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Abstract—This paper develops a vector theory of cross-phase
modulation (XPM) in optical fibers and use it to investigate the
impact of polarization-mode dispersion (PMD) on the crosstalk in-
duced by XPM in wavelength-division multiplexed lightwave sys-
tems. Under certain reasonable approximations, the theory per-
mits us to obtain an analytic expression for the amplitude of probe
fluctuations induced by a copropagating pump channel through
XPM. We use this expression to calculate the average level of XPM-
induced crosstalk together with its variance for several dispersion
maps. We show that PMD not only reduces the crosstalk on av-
erage, but also impacts the efficiency of a commonly used polar-
ization-interleaving technique.

Index Terms—Cross-phase modulation (XPM), lightwave
systems, optical communications, polarization-mode dispersion
(PMD).

I. INTRODUCTION

CROSS-PHASE modulation (XPM) is a nonlinear phenom-
enon occurring in optical fibers when two or more op-

tical fields are transmitted through a fiber simultaneously [1].
It is known to impact the performance of modern wavelength-
division-multiplexed (WDM) lightwave systems and has been
studied extensively in this context [2]–[16]. The nonlinear phase
modulation induced through XPM depends on the bit pattern
of the inducing channel and is transferred as intensity fluctua-
tions to neighboring channels through the group-velocity dis-
persion (GVD), resulting in interchannel crosstalk. The theory
of XPM-induced crosstalk that was developed in previous work
[2]–[15] is based on a scalar approach and ignores all polar-
ization effects. However, residual birefringence fluctuations oc-
curring in any optical fiber randomize the state of polarization
(SOP) of all WDM channels and are thus likely to affect the
phase-modulation efficiency of XPM. Indeed, several experi-
ments have shown that polarization-mode dispersion (PMD) of
a fiber plays an important role and affects the level of XPM-in-
duced crosstalk [17], [18]. A scalar approach cannot explain
such experimental results.
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In this paper, we develop a vector theory of XPM that is ca-
pable of including PMD-induced random changes in the SOP of
various channels and use it to investigate the impact of PMD on
the XPM crosstalk in WDM lightwave systems. In Section II, we
drive the basic, coupled, vector nonlinear equations for a two-
channel system using the Jones-matrix formalism and show that
they can be simplified considerably in the pump–probe config-
uration when we make certain reasonable approximations. The
simplified equations are solved in Section III to obtain an analytic
expression for the modulation amplitude of the pump-induced in-
terference in the probe channel. However, this modulation am-
plitude becomes a random quantity in the presence of PMD. We
average over the PMD-induced fluctuations in Section IV to cal-
culate the average level of XPM-induced crosstalk and introduce
the modulation transfer function and calculate its spectrum for
two specific dispersion maps. Section V focuses on the variance
of the XPM-induced crosstalk. Here, we average on the random
bit pattern of the pump channel as well and show how the vari-
ance depends on the PMD parameter and the channel spacing
for the same two dispersion maps. The vector theory is extended
to the case of multiple WDM channels in Section VI. The main
results are summarized in the final concluding section.

II. VECTOR THEORY OF XPM

Although the following analysis can be generalized to the
case of multiple channels, we first focus for simplicity on the
XPM interaction between two channels. We use the general
form of the third-order nonlinear polarization for silica glass for
including the polarization effects [1], introduce the Jones vec-
tors and associated with the two channels [19], and
use the notation of [1]. As shown in Appendix A, one can then
obtain the following two coupled vector equations governing the
XPM process in optical fibers:

(1)
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(2)

where , , , and are the optical carrier fre-
quencies, inverse group velocities, GVD coefficients, and fiber
losses for the two channels. These parameters are generally
dependent for dispersion-managed periodically amplified sys-
tems. Also, the parameter includes both the gain and loss
variations along the fiber.

