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Nonlinear Switching of Optical Pulses in
Fiber Bragg Gratings

Hojoon Lee, Member, IEEE,and Govind P. Agrawal, Fellow, IEEE

Abstract—We study numerically the nonlinear switching
characteristics of optical pulses transmitted though fiber Bragg
gratings. We consider both the uniform and phase-shifted gratings
and compare their performance as a nonlinear switch. The non-
linear coupled-mode equations were solved numerically to obtain
the pulse-switching characteristics. The steady-state behavior
known to occur for continuous-wave optical beams is realized
only for pulses wider than 10 ns with long tails. For pulsewidths
in the range 0.1–1 ns, the use of phase-shifted gratings reduces
the switching threshold, but the on-off contrast is generally better
for uniform gratings. We also quantify the effects of rise and fall
times associated with an optical pulse on nonlinear switching by
considering the Gaussian pulses with smooth tails and nearly
rectangular pulses with sharp leading and trailing edges.

Index Terms—Bragg gratings, fiber gratings, nonlinear optics,
optical switches, periodic structures.

I. INTRODUCTION

F IBER Bragg gratings (FBGs) are attractive for their appli-
cations in the fields of optical communication systems and

optical fiber sensors [1]. Although most applications have fo-
cused on the linear properties of FBGs, Bragg gratings also offer
the potential of nonlinear switching, a phenomenon that has at-
tracted considerable attention since 1979 [2]–[18]. In a 1995
experiment, intense optical pulses were propagated through a
FBG (approximately 1 cm in length) at frequencies inside the
photonic bandgap [7]. Although the intensity-dependent trans-
mission was measured, it was not possible to observe the prop-
agation effects as the pulses were much longer than the grating.
The propagation of Bragg-grating solitons in long and uniform
FBGs was first observed in a 1996 experiment [19], in which
soliton-like pulses were observed to propagate at75 of the
speed expected in the absence of the FBG. Similar effects occur
in superstructure Bragg gratings, as discussed in [20].

The Bragg grating solitons form in FBGs through a balance
between the strong grating dispersion and the third-order optical
nonlinearity and propagate at velocities substantially below the
speed of light in a bare fiber [21]. A numerical analysis shows
that these solitons are well described by the solitary-wave solu-
tions of the nonlinear coupled-mode equations [22]. The non-
linear reflection of optical pulses in a chirped FBG is also of
interest [23]. It was found that for incident pulse intensities
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Fig. 1. Schematic of a phase-shifted FBG. The notation used in the paper is
also illustrated.

in the regime suitable for the formation of fundamental soli-
tons in transmission, pulse pairs are formed in reflection. The
pulse-pair formation is associated with the strong fields pro-
duced as the pulse reflects from a chirped FBG.

Quasi-continuous-wave (CW) nonlinear switching within the
bandgap of a FBG was observed in 1998 [10]. As many as
five gap solitons of 100–500-ps duration were generated from
a 2-ns pulse at a launched peak intensity of 27 GWcm . A
corresponding increase in the transmission from 3% to 40% of
the incident pulse energy was observed. In another experiment
[12], all optical nonlinear switching in a 20-cm-long FBG lead
to a 20-dB increase in the transmissivity. All of these experi-
ments require high peak intensities for nonlinear switching. One
way to reduce the input intensity is to use a phase-shifted FBG.
The theory of phase-shifted DFB structures in the CW regime
developed in 1995 [4] shows not only low switching intensi-
ties, but also the possibility of frequency-controlled all-optical
switching. One would expect these useful features to survive
when short optical pulses are used in place of a CW beam. In
this paper, we investigate the switching characteristics of op-
tical pulses in uniform and phase-shifted FBGs and compare
them with the CW case. We show that the results depend on
the pulse shape by using Gaussian and raised-cosine pulses. We
find that the switching threshold can be reduced significantly by
using phase-shifted FBGs, provided the pulse shape is chosen
judiciously.

