508 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 3, MARCH 2003

Nonlinear Switching of Optical Pulses in
Fiber Bragg Gratings

Hojoon Lee Member, IEEEand Govind P. Agrawalellow, IEEE

Abstract—We study numerically the nonlinear switching ¢
characteristics of optical pulses transmitted though fiber Bragg e
gratings. We consider both the uniform and phase-shifted gratings AgD) —
and compare their performance as a nonlinear switch. The non- - [T T B0 0 BT B0 ]
linear coupled-mode equations were solved numerically to obtain %
the pulse-switching characteristics. The steady-state behavior A0
known to occur for continuous-wave optical beams is realized
only for pulses wider than 10 ns with long tails. For pulsewidths 0 L
in the range 0.1-1 ns, the use of phase-shifted gratings reduces
the switching threshold, but the on-off contrast is generally better Fig. 1. Schematic of a phase-shifted FBG. The notation used in the paper is
for uniform gratings. We also quantify the effects of rise and fall also illustrated.
times associated with an optical pulse on nonlinear switching by
considering the Gaussian pulses with smooth tails and nearly
rectangular pulses with sharp leading and trailing edges.
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in the regime suitable for the formation of fundamental soli-
tons in transmission, pulse pairs are formed in reflection. The
Index Terms—Bragg gratings, fiber gratings, nonlinear optics, pulse-pair formation is associated with the strong fields pro-
optical switches, periodic structures. duced as the pulse reflects from a chirped FBG.
Quasi-continuous-wave (CW) nonlinear switching within the
|. INTRODUCTION bandgap of a FBG was observed in 1998 [10]. As many as
five gap solitons of 100-500-ps duration were generated from

IBER Bragg gratings (FBGS) are attractive for their appllé1 2-ns pulse at a launched peak intensity of 27 @M. A

. catlpns in the fields of optical commun|ca_t|on_ systems anc%rresponding increase in the transmission from 3% to 40% of
optical fiber sensors [1]. Although most applications have fqg

. ) ) he incident pulse energy was observed. In another experiment
cused on the linear properties of FBGs, Bragg gratings also o ‘fﬁ] all optical nonlinear switching in a 20-cm-long FBG lead

the potential of nonlinear switching, a phenomenon that has t-a 20-dB increase in the transmissivity. All of these experi-

tracted considerable attention since 1979 [2]-{18]. In a 19 ents require high peak intensities for nonlinear switching. One

experiment, intense optical pulses were propagated throug z%/ to reduce the input intensity is to use a phase-shifted FBG.

FBG (approximately 1 cm in length) at frequencies inside thrr.f'.n , : :
: : . e theory of phase-shifted DFB structures in the CW regime
photonic bandgap [7]. Although the intensity-dependent tran évelopedyin {)995 [4] shows not only low switching integsi-

mission was measured, it was not possible to observe the Pre

. Qé, but also the possibility of frequency-controlled all-optical
agation effects as the pulses were much longer than the grat'éwnching. One would expect these useful features to survive

The propagation of Bragg-grating solitons in long and umformhen short optical pulses are used in place of a CW beam. In

FB.GS was first observed in a 1996 experiment [19], in Wh'c\lﬁ{lis paper, we investigate the switching characteristics of op-
soliton-like pulses were ohserved to propagate a6% of the tical pulses in uniform and phase-shifted FBGs and compare