In the Jones-matrix notation, is the Hermitian conjugate
while is the complex conjugate of . The random vector

describes the residual fiber birefringence, while
the vector has the Pauli matrices as its three elements. Because
of a frequency difference between the two channels, the SOPs
of the two channels evolve on the Poincaré sphere at different
rates, as dictated by the magnitudes of and . The vector
describes the intrachannel PMD effects resulting from random
changes in the group velocities of the two polarization compo-
nents of the same channel and producing pulse broadening [19],
[20]. The effects of both the self-phase modulation (SPM) and
XPM are included in (1) and (2) through the nonlinear parameter

, where is the material nonlinear param-
eter and is the effective core area of the fiber.

Equations (1) and (2) describe the XPM interaction between
two channels in its most general form. They are simplified con-
siderably when we consider the pump–probe configuration and
assume that channel 2 is in the form of a low-power contin-
uous-wave (CW) probe while channel 1 acts as a pump and im-
poses the XPM-induced phase shift on channel 2. Two approx-
imations can then be made to simplify the following analysis.
First, the probe is assumed to be weak enough that the XPM
and SPM induced by it can be neglected. Second, we neglect
the terms responsible for intrachannel PMD. Although these
terms broaden pulses in each channel, they barely affect the in-
terchannel XPM interaction because channel spacing typically
is much larger than channel bandwidth and the evolution of the
SOP of two channels is mainly governed by . This approxima-
tion corresponds to the case when interchannel PMD dominates
but the intrachannel PMD is negligible. With these simplifica-
tions, (1) and (2) reduce to

(3)

(4)

XPM induces not only a time-dependent phase shift in the
probe channel, but also a nonlinear polarization rotation of the

probe channel. However, both the beat length ( 10 m) and cor-
relation length ( 100 m) associated with residual birefringence
are much shorter than the nonlinear length ( 10 km depending
on optical powers). As a result, the polarization rotation induced
by residual birefringence is much faster than that induced by
nonlinear polarization rotation. Rapid variations in the SOP’s
average over the SPM and XPM effects in (3) and (4) and even-
tually the nonlinear PMD becomes negligible [20], [21]. We can
average over such rapid polarization variations to study the evo-
lution of XPM on a length scale much longer than the correlation
length [22] by adopting a rotating frame through a unitary trans-
formation , where the Jones matrix satisfies

(5)

After averaging over the fast variations induced by , intro-
ducing the reduced time as and dropping the primes
for notational simplification, (3) and (4) reduce to

(6)

(7)

(see Appendix B) where is the pump power,
is a unit vector representing the SOP of the

pump on the Poincaré sphere, and is the channel
spacing. We have also introduced and
as the effective nonlinear parameters for the two channels and

as the group-velocity mismatch between the
two channels. The birefringence vector is related to by a ro-
tation. Since fiber length is typically much longer than the bire-
fringence correlation length, we model as a three-dimensional
(3-D) stochastic process whose first- and second-order moments
are given by

(8)

where is the second-order unit tensor and is the PMD
parameter of the fiber.

Equation (6) shows that pump polarization remains fixed
in the rotating frame. However, PMD changes the relative ori-
entation between the pump and probe Stokes vectors at a rate
dictated by the magnitude of . The effectiveness of XPM de-
pends not only on the group-velocity mismatch , but also on
the relative orientation of the pump and probe SOPs. Notice also
that fast polarization variations induced by PMD reduce the ef-
fective nonlinearity by a factor of 8/9 [23], [24].

III. XPM-INDUCED CROSSTALK

In this section, we solve (6) and (7) approximately to study
the temporal modulation of a CW probe induced by the com-
bination of XPM and PMD. Since modulation amplitude is rel-
atively small in general, we can linearize (7) by assuming that

, where and are unperturbed
and first-order perturbed probe fields, respectively. Substituting
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this form into (7), we obtain two equations governing the evo-
lution of the probe field as

(9)

(10)

where the dispersion term for was set to zero for a CW
input probe.

The total optical power of the probe field is found using

(11)

where we neglected because of its smallness and in-
troduced the power and SOP of the unperturbed field as

and (12)

Using (9), the power and the SOP are found to satisfy

(13)

(14)

These two equations can be solved analytically because of their
linear nature.

