 ib juAj& 1

ig

3
~2^AjuAj& 1 2^AmuAm&

1 uAj* &^Aj* u 1 2uAm&^Amu 1 2uAm* &^Am* u!uAj&,

(7)

where j, m 5 1 or 2 ( j Þ m) and ^Au and uA* & are the
Hermitian and complex conjugates of uA&, respectively.
By use of the same procedure, the signal and idler equa-
tions are given by

duAj&

dz
5 ib juAj& 1

2ig

3
~^A1uA1& 1 ^A2uA2&

1 uA1&^A1u 1 uA2&^A2u 1 uA1* &^A1* u

1 uA2* &^A2* u!uAj& 1
2ig

3
~^AmuA1&uA2&

1 ^AmuA2&uA1& 1 ^A1* uA2&uAm* &), (8)

where j, m 5 s or i ( j Þ m). Following a similar analy-
sis, it is easy to show that, in the case of a single-pump
configuration (degenerate FWM, 2v1 → vs 1 v i), the
signal and idler still follow Eq. (8) if we replace uA2& with
uA1& and set 2g to be g. In this case, the equation for the
single-pump field uA1& is given by Eq. (7) by setting uA2&
to zero.

In these equations, both the SPM and the XPM and the
nonlinear phenomenon of FWM are governed by the same
nonlinear parameter g defined as

g [ n2k0 /aeff 5 3k0x1111
~3 ! /~8n̄aeff!, (9)

where k0 5 2p/l and l represents an average wave-
length for the four waves at which the mode index n̄ is
specified. The use of a single nonlinear parameter for
the four waves is justified because, in practice, the fre-
quency difference among the waves is much smaller than
their carrier frequencies. In writing Eqs. (7) and (8), we
assume that the fiber is cylindrically symmetric without
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birefringence, and fiber losses are neglected because of a
short length (,1 km) used typically for making FOPAs.
The residual birefringence fluctuations occurring in real
optical fibers would affect the FOPA performance, but this
topic is beyond the scope of this paper and will be dis-
cussed separately.

3. POLARIZATION-DEPENDENT NATURE
OF FOUR-WAVE MIXING
In this section we investigate the polarization-dependent
nature of FWM inside optical fibers. The vector FWM
equations of Section 2 can be used in the general case in
which the pumps and the signal are launched into the op-
tical fiber with arbitrary SOPs. However, to investigate
the relationship between the FWM efficiency and the
pump polarizations as simply as possible, we neglect the
SPM and XPM effects temporarily in this section; their
impact is considered in Section 4.

Physically, the polarization-dependent nature of FWM
inside optical fibers stems from the requirement of
angular-momentum conservation among the four inter-
acting photons in an isotropic medium. This require-
ment can be described most simply in a basis in which ↑
and ↓ denote left and right circular polarization states
and carry the intrinsic angular momentum (spin) of 1\
and 2\, respectively.15 To describe FWM among arbi-
trarily polarized optical fields, we decompose each field in
this circular polarization basis as uAj& 5 Uju↑& 1 Dju↓&,
where Uj and Dj represent the field amplitudes in the ↑
and ↓ states, respectively, for the jth wave ( j
5 1, 2, s, i). Using this expansion, we can find from Eq.
(8) that the creation of idler photons in the two orthogonal
spin states is governed by the following two equations (in
the absence of XPM):

dUi

dz
5 ib iUi 1

4ig

3
@U1U2Us* 1 ~U1D2 1 D1U2!Ds* #,

(10)

dDi

dz
5 ib iDi 1

4ig

3
@D1D2Ds* 1 ~U1D2 1 D1U2!Us* #.

(11)

The same equations hold for the signal if we exchange the
subscript s and i.

The three terms on the right side of Eqs. (10) and (11)
show clearly the different angular-momentum combina-
tions of the interacting photons and lead to the following
selection rules for the FWM process. The first term
U1U2Us* in Eq. (10) corresponds to the path ↑1 1 ↑2 → ↑s
1 ↑ i , whereas the first term D1D2Ds* in Eq. (11) corre-
sponds to the path ↓1 1 ↓2 → ↓s 1 ↓ i , where a subscript
denote photons at that specific frequency. Physically, if
both pump photons are in the ↑ or ↓ state with a total an-
gular momentum of 62\, the signal and idler photons
must also be in the same state to conserve the total angu-
lar momentum.