. tructure B i di din 120 “H¥m with the CW case. We show that the results depend on
n _T_l;peés ruc uret' ragglijra mfgs, as I':Sggsstf] n [h ]'b | the pulse shape by using Gaussian and raised-cosine pulses. We
€ bragg grating sofitons form in s fhrough a aangﬁ]ﬁ that the switching threshold can be reduced significantly by
n

between the strong grating dispersion and the third-order opti g phase-shifted FBGs, provided the pulse shape is chosen
nonlinearity and propagate at velocities substantially below t Hliciously ,

speed of light in a bare fiber [21]. A numerical analysis shows
that these solitons are well described by the solitary-wave solu-
tions of the nonlinear coupled-mode equations [22]. The non-
linear reflection of optical pulses in a chirped FBG is also of Fig. 1 shows a phase-shifted FBG schematically. The refrac-
interest [23]. It was found that for incident pulse intensitietive index varies along the grating length periodically except for

a phase-shift occurring in the middle of the grating. The index
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period, andj(z) describes the phase shift. The same formce 1.2
be used for chirped fiber gratings by makifig-dependent. The £ 15 s-ooereosmmsssssomsmsmssemes s -
electric field inside the grating can be written as 508} .
- 06 ! 4
E(z,t) = [Ay(z,t) exp(ikpz) + A_(z,1) ol ;-'//\\ |
x exp(—tkpz)] exp(—iwpt) (2) ZE 02b / _________ _ i
wherekp = w/A is the Bragg wave numbed . andA_ are 0 0 tom 1500 200 200 3000 300
Time(ps)

the envelope functions of the forward and backward-travelir
wave, both of which are assumed to be slowly varying in spa
and timewy is the carrier frequency at which the pulse spectru
is initially centered, ané = nw, /c is the propagation constant. &
The detuning parameter is defined as €

§=k—kpg. ©))

To describe nonlinear pulse propagation in FBGs, we use | ) R R
nonlinear coupled-mode equations that are valid only for wav Detuning, & (cm™")
lengths close to the Bragg wavelength. Using (1) and (2) in tl ®

Maxwell equations, one obtains the following set of nonlinear ) ) ) »
Fig. 2. (a) Transmitted (solid) and reflected (dashed) intensities when the

coupled-mode equations [24]: input intensity (dotted) is increased rapidly to a final steady-state value. The
OA 1 OA final values after 3 ns agree with the CW Theory. (b) Steady-state transmission
+1 + + i__"' +0AL +RA_+T |A_1_|2 Ay spectrum for two different phase shifts obtained using coupled-mode equation
0z Vg ot (circles) and CW matrix method (solid curves).
+2I'|A_|* A4 =0 4)
0A_ 1 0A_ ; ; :
ST i — T A 4 RTAL+TA PA ‘ 1
0z vy Ot ?\ 8=4.75cm’
2 _ ] \&
+2IN A" A_ =0 (5) 05l f - |
wherev, = ¢/n,, n, is the group index, and the linear coupling | S‘s\
coefficients and the nonlinear parameterare defined as f N@
zosf 1
™ (z . 2 Z } / o
Kk(z) = 1(2) explig(2)], ' = —no 6) £ | |
AB AB 5 j j
whereAp = 2nA is the Bragg wavelength and = wq/2mc S 04f J J T
is the carrier wavelength. The units df. are chosen such that | |
|A+|? represents intensity (Yn2). | |
In general, the nonlinear coupled mode equations should %2 ’ | 1
solved numerically for studying the nonlinear effects. We us | |
the finite-differepce methqd deve!oped in [25]. The method us (BB D8 § b o 1 ‘
the characteristics associated with (4) and (5) and solves th 0 05 1 15 2 25 3 35 4

on atwo-dimensional grid using an implicit fourth-order Runge Normalized Input Intensity

Kutta scheme, while combining the results at the grid points.

In this method, the number of sections into which the gratirﬁg- 3. Bistability chraract_eristics obtaiged for very long pulse cans for a
. L. . . . . iform grating ¢ = 0) usings = 5cm™!, L = 1cm,§ = 4.75 cm~!.