The unperturbed probe power varies along the fiber as
, but its SOP varies ran-

domly. As is appropriate for problems with randomly varying
birefringence, the stochastic differential equation (14) should
be treated in the Stratonovich sense [25]. The mean value
and correlation function of can be obtained using the Ito
calculus. Appendix C provides the mathematical details. The
final result is found to be

(15)

(16)

assuming , where

(17)

and is the PMD diffusion length.
To find the modulation amplitude , which is the mea-

sure of the XPM-induced crosstalk, we first find an equation for
. Using (9) and (10), this quantity is found to satisfy

(18)

where is the random angle between the pump
and probe SOPs. Equation (18) can be solved analytically in
the frequency domain because of its linear nature. Using

and introducing the normalized modu-
lation amplitude as , we obtain

(19)

where a tilde denotes the Fourier transform and is the
Fourier spectrum of the pump power at a distance inside the
fiber. The effects of PMD enter in this equation through the angle

. More precisely, PMD randomly changes the angle between
and along the fiber and thus makes a random quantity.
It is known that the XPM-induced crosstalk depends on the

pulse walkoff among channels [3]. However, in long-haul dis-
persion-managed WDM systems, the fiber link is composed of
several periodic parts such that both the dispersion and losses are
compensated after each part (or each map period) using optical
amplifiers with dispersion-compensating modules. Although
pulses in the two neighboring channels walk off from each other
in each span, they walk back after the dispersion is compensated
and coincide again at the beginning of the next span. As a result,
the XPM crosstalk builds up from amplifier to amplifier and
can become quite large for long fiber links. In the following, we
consider one map period between two amplifiers and then add
the contributions from all map periods to find the total crosstalk.

To proceed further, we need to find by solving (6)
for the pump field. This equation cannot be solved in general be-
cause of the nonlinear term appearing on the right side. Strictly
speaking, an analytical expression of is not known and
one must follow a numerical approach. To make further ana-
lytical progress, we consider the worst-case situation from the
XPM standpoint and assume that the effects of dispersion and
nonlinearities do not significantly change the pulse shape of the
pump channel along the fiber. From (6), we then obtain

(20)

where takes into account amplification of the pump
channel explicitly. Substituting this expression into (19), we ob-
tain the following analytic result for the XPM-induced crosstalk

(21)

where the function takes into account gain, loss, and dis-
persion variations along the link and is given by

(22)

and is denoted as to simplify the notation.
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In most real systems, residual dispersion exists along the link
for reducing the impact of SPM and XPM and it is post compen-
sated at the receiver end [27]. For such a system, pulses in pump
channel do not maintain their shape along the fiber link and the
use of (20) is likely to overestimate the XPM-induced degrada-
tion. However, the theory presented here can be easily used to
analyze these systems by using the numerical solutions of (6).

IV. AVERAGE CROSSTALK LEVEL

As we saw in Section III, PMD-induced fluctuations in the
relative orientation between the pump and probe SOPs cause the
XPM modulation amplitude to be random. Equation (21) shows
that the total modulation amplitude is a sum of all the locally cre-
ated differential modulations. According to the central limit the-
orem [25], will follow a Gaussian distribution as long as the
correlation between and goes to zero suffi-
ciently rapidly as increases, no matter what the statistics
of is. Equation (16) shows that this correlation decays
exponentially over a diffusion length . Thus, for any
lightwave system of length , in the frequency
domain and in the time domain follow a Gaussian dis-
tribution as long as the first-order perturbation theory remains
valid. Since all statistical information about a Gaussian distri-
bution is contained in the first two moments, the average and
variance, we evaluate them in what follows.