The last two terms in Eq. (10) correspond to the paths
↑1 1 ↓2 → ↓s 1 ↑ i and ↓1 1 ↑2 → ↓s 1 ↑ i . The only dif-
ference for the last two terms in Eq. (11) is that the same
two combinations of pump photons produce a signal–idler
pair as ↑s 1 ↓ i . The main point to note is that these four
terms use orthogonally polarized pump photons with zero
net angular momentum and thus must produce orthogo-
nally polarized signal and idler photons in the basis used.
A signal photon with state ↑s can couple only to an idler
photon with state ↓ i and vice versa. This leads to two
possible combinations, ↑s 1 ↓ i and ↓s 1 ↑ i , both of which
are equally probable.

A pump with an arbitrary polarization is composed of
photons in both the ↑ and the ↓ states with different am-
plitudes and phases. FWM in this case includes both
scenarios discussed above. Its polarization dependence
is a consequence of the fact that different paths occur
with different probabilities and couple with each other,
and one must add probability amplitudes to sum over
various paths (as is done in quantum mechanics). The
coupling of different paths and the addition of amplitudes
can lead to constructive or destructive interference. For
example, if the two pumps are right circularly polarized,
no FWM can occur for a signal that is left circularly po-
larized (and vice versa). The same selection rules hold
for degenerate FWM, since the same set of equations,
Eqs. (10) and (11), applies after we replace uA2& with uA1&
and 2g with g. It follows immediately that the output of
any single-pump FOPA is always polarization dependent
because the two pump photons have the same SOP.
More importantly, it is impossible to balance the FWM ef-
ficiency experienced by the ↑ and ↓ components of the sig-
nal unless a polarization diversity loop is used.

In the case of lightwave system applications, one is in-
terested in the FOPA configuration that would yield the
same signal gain irrespective of the SOP of the input sig-
nal (polarization-independent gain). A detailed analysis
of Eqs. (10) and (11) shows that this can be realized by
two pumps with orthogonal polarizations, no matter what
their individual SOPs are. Although an elliptically po-
larized pump consists of a mixture of ↑ and ↓ states, it
turns out that, for two pumps with orthogonal elliptical
polarizations, the two paths, ↑1 1 ↑2 → ↑s 1 ↑ i and ↓1
1 ↓2 → ↓s 1 ↓ i , not only have the same efficiency but
also have appropriate relative phases with the
polarization-independent paths (↑1 1 ↓2 or ↓1 1 ↑2)
→ (↓s 1 ↑ i or ↑s 1 ↓ i). As a result, elliptically but or-
thogonally polarized pumps can provide a polarization-
independent FWM. More specifically, if the two pumps
are orthogonally and circularly polarized, the terms con-
taining U1U2 and D1D2 , vanish, and the FWM process be-
comes polarization independent. If the two pumps are
orthogonally but linearly polarized, it turns out that
U1D2 1 D1U2 5 0. The possible paths in this case, (↑1
1 ↓2) → (↓s 1 ↑ i or ↑s 1 ↓ i) and (↓1 1 ↑2) → (↓s
1 ↑ i or ↑s 1 ↓ i), are out of phase with each other and
thus cancel. The remaining two paths, ↑1 1 ↑2 → ↑s
1 ↑ i and ↓1 1 ↓2 → ↓s 1 ↓ i , have the same efficiency.
In the following analysis, we focus on such polarization-
independent FWM but employ a basis of linear polariza-
tion because this basis provides a more convenient way to
discuss the polarization ellipticity of pumps.16

By noting that Eqs. (7) and (8) are invariant with re-
spect to rotations in the x –y plane, we choose x and y axes
along the principal axes of the ellipse of the pump polar-
ization without any loss of generality. Solving Eq. (7)
with g 5 0, it is easy to see that the Jones vectors of the
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two elliptically but orthogonally polarized pumps then
evolve as

uA1~z !& 5 AP1S cos u
i sin u D exp~ib1z !,

uA2~z !& 5 AP2S i sin u
cos u D exp~ib2z !, (12)

where P1 and P2 are the input powers of two pumps and
u is the angle characterizing the ellipticity. This equa-
tion shows that the pump SOP does not change in the ab-
sence of SPM and XPM effects and the two pumps remain
orthogonally polarized inside the fiber.