II. THEORY

Fig. 1 shows a phase-shifted FBG schematically. The refrac-
tive index varies along the grating length periodically except for
a phase-shift occurring in the middle of the grating. The index
variation can be written as

(1)

where is the electric field, is the average refractive index
change of the fiber mode, is the amplitude of periodic
index change, is the nonlinear Kerr coefficient, is the Bragg
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period, and describes the phase shift. The same form can
be used for chirped fiber gratings by making-dependent. The
electric field inside the grating can be written as

(2)

where is the Bragg wave number, and are
the envelope functions of the forward and backward-traveling
wave, both of which are assumed to be slowly varying in space
and time, is the carrier frequency at which the pulse spectrum
is initially centered, and is the propagation constant.
The detuning parameter is defined as

(3)

To describe nonlinear pulse propagation in FBGs, we use the
nonlinear coupled-mode equations that are valid only for wave-
lengths close to the Bragg wavelength. Using (1) and (2) in the
Maxwell equations, one obtains the following set of nonlinear
coupled-mode equations [24]:

(4)

(5)

where , is the group index, and the linear coupling
coefficient and the nonlinear parameterare defined as

(6)

where is the Bragg wavelength and
is the carrier wavelength. The units of are chosen such that

represents intensity (Wm ).
In general, the nonlinear coupled mode equations should be

solved numerically for studying the nonlinear effects. We use
the finite-difference method developed in [25]. The method uses
the characteristics associated with (4) and (5) and solves them
on a two-dimensional grid using an implicit fourth-order Runge-
Kutta scheme, while combining the results at the grid points.
In this method, the number of sections into which the grating
is divided depends on the number of grid points in the time
direction. Since the use of characteristics converts the two par-
tial differential equations into two ordinary differential equa-
tions, one can apply the methods developed for solving ordi-
nary differential equations. In the geometry of Fig. 1, a single
pulse with the amplitude is incident on the left end of
the grating located at . The boundary conditions in this
case become , , ,
and , where is the grating length. In the fol-
lowing numerical simulations, we consider a fiber grating with
the Bragg wavelength m and use and

10 m W for the average index. The input in-
tensities are given in units of gigawatts per square centimeter
(GW cm ). The launched power can be obtained by multiplying
them by the effective core area of the fiber. Switching power can
be reduced using highly nonlinear fiber with largervalues.

Fig. 2. (a) Transmitted (solid) and reflected (dashed) intensities when the
input intensity (dotted) is increased rapidly to a final steady-state value. The
final values after 3 ns agree with the CW Theory. (b) Steady-state transmission
spectrum for two different phase shifts obtained using coupled-mode equation
(circles) and CW matrix method (solid curves).

Fig. 3. Bistability characteristics obtained for very long pulse cases for a
uniform grating (� = 0) using� = 5 cm , L = 1 cm, � = 4:75 cm .
Crosses and circles show the off and on branches with hysteresis.

III. QUASI-CW SWITCHING CHARACTERISTICS

Before focusing on the phenomenon of nonlinear switching,
we consider the linear case and solve the coupled-mode equa-
tions after setting . To show the effect of phase shifton
the transmission spectrum of a FBG, we consider the CW limit
by using an input field whose intensity rises quickly (rise time

100 ps) and then settles down to a constant value (similar to a
step function). The dotted line in Fig. 2(a) shows the input inten-
sity profile. The solid and dashed lines show, respectively, the
transmitted and reflected intensities for such an input when the
signal wavelength almost coincides with the Bragg wavelength
( cm ) and the grating has a phase shift. A FBG
with a coupling coefficient cm and a length of 3.5 cm
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Fig. 4. Bistable features of phase-shifted gratings (� = �) for four choices of
detuning.

was used. In this case, the steady state can be reached after 3 ns,
as seen in Fig. 2(a). The initial delay and the raised-cosine func-
tion used for the leading edge are chosen carefully to avoid the
initial shock that may occur with a mismatch of the initial and
front-end boundary conditions at the input ( , ). The
rise time of the transmission curve depends on the detuning pa-
rameter and is relatively large near the Bragg wavelength, as
shown in Fig. 2(a).

Fig. 2(b) shows the CW transmission spectrum of
phase-sifted FBGs by plotting the steady-state transmis-
sivity obtained after 3 ns as a function offor and . The
results obtained using the coupled-mode equations are shown
with circles [the star corresponds to the case of Fig. 2(a)].
Dotted ( ) and solid curves ( ) show the results
obtained with the matrix method that is used commonly in
the CW case. As seen in Fig. 2(b), the agreement between the
two methods is excellent. As is well known [4], a phase shift
opens a transmission peak within the stopband of an otherwise
uniform grating, and the location of the peak depends on the
amount of phase shift. The peak is located in the middle of the
bandgap for .