The average value of the modulation amplitude is obtained
by averaging over random birefringence fluctuations, respon-
sible for PMD, along the fiber length. From (15),

and the average value is found to be

(23)

where is the value of at and the subscript indicates
that the PMD effects have been averaged out. Note that is the
relative angle between the pump and probe SOPs at the input
end of fiber link. The repolarization effects induced by polar-
ization-dependent gain and polarization-dependent loss are not
included in our analysis [26]. The integral can be performed an-
alytically for a two-section dispersion map with different fiber
parameters for each section. Assuming that fiber losses are com-
pletely compensated at the end of each map period, as shown in
Appendix D, the average modulation amplitude at the end of a
fiber link of length is given by

(24)

where is given in Appendix D. In the absence of PMD
and for copolarized pump and probe, , , and

are replaced by . Equation (24) then reduces to the result
obtained in the scalar case [8], [9].

To characterize the XPM-induced crosstalk, it is common to
introduce the modulation transfer function using the definition

(25)

Fig. 1. Amplitude of the transfer function versus modulation frequency
for channel spacings of 1 and 4 nm for two dispersion map denoted as
(a) SMF+DCF and (b)NZDSF+SMF. In each case, thin solid and dashed
curves show the case without birefringence for copolarized and orthogonally
polarized channels, respectively. Thick solid and dash curves correspond to
D = 0:1 ps=

p
km.

Fig. 1 shows the transfer function for two multispan
lightwave systems. The dispersion map in Fig. 1(a) consists of
80 km of standard single-mode fiber (SMF) ( ps/nm/km
and ), followed by 14.32 km of disper-
sion-compensating fiber (DCF) with ps/nm/km and

km. The dispersion map in Fig. 1(b) consists
of 85 km of nonzero-dispersion-shifted fiber (NZDSF) with

ps/nm/km and km, followed
by 10 km of SMF. Fiber losses and dispersion slope are
taken to be the same and have values dB/km and

ps km-nm . In both cases, the dispersion maps are
chosen such that the average GVD is zero. The unperturbed
probe power is 1 mW or 0 dBm.

For comparison, transfer function without residual birefrin-
gence is also shown in Fig. 1. In the absence of birefringence,
there is 5-dB difference between the copolarized (thin solid line)
and orthogonally polarized (thin dashed line) cases due to dif-
ferent XPM coupling efficiencies. However, PMD reduces this
difference considerably (thick solid and dashed lines). For

ps km, the difference is reduced to approximately 1.3 dB
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Fig. 2. Variations in average crosstalk level with time for 1-nm channel
spacing for the same two dispersion maps. (a) SMF + DCF and
(b) NZDSF + SMF. The bottom trace in each case shows the pump
bit pattern. Thin solid and dashed curves show the case without birefringence
for copolarized and orthogonally polarized channels, respectively. Thick solid
and dashed curves correspond to D = 0:2 ps=

p
km.

when channel spacing is 1 nm and disappears almost completely
when channel spacing increases to 4 nm in the
system due to increased PMD effects. Due to an increase in the
walkoff length, the amplitude of transfer function increases sig-
nificantly in the system. The oscillatory struc-
ture in the transfer functions stems from an interference between
the XPM-induced phase shifts in different sections of the fiber
link and is determined by the walkoff length. The number of rip-
ples is smaller in the system compared with the

system due to increased walkoff length. However,
since PMD changes the modulation efficiency of XPM, it also
affects the interference condition. This can be seen clearly in
Fig. 1(b) when channel spacing is 4 nm. The position of dips in
the presence of PMD shifts as modulation frequency increases.

The average crosstalk level in the time domain is
obtained by taking the inverse Fourier transform of (24). This
last step is performed numerically for a given bit pattern in the
pump channel. Fig. 2 shows the modulation amplitude in time
domain for the two dispersion maps used in Fig. 1. The pump
channel consists of a 10-Gb NRZ signal bit pattern (raised co-

