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Effects of polarization-mode dispersion on fiber-based
parametric amplification and wavelength conversion
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We present a vector theory of four-wave mixing in optical fibers and use it to discuss the effect of polarization-
mode dispersion (PMD) on the performance of parametric amplifiers and wavelength converters. We show
that PMD distorts the gain spectrum and makes it less uniform than that expected in the absence of resid-
ual birefringence. PMD also induces large f luctuations in the amplified or wavelength-converted signal.
© 2004 Optical Society of America
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Fiber-optic parametric amplif iers (FOPAs), based
on four-wave mixing (FWM) occurring inside opti-
cal f ibers, can provide high gain over a relatively
wide bandwidth.1 – 3 However, the underlying FWM
process is highly polarization dependent.4 Residual
birefringence inside optical f ibers not only random-
izes the state of polarization (SOP) of any optical
wave but also induces differential polarization vari-
ations among waves of different frequencies through
polarization-mode dispersion (PMD).5 In the pres-
ence of PMD the pump, signal, and idler waves cannot
maintain their relative SOPs along the fiber, resulting
in degradation of the FOPA performance unless a
polarization-maintaining fiber is used. Moreover,
since PMD can change with time because of environ-
mental variations, it would induce f luctuations in the
amplified signal in practice. Although PMD effects
have been observed in experiments,3,6 –8 a theory
describing such effects is not yet fully developed. In
this Letter we present a vector theory for the degener-
ate FWM process and use it to show that the output of
the FOPAs and wavelength converters is significantly
affected by residual birefringence and can f luctuate
over a wide range.

Using the general form of the nonlinear polarization
for silica glass4 and introducing the Jones vectors jAp�,
jAs�, and jAi� associated with the pump, signal, and
idler waves, respectively, in the notation of Ref. 5, we
obtain the following set of coupled vector equations gov-
erning the degenerate FWM process in an optical fiber
pumped with a single intense wave as 2vp � vs 1 vi:
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where vj and bj � j � p, s, i� are the optical fre-
quencies and the propagation constants, respectively,
0146-9592/04/101114-03$15.00/0
for the three waves, and g is the nonlinear parameter.4

The idler equation can be obtained by interchanging
the subscripts s and i in Eq. (2). The three compo-
nents of vector s represent the Pauli matrices.5

Several approximations were made in deriving
Eqs. (1) and (2). Fiber losses were neglected because
of the short f iber lengths commonly used for making
FOPAs. We also neglected pump depletion because
the pump power is much larger than the signal
and idler powers in practice. For the same reason,
self-phase modulation is included for the pump but ne-
glected for the signal and idler. Equation (2) includes
cross-phase modulation (XPM) induced by the pump
because XPM affects phase matching of the FWM
process and leads to nonlinear polarization rotation of
the signal and idler waves.

Vector B governs the birefringence-induced random
SOP variations. Because the beat length and corre-
lation length of residual birefringence are �10 m for
silica f ibers,9,10 both lengths are much shorter than
the length scale over which nonlinear polarization
rotation occurs ��1 km�. Thus rapid SOP variations
associated with the pump can be averaged; their main
effect is to reduce the nonlinear parameter such that
its effective value ge � 8g�9 (Ref. 11) and results in a
polarization-independent self-phase modulation.
Next we note that what matters for XPM and
FWM is the relative orientation of the pump and
signal or idler SOPs. We thus choose to work in
a rotating frame in which the pump SOP remains
fixed. Making a further transformation as jA� �
jA0�exp�i

Rz
0�bp 1 geP0�dz�, where P0 � �ApjAp� is the

pump power, the signal and idler equations reduce to
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where Dbj � bj 2 bp � j � s, i�, Dv � vs 2 vp, and
we have dropped the prime for simplicity. Vector b is
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related to B by a rotation in the Stokes space and is
responsible for PMD. Since the fiber length is
typically much longer than the birefringence corre-
lation length, we model b as a three-dimensional
stochastic process such that b�z� � 0 and b�z1�b�z2� �
�D2

p�3�I$d�z2 2 z1�, where the overbar denotes an
average over random birefringence changes, I

$
is

the second-order unit tensor, and Dp is the PMD
parameter.