We next consider the case of a nonlinear grating. Again, we
solve the nonlinear coupled-mode equation using the input with
a sharp rising edge similar to that shown in Fig. 2(a). In the non-
linear case, the steady state was reached only after 6 ns. Because
the nonlinear regime exhibits bistability, two different step func-
tions were used to obtain the CW bistable characteristics shown
in Fig. 3 for a uniform FBG with cm , cm,

cm , and . The lower branch was obtained
using a step function with a rising edge while the upper branch
required an opposite step function whose value falls from 1 to 0
with a fall time of about 200 ps. The results of Fig. 3 agree with
the analytical prediction of [24] except that numerical method
cannot reproduce the middle “unstable” branch of the S-shaped
bistability curve.

Nonlinear switching characteristics for uniform and phase-
shifted FBGs are compared in Fig. 4. The two bistability curves

Fig. 5. Spectral bistability for uniform gratings at input intensity levels. At
I = 1 W=cm , the nonlinear effects are negligible and bistability does not
occur.

Fig. 6. Spectral bistability for phase-shifted gratings (� = �) at the same four
intensity levels for near� = 0.

on the left side are for a phase-shifted FBG while the other two
on the right side are for a uniform FBG. The switching inten-
sity of uniform FBGs is more than five times larger than that of
phase-shifted FBGs. This reduction was predicted by Radicet
al. in 1995 using a CW theory. Note, however, that the on–off
ratio of nonlinear switching is better for uniform FBGs.

Optical switching can also occur at a constant input intensity
provided the wavelength is changed by changing the detuning
parameter. Figs. 5 and 6 compare the switching characteristic
in the case of uniform and phase-shifted FBGs, respectively.
A grating with cm and cm is used in these
simulations. In both the uniform and phase-shifted cases, trans-
missivity can be switched from low to high values by changing
the input wavelength by a relatively small amount. The required
change in the input frequency is1 GHz. Such a small change
can be realized by temperature tuning when a semiconductor
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Fig. 7. Transmitted pulse shape in the on (solid) and off (dashed) states for Gaussian (left column) and square-shaped (right column) input pulses shown by dotted
curves in the case of a uniform FBG. Pulsewidths are 50, 100, and 1000 ps.

laser is used. In the case of phase-shifted gratings, the input fre-
quency needs to be changed by300 MHz. Such a small fre-
quency shift can be realized using an acoustooptic modulator.
The on–off contrast is again smaller in the case of phase-shifted
gratings.

IV. SHORT-PULSE SWITCHING CHARACTERISTICS

We now consider how the switching characteristics are af-
fected as the pulsewidth is reduced from tens of nanoseconds to
below 100 ps. The shape of the transmitted pulses can change
dramatically from that of the input pulse, especially when pulses
are short. Figs. 7 and 8 show the transmitted pulse shapes in
the on (solid curves) and off (dashed curves) states for a variety
of input pulses in the case of uniform and phase-shifted grat-
ings, respectively. In both cases, the left and right columns are
for Gaussian and square-shaped pulses (dotted curves), respec-
tively, and the pulsewidth is chosen in the 50–1000 ps range.

In the case of a uniform grating (Fig. 7), the 1-ns-long pulse
exhibits quasi-CW characteristics except for the relaxation os-
cillations seen in the bottom traces of Fig. 7. These oscillations
can be attributed to the phenomenon of modulation instability.
For pulses shorter than the round-trip time within the grating,
the transmitted pulse is significantly compressed. In fact, the

pulse has features similar to those associated with slow-moving
Bragg-grating solitons.

In the case of phase-shifted FBGs shown in Fig. 8, the
switching behavior is quite different compared with the uni-
form-grating case. For broad 1-ns pulses, we observe much
less splitting, an indication that modulation instability is not
playing a significant role. For shorter pulses, the transmitted
pulse is much broader and much less intense than that in the
uniform-grating case.

Bistable switching characteristic for short pulses are com-
pared with the CW case in Fig. 9. Dashed curves show the
case of a Gaussian-shape input pulse, while the solid curves
correspond to a pulse whose shape is nearly rectangular with
sharp leading and trailing edges. Pulsewidths are 1000 and
100 ps [full-width at half maximum (FWHM)] in Fig. 9(a)
and (b), respectively. In all cases, a phase-shifted FBG needs
much lower switching intensity compared with the case of a
uniform grating. However, pulsewidth plays a major role, as is
apparent from Figs. 7 and 8. In the case of 1-ns-wide pulses,
switching threshold is almost the same as the CW case because
the pulse bandwidth of 1 GHz is small enough for switching
to occur. However, switching becomes much more gradual as
the pulsewidth decreases and its bandwidth increases. Note
also that square-shaped pulses need a lower switching intensity
compared with Gaussian pulses. This can be understood by
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Fig. 8. Same as in Fig. 7 except that a phase-shifted grating is used and pulsewidths are 100, 200, and 1000 ps.