sine pulses with a rise time equal to 25% of the bit slot), with
a peak power of 8 dBm (corresponding to average power of
5 dBm). The PMD parameter is ps km and all other
parameters are identical to those used in Fig. 1. As expected, in
the absence of birefringence, the modulation amplitude in the
case of orthogonally polarized channels is one-third of that oc-
curring for copolarized ones. However, the two curves approach
each other in the presence of PMD and the difference becomes
negligible. Physically speaking, the two channels cannot main-
tains their initial SOP (angle ) after a few diffusion lengths
and it becomes completely random. Although, in the first few
map periods, the XPM effects are quite different for the copolar-
ized and orthogonally polarized cases, the distinction between
them disappears after a few diffusion lengths. Therefore, the
difference between the copolarized and orthogonally polarized
channels decreases in a long-haul fiber link as the link length
increases. In the case of 1-nm channel spacing, the diffusion
length is 122 km for ps km. Thus, after the first
two map periods, link length exceeds the diffusion length and
the XPM effects become the same for the two cases.

V. CROSSTALK VARIANCE

As seen in Fig. 2, the average crosstalk level
changes with time depending on the bit pattern in the pump
channel. Thus, fluctuates with time because of its doubly
random nature. In the absence of residual birefringence, ran-
domness comes only from the bit pattern in the pump channel.
In this case, it is common to introduce the crosstalk variance,
also called XPM-induced interference, using the definition

(26)

where is the time interval of measurement.
In our case, probe–power variations have two sources of ran-

domness because both the bit pattern in the pump channel and
the birefringence variations along the fiber are random. More-
over, PMD can vary with time on a time scale of milliseconds.
However, usually the measurement time is small compared
with the fluctuation time of PMD and birefringence fluctuations
remain frozen during measurement. In this case, it is appropriate
to first average over in (21) and then average over a random bit
pattern of the pump channel. The average value of the crosstalk
variance thus given by

(27)

where the subscript denotes an average over the pump bit
pattern.
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The input pump power of a random bit stream can be written
as

(28)

where is the bit rate, is the pulse shape, and the random
variable or 1 with equal probabilities, i.e.,

. The correlation function of pump power in the frequency
domain can be easily calculated and is found to be

(29)

where is the Fourier transform of . Substituting (24)
into (27) and using (29), we obtain . Assuming that the mea-
surement time is much longer than the time slot allocated to
a single bit for . For lightwave sys-
tems consisting of a two-section dispersion map, is found to
be given by

(30)

(see Appendix D).
Fig. 3 shows the standard deviation of XPM crosstalk for

two values of PMD parameters using the same two dispersion
maps that were used earlier. The crosstalk is relatively small be-
cause of the complete dispersion compensation assumed here.
Although there is a 5-dB difference between the copolarized
and orthogonally polarized cases in the absence of birefrin-
gence, it decreases quickly with increased channel spacing in
the presence of PMD. This significant dependence of XPM
crosstalk on channel spacing comes from the fact that the PMD
diffusion length is inversely proportional to the square of
channel spacing. When channel spacing is small (below 0.5
nm), the reduction in polarization sensitivity only comes from
the lowering of the nonlinear parameter by a factor of be-
cause the diffusion length is relatively long; km for

ps km and nm. When channel spacing
becomes larger than 1 nm, the two curves approach each other
and eventually merge. If all channels are copolarized initially,
PMD helps to reduce the XPM-induced crosstalk in WDM sys-
tems. However, this situation changes when polarization inter-
leaving is used. PMD significantly reduces the efficiency of
this technique because the neighboring channels do not remain
orthogonally polarized. This degradation becomes more severe
as the bit rate increases beyond 80 Gb due to increased channel
spacing.

Fig. 4 shows the crosstalk variance as a function of PMD
parameter for the same two dispersion maps using a channel
spacing of 1 nm. When , the cases with and without
residual birefringence are different by a factor of because

Fig. 3. Standard deviation of modulation interference as a function of channel
spacing for two values ofD for the same two dispersion maps: (a)SMF+DCF
and (b) NZDSF + SMF. Solid and dashed curves correspond to copolarized
and orthogonally polarized channels, respectively. Thin curves show the case
without birefringence. The peak power in the pump channel is 8 dBm in all
cases.

of the reduction in the effective nonlinear parameter. This differ-
ence decreases quickly with increasing values and becomes
negligible for ps km. When the PMD parameter is
not too large, say for ps km, the difference between
the orthogonally polarized channels and copolarized channels is
not that large. In a fiber link of moderate PMD, the efficiency
of the polarization-interleaving technique becomes questionable
when bit rate becomes fairly high.