Using Eq. (12) in Eq. (8) and introducing uAs&
5 uBs&exp(ibsz) and uAi& 5 uBi&exp(ibiz), we find that the
signal and idler fields evolve as

duBs&

dz
5

2ig

3
AP1P2 exp~2iDbz !~2i sin 2us0

1 cos 2us2!uBi* &, (13)

duBi&

dz
5

2ig

3
AP1P2 exp~2iDbz !~2i sin 2us0

1 cos 2us2!uBs* &, (14)

where Db 5 bs 1 b i 2 b1 2 b2 represents the linear
phase mismatch, s0 is a unit matrix, and the Pauli ma-
trices are introduced as3

s1 5 F1 0

0 21G , s2 5 F0 1

1 0G , s3 5 F0 2i

i 0 G .
(15)

These equations show that the parametric gain depends
on the pump ellipticity u.

Equations (13) and (14) are easy to solve and provide
the following solution for the signal field:

uBs~z !& 5 uBs~0 !&

3 F cosh~ gz ! 1
iDb

2g
sinh~ gz !Gexp~2iDbz/2!,

(16)

where the parametric gain is given by

g~u! 5 @~2g/3!2P1P2~1 1 3 sin2 2u! 2 ~Db/2!2#1/2.
(17)

Since the signal is amplified by the same factor for any
SOP, it is clear that, in the absence of SPM and XPM, the
nondegenerate FWM process is polarization independent
for any two orthogonally polarized pumps. However, the
overall FWM efficiency depends on the exact state of
pump polarizations through the u dependence of the para-
metric gain.

Figure 1 shows the u dependence of g after one’s nor-
malizing it by h 5 4gAP1P2/3 for two values of linear
phase mismatch. The parametric gain is maximum for
u 5 45°, which corresponds to circularly polarized pumps
but becomes minimum when u 5 0°, which corresponds
to linearly polarized pumps. This can be understood sim-
ply from Eq. (8) directly. In fact, the first two terms
among the last three FWM terms in Eq. (8) are the same
for any pair of orthogonally polarized pumps. The over-
all FWM efficiency is thus dictated by the last term. Not-
ing that uA* & has the same ellipticity as uA& but opposite
handedness, one can see that the inner product
u^Ap1* uAp2&u for two orthogonally polarized pumps is maxi-
mum when the two pumps are circularly polarized but is
zero when the two pumps are linearly polarized.

4. PUMP POLARIZATION EVOLUTION
We now consider the general case and allow for the SPM
and XPM effects induced by the two pumps. The situa-
tion changes considerably in the presence of SPM and
XPM, both of which can change the SOP of an optical field
if they produce nonlinear phase shifts that are different
for the two components of the Jones vector. Any such dif-
ferential phase shift changes the SOP through a phenom-
enon known as nonlinear polarization rotation (NPR).

To see how the SOP of the two pumps changes owing to
NPR, it is useful to write Eq. (7) in the Stokes space after
introducing the Stokes vectors of the two pumps as

SW p1 5 ^A1usW uA1&, SW p2 5 ^A2usW uA2&, (18)

where sW 5 s1ê1 1 s2ê2 1 s3ê3 . Here ê j ( j 5 1, 2, 3)
are the three unit vectors in the Stokes space, respec-
tively. Since the magnitude of the Stokes vectors SW p1 and
SW p2 represents pump powers that do not change (in the
absence of losses and pump depletion), the Stokes vectors
move on the surface of a sphere, known as the Poincaré
sphere. The Stokes vector lies in the equatorial plane for
linearly polarized light and points toward the north and
south poles for circularly polarized light. According to
the convention used for Eqs. (12), the directions ê1 and ê3
correspond to the linear and left circular polarization, re-
spectively. Orthogonally polarized pumps are repre-
sented by two Stokes vectors that are antiparallel; i.e.,
they point in the opposite directions on the Poincaré
sphere.