Fig. 9. Comparison of switching characteristics for uniform and phase-shifted gratings. Dotted, solid, and dashed curves show the CW, square-shaped, and
Gaussian pulse cases, respectively. (a) Pulsewidth of 1 ns. (b) Pulsewidth of 100 ps.

noting that the switching depends mainly on the peak intensity
of the pulse, but not on its bandwidth as long as the pulse is
wider than 500 ps.

The switching depends on the pulse bandwidth in the case of
short pulses shown in Fig. 9(b). The pulsewidth of 100 ps is too
short to couple the forward- and backward-propagating waves

effectively inside a phase-shifted FBG of 1-cm length (transit
time 50 ps). In the case of a uniform FBG, the switching
behavior can be observed even for short pulses, but at high in-
tensities. In fact, as seen in Fig. 7, a gap soliton is formed in
the on-state. Notice that as the pulsewidth decreases, switching
becomes much more gradual. This can be explained by noting
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Fig. 10. FWHM of center passband for the phase-shifted FBG as a function
of coupling coefficient for different grating lengths.

that the switching characteristics of a short pulse with many fre-
quency components are averaged over the entire pulse spectrum.

However, in the case of a phase-shifted FBG, no change of
transmission is observed with changes in the input intensity (see
Fig. 8). The bandwidth of the passband for a phase-shifted FBG
is important for switching a pulsed signal. Because the FWHM
of this passband is about 1 GHz in our simulations, a 100-ps
pulse with a bandwidth 5 GHz cannot pass through it. How-
ever, in the case of a uniform FBG, switching is generated at the
left edge of the bandgap, and the bandwidth of the uniform FBG
is normally wider than that of the signal.

V. DESIGN OPTIMIZATION FOR PHASE-SHIFTED GRATINGS

One can design a phase-shifted FBG whose transmission
passband is wide enough for 100-ps pulses. The transmissivity
of a phase-shifted FBG within the central passband can be
calculated analytically and is given by

(7)

The spectral bandwidth for given values ofand is obtained
by finding where the tansmissivity drops to 50%. This occurs
when is the solution of

(8)

Fig. 10 shows the FWHM as a function of the coupling coef-
ficient for four different lengths of the FBG. As decreases
for a given length of grating, the FWHM increases but the entire
of bandgap shrinks and eventually the grating become useless.
Typically, should exceed 2. The cross corresponds to the

Fig. 11. Comparison of switching characteristics for uniform and
phase-shifted gratings. Curves are shown for the CW (dotted curves), square
shaped (solid curves), and Gaussian pulse (dashed curves). The grating
parameters are� = 23 cm andL = 0:15 cm.

phase-shifted grating used for Fig. 9(b). The passband FWHM
is only 1 GHz in this case. The circle shows a design choice
for which the bandwidth exceeds 10 GHz. For this grating,

cm , cm, and .
Fig. 11 shows the switching characteristics for this grating

using pulses of 100-ps width. In the case of a phase-shifted
grating, we can observe that the switching characteristics are
comparable to the uniform FBG case but the switching inten-
sity is lower by a factor of five. Note that the square shape
has low-intensity switching characteristics for both of FBGs.
Switched pulse shapes are shown in Fig. 12. The transmitted
pulse for a phase-shifted FBG looks Gaussian. In contrast, os-
cillations are observed for a uniform FBG. We conclude that
pulses as short as 100 ps can be used for nonlinear switching, if
the grating parameters are chosen judiciously.

VI. CONCLUSIONS

In this paper, we have compared the switching characteristics
of uniform and phase-shifted FBGs when optical pulses are sent
through the grating. The nonlinear coupled-mode equations
were solved numerically for pulsewidths ranging from 50 ps
to 10 ns or more. For very long pulses (width ns),
the switching behavior is similar to the quasi-CW case. For
pulsewidths in the range 0.5–1 ns, phase-shifted gratings offer
better switching characteristics. For pulses shorter than 500 ps,
the phase-shifted FBGs need to be designed with values of

cm while keeping so that the central
transmission peak is wide enough for the entire pulse spectrum.
In general, the use of phase-shifted FBGs reduces the switching
intensity levels but the on–off contrast is generally better for
uniform gratings.
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Fig. 12. Transmitted pulse shapes in the on (solid) and off (dashed) states for square- and Gaussian-shape 100-ps input pulses (dotted) in the case of auniform
FBG (top row) and a phase-shifted FBG bottom row.
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