We briefly consider the impact of PMD fluctuations that typ-
ically occur on a time scale of milliseconds because of envi-
ronmental changes. This case can be considered by averaging
over both random processes simultaneously. The average value
of crosstalk variance in this case is calculated using

(31)
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Fig. 4. Standard deviation of modulation interference as a function of PMD
parameter for a channel spacing�� = 1 nm for the same two dispersion maps:
(a) SMF + DCF and (b) NZDSF + SMF. Solid and dashed curves
correspond to copolarized and orthogonally polarized channels, respectively.
Thin horizontal lines show the case without birefringence.

The difference between and provides the crosstalk en-
hancement induced by long-term PMD fluctuations. Comparing
(31) with (27), we find that

(32)

where and are given by (15) and (16),
respectively. A detailed analysis shows that this difference is
rather small for typical channel spacings (in the range

nm) and for values of the PMD parameter such that
ps km. The reason is that PMD-induced fluctu-

ations only become important when diffusion length becomes
comparable to the walkoff length. The walkoff length deter-
mined by the GVD, channel spacing , and rise time of op-

tical pulses [3] and is given by . When
, . For typical system pa-

rameters, such values of are beyond the normal value for
existing fibers. For example, taking ps for a 100-ps
time slot and a channel spacing of 1 nm, this should be ap-
proximately 1.8 and 0.62 ps km for SMF and NZDSF, re-
spectively, both of which are much larger than typical values
for such fibers. Only when the channel spacing becomes rather
large does the long-term PMD-induced fluctuations become sig-
nificant. However, the crosstalk itself then becomes negligible
because of a small walkoff length. Therefore, we conclude that
PMD reduces XPM-induced crosstalk in an average sense and
induces no additional long-term fluctuations.

VI. MULTICHANNEL WDM SYSTEMS

In this section, we briefly discuss the more general case of
multiple channels. If there are more than two channels, (3) and
(4) can be easily extended as

(33)

(34)

where we consider the XPM effects on channel 2 while all other
channels act as the pump . To average over the rapid po-
larization variations, it is convenient to choose a rotating frame
in which the SOP of channel 2 remains frozen. The required uni-
tary transformation corresponds to

(35)

After averaging over rapid variations induced by and using a
reduced time variable as , we obtain

(36)

(37)

where and represent
the power and Stokes vector for the th channel. Furthermore,

, , and .
From (37), is found to evolve as

(38)



984 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 4, APRIL 2004

This equation is the same as (14). The mean and correlation
function of are thus given by (15) and (16), except that
is replaced by .

Following the same procedure as discussed in the Sec-
tion II, we can find the dynamic equation of the perturbation

. Equation (18) is now replaced with

(39)

This equation can again be solved in the Fourier domain and the
total modulation amplitude for channel 2 is just a sum over all
pump channels

(40)

where has the form of (21). This equation can be used to
calculate the average and variance of . Clearly

(41)

If we assume that bit patterns in different channels are indepen-
dent of each other, it is easy to show that the variance is also a
sum over individual channels such that , where
is given by (30).

VII. CONCLUSION

In this paper, we have developed a vector theory of the XPM
phenomenon that occurs inside optical fibers using the Jones-
matrix formalism. We applied this theory to a pump-probe con-
figuration in which a weak CW probe is perturbed by a pump
channel carrying a random bit pattern. The birefringence fluc-
tuations responsible for PMD change the relative orientation
between the pump and probe Stokes vectors. Changes in affect
the XPM interaction among various channels of a WDM system.
We show that PMD changes the XPM efficiency and affects
the interference condition among the XPM-induced nonlinear
phase shifts in different sections of the fiber link. Even though
the modulation amplitude of the XPM crosstalk is a random
quantity, we show, by using the central limit theorem, that it
follows a Gaussian distribution.