is divided depends on the number of grid points in the tiM&osses and circles show the off and on branches with hysteresis.
direction. Since the use of characteristics converts the two par-
tial differential equations into two ordinary differential equa-
tions, one can apply the methods developed for solving ordi-
nary differential equations. In the geometry of Fig. 1, a single Before focusing on the phenomenon of nonlinear switching,
pulse with the amplitudedy () is incident on the left end of we consider the linear case and solve the coupled-mode equa-
the grating located at = 0. The boundary conditions in this tions after settindg’ = 0. To show the effect of phase shifton

case becomd ; (0,t) = Ag(¢t), A_(L,t) =0, A;(2,0) = 0, the transmission spectrum of a FBG, we consider the CW limit
and A_(z,0) = 0, whereL is the grating length. In the fol- by using an input field whose intensity rises quickly (rise time
lowing numerical simulations, we consider a fiber grating with- 100 ps) and then settles down to a constant value (similar to a
the Bragg wavelengthp = 1.55 um and usen = 1.46 and step function). The dotted line in Fig. 2(a) shows the input inten-
no = 2.6 x 10°%° m? /W for the average index. The input in-sity profile. The solid and dashed lines show, respectively, the
tensities are given in units of gigawatts per square centimeteansmitted and reflected intensities for such an input when the
(GW/cm?). The launched power can be obtained by multiplyingignal wavelength almost coincides with the Bragg wavelength
them by the effective core area of the fiber. Switching power c&f = 0.005 cm~1) and the grating hasa phase shift. A FBG

be reduced using highly nonlinear fiber with largervalues.  with a coupling coefficient = 0.8 cm™! and alength of 3.5cm

lll. QUASI-CW SWITCHING CHARACTERISTICS
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Fig. 4. Bistable feat f ph hifted grat for f h f
d:;gtuning. istable features of phase-shifted gratings<) for four choices o I = 1 W/cn, the nonlinear effects are negligible and bistability does not

occur.

was used. In this case, the steady state can be reached after ™ =~
as seenin Fig. 2(a). The initial delay and the raised-cosine fui ]
tion used for the leading edge are chosen carefully to avoid 1 { i
initial shock that may occur with a mismatch of the initial ant 5| %W )
front-end boundary conditions at the inpat<£ 0, ¢t = 0). The mion
rise time of the transmission curve depends on the detuning P ;
rameter and is relatively large near the Bragg wavelength, =gzl P Lol _
shown in Fig. 2(a). G ; Lol

Fig. 2(b) shows the CW transmission spectrum cg i | ! |
phase-sifted FBGs by plotting the steady-state transm 2 o4 H :
sivity obtained after 3 ns as a functiondfor ¢ = 0 andr. The '
results obtained using the coupled-mode equations are shc
with circles [the star corresponds to the case of Fig. 2(a 02
Dotted ¢p = 0) and solid curves = =) show the results
obtained with the matrix method that is used commonly i L
the CW case. As seen in Fig. 2(b), the agreement between g5 151999 1550 155001 002 1550.03
two methods is excellent. As is well known [4], a phase shi Wavelength (nm)
opens a transmission peak within the stopband of an otherwise
uniform grating' and the location of the peak depends on tﬁ@ 6.. Spectral bistabilityfor phase-shifted gratings:( ’iT) at the same four
amount of phase shift. The peak is located in the middle of ti&"s levels for neas = 0.
bandgap forp = .

We next consider the case of a nonlinear grating. Again, vaa the left side are for a phase-shifted FBG while the other two
solve the nonlinear coupled-mode equation using the input with the right side are for a uniform FBG. The switching inten-
a sharp rising edge similar to that shown in Fig. 2(a). In the nosity of uniform FBGs is more than five times larger than that of
linear case, the steady state was reached only after 6 ns. Becphsse-shifted FBGs. This reduction was predicted by Reidic
the nonlinear regime exhibits bistability, two different step funal. in 1995 using a CW theory. Note, however, that the on—off
tions were used to obtain the CW bistable characteristics shomatio of nonlinear switching is better for uniform FBGs.
in Fig. 3 for a uniform FBG withx = 5 cm™!, L = 1 cm, Optical switching can also occur at a constant input intensity
8 = 4.75 cm~!, and¢ = 0. The lower branch was obtainedprovided the wavelength is changed by changing the detuning
using a step function with a rising edge while the upper branglarameter. Figs. 5 and 6 compare the switching characteristic
required an opposite step function whose value falls from 1 ta® the case of uniform and phase-shifted FBGs, respectively.
with a fall time of about 200 ps. The results of Fig. 3 agree with grating withx = 4 cm~! and L = 1 cm is used in these
the analytical prediction of [24] except that numerical methagimulations. In both the uniform and phase-shifted cases, trans-
cannot reproduce the middle “unstable” branch of the S-shapaéssivity can be switched from low to high values by changing
bistability curve. the input wavelength by a relatively small amount. The required