Fig. 1. Normalized parametric gain as a function of pump ellip-
ticity angle. The two pumps are assumed to be orthogonally po-
larized. The solid curve shows the case in which the phase-
matching condition is perfectly satisfied. The dotted curve
shows the case of a finite phase mismatch for Db 5 h
5 4gAP1P2/3.
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It is easy to show from Eq. (7) that the Stokes vectors
SW p1 and SW p2 satisfy

dSW p1

dz
5

2g

3
@~SW p1 1 2SW p2!3ê3 2 2SW p2# 3 SW p1 , (19)

dSW p2

dz
5

2g

3
@~SW p2 1 2SW p1!3ê3 2 2SW p1# 3 SW p2 ,

(20)

where the subscript 3 denotes the component along the
vertical ê3 direction. These equations show that the
SPM rotates the Stokes vector along the vertical direc-
tion. In contrast, the two XPM terms combine such that
the XPM rotates the Stokes vector along a vector that lies
in the equatorial plane.

Now consider how the two pumps rotate the Stokes vec-
tor of the signal and idler waves. The signal is assumed
to be weak enough that the SPM-induced NPR can be ne-
glected. However, the two pumps will change its SOP
through XPM. If the two pumps have the same power
and are orthogonally polarized, it turns out that the sig-
nal and idler polarizations remain unaffected. Physi-
cally speaking, even though each pump will change the
signal SOP, their orthogonality and the antiparallel
Stokes vectors cancel the individual rotations. Thus we
conclude that the SOPs of the signal and idler will not
change if the pumps with an equal power were to main-
tain their orthogonal nature during propagation. How-
ever, the two pumps cannot maintain their orthogonality
because the SPM- and XPM-induced NPR cannot be ne-
glected for them.

We have solved Eqs. (19) and (20) numerically to study
how the pump SOP changes with propagation inside the
fiber. On the Poincaré sphere, an arbitrary SOP is char-
acterized by the latitude angle c and azimuthal angle w
associated with the spherical coordinates. The connec-
tion between the ellipticity angle u and the spherical co-
ordinate c is provided by the well-known relation c
5 2u.16 We use u as an input parameter to present our
numerical results. As a rotation in the x –y plane in the
Jones space corresponds to a rotation around ê3 in the
Stokes space, and Eq. (7) is invariant to such a rotation,
the azimuthal angle w does not play an important role in
this analysis.

Figure 2 shows the trajectories of SW p1 on the Poincaré
sphere for four different input values u 5 2°, 15°, 30°,
and 43°. The vector SW p2 is set to be antiparallel to SW p1 at
the input end to ensure the initial pump orthogonality.
The combined effect of SPM and XPM causes the pump
polarization to rotate around the ê1 axis. However, the
two pumps can maintain their orthogonality when both of
them are either circularly polarized or linearly polarized
because these two SOPs represent the fixed points of Eqs.
(19) and (20). We thus conclude that a dual-pump FOPA
can be polarization independent only when the two
pumps are linearly or circularly polarized while being or-
thogonal at the input end of the fiber.

Which of the two pumping configurations is desirable
in practice? An important question that must be an-
swered is related to the stability of the two fixed points,
which must be stable against small perturbations over
the entire fiber length for the pumping configuration to be
useful. To answer this question, one can perform a linear
stability analysis of the two fixed points occurring for u
5 0° and 45° or study numerically how the SOP of the
two pumps changes when u deviates slightly from these
values. The numerical results of Fig. 2 show how the
SOP of one of the pumps evolves on the Poincaré sphere
for several values of u. The u 5 0° fixed point on the ê1
axis is stable because the Stokes vector remains confined
to its vicinity even when u 5 2°. In contrast, the fixed
point at the ê3 axis occurring for u 5 45° is not stable,
since the Stokes vector deviates far from it for u 5 43° if
the fiber is long enough.17,18

In practice, FOPAs are typically designed by use of
high-nonlinearity fiber (g ; 10 W21/km) so that one
needs short fiber lengths ;1 km or less.5 It is thus pos-
sible that the instability of the circularly polarized pump
will not affect the FWM process significantly over the
FOPA length. The length scale over which pump polar-
ization evolves is set by the nonlinear length defined as
LN 5 3/(2gAP1P2). As an example, in the case of two
pumps with powers of 0.5 W, each propagating along a
500-m-long high-nonlinearity fiber with g 5 10 W21/km,
the fiber length L corresponds to L 5 1.7LN . Figure 3(a)
shows how the pump SOP evolves for such a FOPA for the
same four angles used in Fig. 2. The tip of each curve
corresponds to z 5 L. As seen there, the u 5 43° curve
does not deviate too far from the u 5 45° location. In
practice, deviations will be even smaller as one ap-
proaches u 5 45°. Thus circularly polarized pumps can
be used for such a short-length FOPA because a small per-
turbation from the circular polarization does not lead to
too much deviation from the ideal u 5 45° case.