We show that one can average over birefringence fluctuations
using a standard technique to obtain the average crosstalk level.
We can also calculate variance of this crosstalk by performing
a second average over the bit pattern of the pump channel. We
illustrate our analysis for two types of dispersion maps com-
monly employed in practice. Our results show that PMD re-
duces the difference in the average crosstalk level between the
cases of copolarized and orthogonally polarized channels. In
fact, XPM crosstalk becomes polarization independent when
channel spacing is large or when the fiber has a relatively large
value of the PMD parameter. We thus conclude that when po-
larization interleaving is not used, PMD helps to reduce the
XPM-induced crosstalk in WDM systems. The use of scalar

theory in this case may lead to an overly pessimistic conclu-
sion. We have verified that our analytical results agree with full
numerical simulations based on the nonlinear Schrödinger equa-
tion.

In the case of polarization interleaving, neighboring channels
are intentionally launched with orthogonal polarizations for re-
ducing the impact of XPM crosstalk. In this case, PMD signif-
icantly reduces the advantage of this technique because neigh-
boring channels do not remain orthogonally polarized along the
fiber link. This reduction becomes more severe when channel
spacing becomes large because the diffusion length scales
with as and becomes relatively small for
a larger channel spacing for the same value of . When po-
larization interleaving is used, channel spacing should be kept
small enough to make diffusion length comparable to the total
system length. In lightwave systems operating at bit rates larger
than 40 Gb/s, the efficiency of polarization interleaving will
become questionable because channel spacing is likely to ex-
ceed 100 GHz. The use of PMD compensation at the receiver
will not solve this problem because of the distributed nature
of the XPM-induced crosstalk. As XPM is the main source of
crosstalk in WDM systems, optical fibers with ultra-low PMD
may become essential for implementation of the polarization-in-
terleaving technique.

APPENDIX A
COUPLED VECTOR EQUATIONS

In this appendix, we provide the derivation of (1) and (2).
Assuming that the instantaneous electronic response dominates
for the XPM process, the third-order nonlinear polarization in a
medium such as silica glass is given by [28]

... (42)

where is a measure of the instantaneous electronic
response of the nonlinear medium.

In the case of two distinct optical fields propagating simul-
taneously inside an optical fiber, the total electric field can be
written as

(43)

where Re stands for the real part and and are the slowly
varying (complex) amplitudes for the fields oscillating at fre-
quencies and , respectively. Writing also in the same
form as

(44)

the nonlinear polarization at the pump and signal frequencies is
found to be

(45)

where , , or and the electronic response is
assumed to be isotropic for silica such that

.



LIN AND AGRAWAL: EFFECTS OF POLARIZATION-MODE DISPERSION ON CROSS-PHASE MODULATION 985

If we use (43) and (44) in the Maxwell equations, we find
that and satisfy in the frequency domain a nonlinear
Helmholtz equation of the form

(46)

where the tilde denotes Fourier transform is the vacuum per-
mittivity and is the linear part of the dielectric constant
resulting from the linear response of silica glass. Its tensorial na-
ture is important to account for the PMD effects that have their
origin in the birefringence of silica fibers, while its frequency
dependence leads to chromatic dispersion.

Both and evolve along the fiber length. It is common
to choose the axis along the fiber axis and assume that and

lie in the plane. This assumption amounts to neglecting
the longitudinal component of the two vectors and is justified in
practice as long as the spatial size of the fiber mode is larger
than the optical wavelength. In the Jones-matrix notation [19],
the two fields at any point inside the fiber can be written as

(47)

(48)

where and represent the fiber-mode profile,
and are propagation constants at the two carrier

frequencies, and the Jones vectors and are two-di-
mensional (2-D) column vectors representing the two compo-
nents of the electric field in the plane. Since and
do not change with , we only need to consider the evolution of

and along the fiber.
We substitute (47) and (48) back into (46), integrate over the

transverse mode distribution in the plane, and assume
and to be slowly varying functions of so that we

can neglect their second-order derivative with respect to . The
fiber-mode profiles can be taken to be nearly the same for typ-
ical channel spacings, i.e., ,
which amounts to assuming the same effective core area
for the two channels. With these simplifications, the equation
governing the evolution of and takes the form