Nonlinear switching characteristics for uniform and phasehange in the input frequency4s 1 GHz. Such a small change
shifted FBGs are compared in Fig. 4. The two bistability curvesan be realized by temperature tuning when a semiconductor
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Fig. 7. Transmitted pulse shape in the on (solid) and off (dashed) states for Gaussian (left column) and square-shaped (right column) inpwinpushstsEth
curves in the case of a uniform FBG. Pulsewidths are 50, 100, and 1000 ps.

laser is used. In the case of phase-shifted gratings, the input fsalse has features similar to those associated with slow-moving
guency needs to be changed4y300 MHz. Such a small fre- Bragg-grating solitons.

quency shift can be realized using an acoustooptic modulatorin the case of phase-shifted FBGs shown in Fig. 8, the
The on-off contrast is again smaller in the case of phase-shifgitching behavior is quite different compared with the uni-
gratings. form-grating case. For broad 1-ns pulses, we observe much
less splitting, an indication that modulation instability is not
playing a significant role. For shorter pulses, the transmitted
pulse is much broader and much less intense than that in the
uniform-grating case.

We now consider how the switching characteristics are af-Bistable switching characteristic for short pulses are com-
fected as the pulsewidth is reduced from tens of nanosecondpdped with the CW case in Fig. 9. Dashed curves show the
below 100 ps. The shape of the transmitted pulses can changse of a Gaussian-shape input pulse, while the solid curves
dramatically from that of the input pulse, especially when pulsesrrespond to a pulse whose shape is nearly rectangular with
are short. Figs. 7 and 8 show the transmitted pulse shapesharp leading and trailing edges. Pulsewidths are 1000 and
the on (solid curves) and off (dashed curves) states for a vari@g0 ps [full-width at half maximum (FWHM)] in Fig. 9(a)
of input pulses in the case of uniform and phase-shifted graind (b), respectively. In all cases, a phase-shifted FBG needs
ings, respectively. In both cases, the left and right columns argich lower switching intensity compared with the case of a
for Gaussian and square-shaped pulses (dotted curves), respriferm grating. However, pulsewidth plays a major role, as is
tively, and the pulsewidth is chosen in the 50—1000 ps rangeapparent from Figs. 7 and 8. In the case of 1-ns-wide pulses,

In the case of a uniform grating (Fig. 7), the 1-ns-long pulswitching threshold is almost the same as the CW case because
exhibits quasi-CW characteristics except for the relaxation d&e pulse bandwidth of 1 GHz is small enough for switching
cillations seen in the bottom traces of Fig. 7. These oscillatiottss occur. However, switching becomes much more gradual as
can be attributed to the phenomenon of modulation instabilithe pulsewidth decreases and its bandwidth increases. Note
For pulses shorter than the round-trip time within the grating|so that square-shaped pulses need a lower switching intensity
the transmitted pulse is significantly compressed. In fact, tikempared with Gaussian pulses. This can be understood by

IV. SHORT-PULSE SWITCHING CHARACTERISTICS
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Fig. 9. Comparison of switching characteristics for uniform and phase-shifted gratings. Dotted, solid, and dashed curves show the CW, sdjuanetshape
Gaussian pulse cases, respectively. (a) Pulsewidth of 1 ns. (b) Pulsewidth of 100 ps.