The impact of SPM and XPM on the FWM process can
also be studied by considering the inner product defined
as r 5 (SW p1 • SW p2)/(P1P2). When r 5 21, the two
Stokes vectors are antiparallel and the two pumps SOPS
are orthogonal to each other. For u 5 0° and u 5 45°,
r 5 21 initially and remains 21 at all points along the
fiber. Figure 3(b) shows how this quantity varies along

Fig. 2. Evolution of the SOP of one of the pumps on the Poincaré
sphere over a long propagation distance. The two pumps are or-
thogonal initially. The four trajectories correspond to a pump el-
lipticity angle u 5 2°, 15°, 30°, and 43°, beginning from the in-
side.
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the fiber length for the four values of u whose trajectories
are shown on the Poincaré sphere. When the pump
SOPs deviate from being linear by u 5 2°, the orthogo-
nality is nearly maintained over the whole fiber. When
u 5 15°, the pumps begin to deviate from being orthogo-
nal within 100 m of fiber. Deviations become much
larger in the case of u 5 30°. But for u 5 43°, r evolves
slowly and begins to deviate from its initial value of 21
only after L . LN . As a result, this configuration pro-
vides much higher gain while keeping the polarization-
dependent gain (PDG) relatively small as long as L
< LN .

5. POLARIZATION-DEPENDENT GAIN
Having shown that both the linear and the circular polar-
ization states for the two orthogonally polarized pumps

Fig. 3. (a) Pump SOP evolution for the same four values of u for
a 500-m-long fiber with g 5 10 W21/km. The two pumps have
equal powers of 0.5 W. (b) The inner product r as a function of
propagation distance for the same fiber. Pumps are orthogo-
nally polarized when r 5 21.
can provide polarization-independent gain, we compare in
this section the relative performance of such FOPAs. Al-
though a general solution of Eq. (8) requires a numerical
approach, the vector problem reduces to a scalar problem
whenever the pumps maintain their SOPs along the fiber
because Eq. (8) can be easily diagonalized. It provides
the following expression for the FOPA gain3:

G [
^As~L !uAs~L !&

^As~0 !uAs~0 !&
5 1 1 @1 1 k2/~4g2!#sinh2 ~ gL !,

(21)

where k 5 Db 1 rkg (P1 1 P2) is the total phase mis-
match among the four waves (it includes the contribu-
tions of both the fiber dispersion and the pump-induced
XPM and SPM) and g 5 @(rgg)2P1P2 2 (k/2)2#1/2 is the
parametric gain coefficient. In the expressions of k and
g, rk and rg are quantities that depend on the polariza-
tions of the pumps and signal. rk 5 1 and rg 5 2/3 when
the two pumps are orthogonally and linearly polarized,
but rk 5 2/3 and rg 5 4/3 when the two pumps are or-
thogonally but circularly polarized. The doubling of rg in
the latter case implies a significant improvement in the
amount of FOPA gain. Actually, the same values of rk

and rg (rk 5 2/3 and rg 5 4/3) hold if the signal is copo-
larized with the two circularly copolarized pumps. In
contrast, when both pumps and the signal are linearly co-
polarized, rk 5 1 and rg 5 2.3 Although rg is maximum
in this case and the FOPA provides maximum gain, it is
also highly polarization dependent. This can be seen by
noting that rk 5 25/3 and rg 5 2/3 when the signal is or-
thogonally polarized with respect to the two linearly copo-
larized pumps. The difference in rk and rg for different
pumping configurations affect the phase matching and
FWM efficiency considerably and provide different FOPA
performances. We discuss such differences in detail in
the following analysis.