In the absence of birefringence, Eqs. (3) and (4)
reduce to the scalar case when the three waves are
linearly copolarized since they maintain their input
SOP. In the presence of residual birefringence, the
XPM and FWM processes depend only on �AsjAp�
and �AijAp�. Since PMD changes the SOPs of the
signal and idler with respect to the pump randomly
along the f iber, the XPM and FWM efficiencies vary
randomly in different sections of f iber. Consequently,
the amplif ied signal and idler powers f luctuate from
fiber to f iber even if the fibers are otherwise identical.
For the same reason, these powers can f luctuate
with time for a given FOPA at time scales associated
with environmental variations.2 The inset of Fig. 1
shows examples of such variations in the FOPA gain
spectrum for Dp � 0.05 ps�km1�2.

The general solution of Eqs. (3) and (4) requires a
numerical approach. However, it turns out that the
evolution of the signal and idler powers, S0 � �AsjAs�
and I0 � �AijAi�, is determined by the relationship
among the Stokes vectors of the three waves, P 	
�Apjs jAp�, S 	 �Asjs jAs�, I 	 �Aijs jAi�, and the com-
plex variables rj 	 �Aj jAp� and Gj 	 �Aj js jAp� � j �
s, i�, which are associated with the relative orienta-
tions between the pump and the signal or the idler
SOPs. The average gain and signal-power f luctua-
tions are obtained by use of Gav � S0�L��S0�0� and
s2
s � S2

0 �L��S0�L�
2

2 1.
Finding the evolution equations for S0 and I0 from

Eqs. (3) and (4) and averaging them over the birefrin-
gence f luctuations by following the technique used in
Ref. 12, we obtain the following equations governing
the average signal and idler powers:
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where � denotes the real part, h � 1�Ld � D2
p�Dv�2�3,

and Ld is the PMD diffusion length. The auxiliary
variables U and V are defined as U � 2irsri�P0 and
V � �S 1 I� ? p̂, where p̂ � P�P0 is the unit vector along
the pump SOP. Also, k � bs 1 bi 2 2bp 1 2geP0
describes the net phase mismatch among the three
waves.

Equations (5)–(7) are easy to solve to obtain the
average FOPA gain spectrum. Although such an
average gain spectrum does not correspond to a
single experimental measurement, it provides a good
indication of the effect of PMD on FOPA performance.
Figure 1 shows such gain spectra for two Dp values
when the input signal is linearly copolarized with
the pump. The solid curves show the analytical
results with g � 2 W21�km, L � 2 km, l0 � 1550 nm,
b3 � 0.1 ps3�km, b4 � 1 3 1024 ps4�km, and
P0 � 1 W. The dotted curve shows for comparison
the case of an isotropic fiber without birefringence.
The pump wavelength �lp � 1550.15 nm� was chosen
such that the signal has a fairly f lat gain over a 40-nm
bandwidth in the absence of birefringence. Since the
FOPA gain is susceptible to any perturbations to the
phase-matching condition, PMD-induced random vari-
ations of the signal and idler SOPs affect the average
gain spectra considerably. Their effect increases with
increased wavelength separation between the pump
and the signal. As a result, PMD not only reduces
the peak gain value but also severely degrades the
f latness of the gain spectrum.

When signal wavelength ls is close to the pump, the
PMD diffusion length becomes longer than the FOPA
length, and the signal and idler can remain nearly
copolarized with the pump along the fiber. The ef-
fect of PMD is small in this region, and the FOPA gain
is reduced by only 1 dB or so because of the reduc-
tion in g by a factor of 8�9. When ls is relatively far
from lp, the situation becomes different because the
PMD diffusion length is now comparable with or even
shorter than the FOPA length. As a result, PMD in-
duces considerable random variations in the signal and
idler SOPs, leading to further reduction in the FOPA
gain and severe degradation of the gain uniformity.
Even for a small Dp value of 0.05 ps�km1�2 a signifi-
cant tilt appears in the gain spectrum. For larger val-
ues of Dp the gain spectrum is degraded even more.
For example, Ld � 2.16 km for jls 2 lpj � 30 nm when
Dp � 0.05 ps�km1�2, but this value reduces to 0.24 km