(49)

where the subscript denotes the average over the mode profile,
is a unit matrix, and the nonlinear parameter at the carrier

frequency is defined in the usual manner as [1]

(50)

To proceed further, we write the dielectric constant tensor
in the basis of Pauli matrices as [19]

(51)

The vector is formed as , where ,
, and are the three unit vectors in the Stokes space and the

Pauli matrices are given as

(52)
The vector accounts for fiber birefringence. Its frequency
dependence produces PMD.

If the channel bandwidth is not too large, we can assume
and expand and around in

Taylor series as

(53)

(54)

Using these expansions in (51) and substituting them into (49),
we obtain the following vector equation in the frequency do-
main:

(55)

As a final step, we write (55) in the time domain by using
, use the form of nonlinear polarization in (45)

and denote as simply to obtain (1) and (2).

APPENDIX B
PUMP–PROBE EQUATIONS

In this section, we derive (6) and (7) from (3) and (4) using
the transformation (5) and averaging over rapid PMD-induced
changes in the SOP at the pump frequency. The unitary matrix

in (5) corresponds to random rotations of the Stokes vector on
the Poincaré sphere that do not change the vector length. In the
Jones (SU2) space, an arbitrary unitary matrix can be written in
the form

(56)

where . If we introduce a Jones vector with
its two elements as and , this vector satisfies

(57)

Since random residual birefringence makes all SOPs equally
likely, can be expressed in its most general form as

(58)

where and are uniformly distributed in the range [0, ]
and is uniformly distributed in the range [ 1,1]. Thus, the
most general form of the transformation matrix is given by

(59)
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Now, we make the transformation in (3) and
(4) and make use of the relations

(60)

(61)

In the rotating frame, (3) and (4) become

(62)

(63)

where is related to by a rotation as

(64)

where is the three-dimensional (3-D) rotation matrix in the
Stokes space that is isomorphic to in the Jones space, i.e.,

.
We now average (62) and (63) over , , and to obtain the

evolution behavior of the fields on a length scale much longer
than the birefringence correlation length. It is easy to show that

(65)

Substituting (65) into (62) and (63) and using the reduced time
as as the new temporal variable, we obtain (6) and
(7).

APPENDIX C
FIRST- AND SECOND-ORDER MOMENTS

In this section, we derive (15) and (16) by integrating and
averaging (13) and (14). Following [25] with (14), we obtain
the dynamic equations governing and in the Ito sense as

(66)

(67)

where is a 3-D Wiener process. When we average
(66) and (67) over , the terms containing disappear.
Thus, the evolution of the first- and second-order moments of

is governed by

(68)

(69)

Equation (68) can be solved easily to obtain (15) while (69)
provides the second-order moment of at in the form

(70)

Noting that the correlation function is related to a conditional
average as

(71)

where the subscript denotes average over provided under
the condition that at . From (68),
the conditional average is easily found to be

(72)

Substituting (72) into (71) and using (70), we obtain the corre-
lation function of given in (16).

APPENDIX D
AVERAGE CROSSTALK LEVEL

In this section, we calculate the average value of given
in (24) when the whole link of length is composed of map
periods of length , where and represent
lengths of two fiber sections in each map period. The average
values of the group-velocity mismatch and GVD for such a map
are given by

(73)
From (22), we notice that can be separated by two con-

jugate parts as where

(74)

is a constant and the function is
defined as

(75)

If we define an integral function as

(76)

the average value of will then be given as (24).
We now evaluate in a closed form. Since the fiber

link is periodic, using , the integral in (76) can
be written as a sum over individual map periods as

(77)

where the integrand is of the form

(78)
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and we have defined

(79)

(80)

Performing the integrals, can be written as

(81)

where

(82)

(83)
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