Figure 4 shows the gain spectra for three different

Fig. 4. Gain as a function of signal detuning from the zero-
dispersion wavelength (l0 5 1580 nm) for a 500-m-long FOPA
pumped by use of two 0.5-W pumps located at 1535 and 1628 nm.
Pumps are orthogonally polarized for the middle two curves for
which gain does not depend on the state of signal polarization.
The thin solid and dotted curves show the dependence of gain on
signal polarization in the case of linearly copolarized pumps.
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pumping schemes that use g 5 10 W21/km, l0
5 1580 nm, b3 5 0.04 ps3/km, b4 5 1.0 3 1024 ps4/
km, and L 5 500 m. The two pump wavelengths (l1
5 1535 nm and l2 5 1628 nm) and their powers (P1
5 P2 5 0.5 W) are chosen such that the FOPA provides a
fairly flat gain of 37 dB over a wide wavelength range
(dotted curve) when the two pumps as well as the signal
are linearly copolarized. As discussed earlier, this gain is
highly polarization dependent. When the signal becomes
orthogonally polarized to the two copolarized pumps, the
FOPA gain is reduced to almost zero in the central part
(thin solid curve) because of large variations in the FWM
efficiency and XPM-induced phase mismatch. When two
orthogonal linearly polarized pumps are used, the gain
spectrum is still wide and flat (dashed curve), but the
gain is reduced dramatically to a quite small value of
around 8.5 dB. However, as shown by the solid curve,
the FOPA gain can be increased from 8.5 to 23 dB over a
wider spectral region if the two pumps are made left and
right circularly polarized. Thus circular polarization is
superior to linear polarization because it provides more
gain at a given pump power. Alternatively, it can provide
the same gain with only half the pump power as seen
from Fig. 1 and also found in Ref. 12.

To see how much PDG is induced when one deviates
from the ideal values of u 5 0° and u 5 45°, one can see
in Fig. 5 the FOPA gain for the same four values of u used
in Fig. 3. In all cases, two pump polarizations are or-
thogonal at the input end. The gain spectra in the non-
ideal cases are obtained by solving Eqs. (7) and (8) nu-
merically. The solid curves in Fig. 5(a) show the case in
which the signal is linearly polarized at 45° at the input
end (the polarization angle is in the Jones space, corre-
sponding to its Stokes vector along the ê2 axis in the
Stokes space). The solid curves in Fig. 5(b) show cases in
which the signal is linearly polarized at 135° at the input
end (Stokes vector along the negative ê2 axis). These two
signal polarizations correspond to the minimum and
maximum FOPA gain and thus provide the magnitude of
PDG. In all cases, the flatness of the gain spectra is
maintained to a good extent because of the dual-pump na-
ture of the FOPA. The two dotted curves show the linear
(u 5 0°) and circular (u 5 45°) polarization cases for
which the gain is polarization independent. A small per-
turbation of u 5 2° from the linear polarization produces
a PDG of 1.3 dB in the central part of the gain spectrum.
This PDG increases with the ellipticity of the pump polar-
ization and can reach 14.7 dB when u 5 30°. It de-
creases when the pump SOP tends toward circular polar-
ization. As shown by the 43° curves, a perturbation of 2°
from the ideal circular polarization produces a PDG of 3.4
dB. Although this amount is larger than that for linear
polarization, the overall FOPA gain is much larger that
that for linear orthogonal polarization. The spectrum is
also wider and flatter.

To show how the signal SOP affects the FOPA gain, we
assume that the signal is linearly polarized and vary the
polarization angle f (in the range 0 to p in the Jones
space). Figure 6(a) shows how the gain varies with f for
a 1590-nm signal located in the central part of the gain
spectrum for several different pump polarizations. When
the two pumps are linearly copolarized, the gain is highly
polarization dependent and can vary from a maximum
value of around 37 dB to a minimum value of 0, depend-
ing on the signal SOP (dotted curve). This polarization
sensitivity can be overcome by use of pumps with orthogo-
nal linear polarizations (u 5 0). However, such a
scheme can provide only a small amount of gain (lower
dashed line). The situation changes if the two pumps are
orthogonal circularly polarized (u 5 45°). This scheme
not only maintains a high value of flat gain but the FOPA
gain is also completely invariant with signal polarization
(upper dashed curve). Small changes in u from these
ideal values produce some PDG as seen by the curves for
u 5 2° and 43°.