noting that the switching depends mainly on the peak intensiffectively inside a phase-shifted FBG of 1-cm length (transit
of the pulse, but not on its bandwidth as long as the pulsetisme ~ 50 ps). In the case of a uniform FBG, the switching
wider than 500 ps. behavior can be observed even for short pulses, but at high in-
The switching depends on the pulse bandwidth in the casetefsities. In fact, as seen in Fig. 7, a gap soliton is formed in
short pulses shown in Fig. 9(b). The pulsewidth of 100 ps is ttlee on-state. Notice that as the pulsewidth decreases, switching
short to couple the forward- and backward-propagating waviescomes much more gradual. This can be explained by noting
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that the switching characteristics of a short pulse with many fre-
quency components are averaged over the entire pulse spectrum.

However, in the case of a phase-shifted FBG, no change of
transmission is observed with changes in the input intensity (Jdtase-shifted grating used for Fig. 9(b). The passband FWHM
Fig. 8). The bandwidth of the passband for a phase-shifted FE&PNlY ~ 1 GHz in this case. The circle shows a design choice
is important for switching a pulsed signal. Because the FWHF@r which the bandwidth exceeds 10 GHz. For this grating;
of this passband is about 1 GHz in our simulations, a 100-g3 ¢ ', L = 0.15 cm, andx L = 3.45.
pulse with a bandwidth- 5 GHz cannot pass through it. How- Fig. 11 shows the switching characteristics for this grating
ever, in the case of a uniform FBG, switching is generated at tH8ing pulses of 100-ps width. In the case of a phase-shifted

left edge of the bandgap, and the bandwidth of the uniform FB&ating, we can observe that the switching characteristics are
is normally wider than that of the signal. comparable to the uniform FBG case but the switching inten-

sity is lower by a factor of five. Note that the square shape
has low-intensity switching characteristics for both of FBGs.
Switched pulse shapes are shown in Fig. 12. The transmitted
V. DESIGN OPTIMIZATION FOR PHASE-SHIFTED GRATINGS pulse for a phase-shifted FBG looks Gaussian. In contrast, os-
cillations are observed for a uniform FBG. We conclude that
One can design a phase-shifted FBG whose transmissses as short as 100 ps can be used for nonlinear switching, if
passband is wide enough for 100-ps pulses. The transmissitig grating parameters are chosen judiciously.
of a phase-shifted FBG within the central passband can be
calculated analytically and is given by

-1 VI. CONCLUSIONS

7
@ In this paper, we have compared the switching characteristics
of uniform and phase-shifted FBGs when optical pulses are sent
The spectral bandwidth for given values:ofnd L is obtained through the grating. The nonlinear coupled-mode equations
by finding 6 where the tansmissivity drops to 50%. This occur@ere solved numerically for pulsewidths ranging from 50 ps
when is the solution of to 10 ns or more. For very long pulses (widtls 10 ns),
the switching behavior is similar to the quasi-CW case. For
45212 sinh? [(Kz _ 52)1/25} = (k2 = §2)2. ®) pulsewidt_hs i_n the range (_).5_—1 ns, phase-shifted gratings offer
better switching characteristics. For pulses shorter than 500 ps,
the phase-shifted FBGs need to be designed with values of
Fig. 10 shows the FWHM as a function of the coupling coefz: > 10 cm~! while keepingsxL = 3 so that the central
ficient « for four different lengths of the FBG. As decreases transmission peak is wide enough for the entire pulse spectrum.
for a given length of grating, the FWHM increases but the entita general, the use of phase-shifted FBGs reduces the switching
of bandgap shrinks and eventually the grating become usela@stensity levels but the on—off contrast is generally better for
Typically, k. should exceed 2. The cross corresponds to thiform gratings.

46%k?sinh* [(k? —62)1/2L]

T= (k2 — §2)2

+1
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