Fig. 1. Average FOPA gain as a function of signal detun-
ing from the zero-dispersion wavelength for two values of
Dp. Solid and dashed curves show the analytical and nu-
merical results, respectively; two curves cannot be distin-
guished for Dp � 0.05 ps�km1�2 on the scale used. The
dotted curve shows for comparison the case without bire-
fringence. The inset shows examples of FOPA gain spec-
tra numerically obtained from Eqs. (1) and (2) for different
realizations of residual birefringence.
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Fig. 2. Signal f luctuation level ss plotted as a function of
signal detuning, under conditions of Fig. 1.

when Dp � 0.15 ps�km1�2. As a result, the average
gain spectrum is distorted drastically for such large
values of Dp.

To justify the approximations made in deriving the
averaged equations, we performed numerical simula-
tions with the full vector model based on Eqs. (1) and
(2) and dividing the fiber into many 10-m-long sections.
Birefringence was kept constant inside each section
but changed randomly from section to section. The
signal and idler powers were averaged over 500 runs.
The analytical results based on Eqs. (5)–(7) agree well
with the simulation results (dashed curve).

PMD-induced signal f luctuations are quantif ied by
the variance of the amplif ied signal. This quantity is
related to the second-order moments and correlations
of S0, S, I0, I , rs, ri, Gs, and Gi and can be calculated
by solving a set of coupled averaged equations (not
reproduced here because of their lengthy nature).
Figure 2 shows the level of signal f luctuations as a
function of signal detuning for the same parameters
used for Fig. 1. When ls is close to lp, f luctua-
tions are small because the PMD diffusion length is
much longer than the FOPA length. However, the
level of f luctuations increases quickly in the useful
region where gain is large. Over the main peak
of the gain spectrum, output signal f luctuations
can exceed 30% even for a relatively small value of
Dp � 0.05 ps�km1�2. Signal f luctuations increase
drastically for Dp � 0.15 ps�km1�2, approaching 90%.
Numerical simulations (dashed curves) agree well
with this analytical prediction.

Although Figs. 1 and 2 focus on signal amplif ica-
tion, the theory and the results also apply for wave-
length converters because the idler power is related to
the signal power as I0�L� � S0�L� 2 S0�0�. Since the
conversion efficiency z is related to the signal gain G
as z 	 I0�L��S0�0� � G 2 1, the average conversion ef-
ficiency z � Gav 2 1. The level of idler-power f luctu-
ations is related to that of the signal simply as s

2
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Figs. 1 and 2 can be used to f ind z and si with the
above relations. In particular, all the qualitative fea-
tures of these figures apply to wavelength converters
as well.
The preceding analysis is based on the assumption
that the correlation length lc of birefringence f luctu-
ations is much shorter than the f iber length. One
might ask whether this assumption is justified for
fiber lengths ,1 km. Extensive numerical simula-
tions show that our analytic theory works well as long
as the FOPA length exceeds 10 15lc. The results
shown in Figs. 1 and 2 change by only a small amount
even when lc is as long as 100 m for a 2-km-long
FOPA. High-nonlinearity f ibers are increasingly
being used for making FOPAs, and lengths of �100 m
are suff icient for them. Our analytic results apply in
this case for lc � 10 m but become questionable when
lc exceeds 50 m. Residual birefringence can no longer
be treated as white noise in this case and a numerical
approach should be used.

In summary, we have developed a vector theory of
the degenerate FWM process inside optical f ibers and
have used it to study the effect of PMD on the per-
formance of FOPAs and wavelength converters. We
found that PMD not only changes the average value of
the gain significantly but also introduces considerable
signal f luctuations. For typical values of Dp (around
0.05 ps�km1�2), f luctuations are in the 20–30% range
over the f lat region of the gain spectrum. The band-
width of the FOPA gain spectrum may be limited by
other factors related to fiber dispersion, but PMD is
also likely to be a major limiting factor for modern
FOPAs. As a rough guide, the average differential
group delay of the f iber �Dp�8L�3p�1�2� should be less
than 50 fs to keep the PMD-induced signal f luctua-
tions below 10% over the main portion of the gain
spectrum.
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