When the pumps become elliptically polarized, the
FOPA gain is considerably polarization dependent. The
gain extrema occur when the signal polarization angle is
45° and 135°, where the Stokes vector is perpendicular to

Fig. 5. Gain as a function of signal detuning from the zero-
dispersion wavelength under different pump polarizations.
Other parameters are the same as Fig. 4(a) Solid curves show the
cases in which the signal is linearly polarized (f 5 45°) such
that it experiences minimum gain. (b) Solid curves show the
cases in which the signal is linearly polarized (f 5 135°) such
that it experiences maximum gain. The two dotted curves show
the cases in which the two pumps are linearly or circularly po-
larized.
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those of the pumps. Although the linear polarization of
the signal is considered here, it turns out that these two
signal SOPs correspond to the two global extrema of the
FOPA gain. The FOPA gain at f 5 135° is larger than
that at f 5 45° because of the nature of pump polariza-
tion evolution shown in Fig. 3(a). Both pumps evolve
such that their Stokes vectors are closer to that of the sig-
nal for f 5 135° and thus provide more gain. Figure
6(b) shows the dependence of minimum and maximum
FOPA gain and the corresponding PDG (dotted curve) on
the pump ellipticity angle u. It can be seen clearly that
PDG is zero when the two pumps are linearly or circularly
polarized while remaining orthogonal. When the two
pumps are elliptically polarized at the input end, the PDG
can be as large as 14.7 dB for u 5 30° because of SPM-
and XPM-induced polarization changes.

Although we have focused on the phenomenon of signal
amplification, our results also apply to FWM-based wave-
length converters with only minor changes. Since the
signal and idler photons are created simultaneously, the

Fig. 6. (a) Gain as a function of signal polarization angle f for
the same FOPA under different pumping configurations. (b)
The maximum and minimum gains (solid curves) and the
amount of PDG (dotted curve) as a function of pump ellipticity
angle for the FOPA of Fig. 4.
idler power Pi 5 ^AiuAi& is related to the signal power Ps
as Pi(L) 5 Ps(L) 2 Ps(0) if we neglect a relatively small
difference between the signal and the idler photon ener-
gies. The wavelength-conversion efficiency h is thus re-
lated to the signal gain G 5 Ps(L)/Ps(0) as h
[ Pi(L)/Ps(0) 5 G 2 1. As a result, the entire discus-
sion related to signal amplification applies to wavelength
conversion.

6. SUMMARY
We have developed a general vector theory of the nonlin-
ear FWM process and have used it to study the impact of
pump polarization configuration on the performance of
FOPAs. We show that orthogonally but linearly polar-
ized pumps provide polarization-independent gain but re-
duce its magnitude drastically compared with the case of
linearly copolarized pumps and signal. In the absence of
SPM and XPM, any orthogonally polarized pumps can
provide a polarization-independent FOPA gain. How-
ever, the gain is minimum for linear polarization and be-
comes maximum when the two pumps are orthogonal cir-
cularly polarized. SPM- and XPM-induced polarization
changes destroy the orthogonality between the two
pumps and induce PDG for all elliptically and orthogo-
nally polarized pumps except when the ellipticity angle
u 5 0 or 45°. These two configurations provide com-
pletely polarization-independent parametric amplifica-
tion and have similar resistance to small polarization per-
turbations for fibers whose length is comparable with or
shorter than the nonlinear length, although circular po-
larization performs worse for longer fibers. We show
that the FOPA gain or the wavelength-conversion effi-
ciency can be enhanced by a factor of 25 or more by chang-
ing the linear polarization to circular polarization while
maintaining the orthogonality between the two pumps.

The theoretical analysis in this paper is based on the
assumption that the fiber used for making a FOPA has no
birefringence. If the fiber has high polarization-mode
dispersion, random variations in the states of polarization
of the four waves eventually eliminate the distinction be-
tween linear and circular polarizations. As a result, any
orthogonally polarized pumping configuration will have
nearly the same performance. Moreover, the frequency-
dependent birefringence will change the relative polariza-
tion orientations among the four waves depending on
their wavelength separation and thus would make the
PDG frequency dependent. The vector theory presented
here can be extended to investigate the polarization-
mode-dispersion effects on FOPA performance. A de-
tailed analysis is beyond the scope of this paper and will
be discussed elsewhere.19,20
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