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A vector theory of the stimulated Raman scattering process is developed for describing the polarization effects
in fiber-based Raman amplifiers. We use this theory to show that polarization-mode dispersion (PMD) in-
duces large fluctuations in an amplified signal. It is found that PMD-induced fluctuations follow a log-normal
distribution. We also discuss the random nature of the polarization-dependent gain (PDG) in Raman ampli-
fiers. Using the concept of a PDG vector, we find the probability distribution of PDG in an analytic form and
use it to show that both the mean and the standard deviation of PDG depend on the PMD parameter inversely
when the effective fiber length is much larger than the PMD diffusion length. We apply our theory to study
how PDG can be reduced by scrambling pump polarization randomly and show that the mean value of PDG is
directly proportional to the degree of pump polarization. © 2003 Optical Society of America
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1. INTRODUCTION
The Raman effect, first observed in 1928,1 has attracted
considerable attention since 1962 when the phenomenon
of stimulated Raman scattering (SRS) was discovered.2

SRS was first observed in silica fibers in 1972 (Ref. 3), and
by 1981 it was used to make fiber-based Raman amplifi-
ers capable of providing more than 30-dB gain.4 Such
Raman amplifiers have attracted considerable attention
recently5–7 because of their potential for providing a rela-
tively flat gain over a wide bandwidth. The theoretical
treatment of Raman amplifiers is often based on a scalar
approach6 even though the Raman gain is known to be po-
larization dependent.8–13 A scalar approach can be justi-
fied if the polarization states of the pump and the signal
fields do not change along the fiber. This is, however, not
the case in most fibers in which birefringence fluctuations
lead to randomization of the state of polarization (SOP) of
any optical field. This effect is known as polarization-
mode dispersion (PMD) and has been studied extensively
in recent years.14–17 Although the effects of PMD on
Raman amplification have been observed experimen-
tally,10–13 a vector theory of the SRS process has not yet
been fully developed.

In this paper we develop a vector theory of Raman am-
plification capable of including the PMD-induced random
evolution of the pump and signal polarization states.18,19

We use this theory to show that the amplified signal fluc-
tuates over a wide range because of PMD, and the aver-
age gain is significantly lower than that expected in the
absence of PMD. Based on this theory, we find the sta-
tistics of polarization-dependent gain (PDG) and its rela-
tionship with the operating parameters of Raman ampli-
fiers. The paper is organized as follows. In Section 2 we
develop the basic theory using the Stokes-vector formal-
ism and discuss the simplifying approximations made for
obtaining the analytical results. The average value of
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the amplified signal and the variance of its PMD-induced
fluctuations are discussed in Section 3. The probability
density of signal fluctuations is shown to be a log-normal
distribution in Section 4. In Section 5 we consider the
statistics of PDG and show that both the average and rms
values of PDG can be found in an analytic form. We ap-
ply in Section 6 the vector theory to the case in which
pump polarization is scrambled randomly to reduce the
influence of PMD effects. The main results are summa-
rized in Section 7.

2. GENERAL VECTOR THEORY
In the field of nonlinear optics, the polarization induced in
a dielectric medium is expanded in powers of the optical
field E(r, t) as

P~r, t ! 5 P~1 !~r, t ! 1 P~2 !~r, t ! 1 P~3 !~r, t ! 1 ¯,

(2.1)
where P(1) represents the linear contribution and the
other terms account for the second-, third-, and higher-
order nonlinear effects. We assume that the medium ex-
hibits inversion symmetry so that the second-order non-
linear effects do not occur, and P(2) 5 0. The third-order
nonlinear polarization in a medium such as silica glass
can be written in its most general form as20,21

P~3 !~r, t !

5
«0

2
s@E~r, t ! • E~r, t !#E~r, t !

1 E~r, t !E
0

`

«0a~t!@E~r, t 2 t! • E~r, t 2 t!#dt

1 E~r, t ! • E
0

`

«0b~t!E~r, t 2 t!E~r, t

2 t!dt, (2.2)
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where a(t) and b(t) govern the delayed Raman response
(related to nuclear motion) whereas s accounts for the in-
stantaneous electronic response of the nonlinear medium.

In a Raman amplifier, the pump and signal waves
propagate simultaneously, and the total field is given by

E 5 Re@Ep exp~2ivpt ! 1 Es exp~2ivst !#, (2.3)

where Ep and Es are the slowly varying envelopes for the
pump and signal fields oscillating at frequencies vp and
vs , respectively. Writing P(3) also in the same form as

P~3 ! 5 Re@Pp exp~2ivpt ! 1 Ps exp~2ivst !#, (2.4)

the nonlinear polarization at the pump and signal fre-
quencies is found to be

Pj~v j! 5
«0

8
@ s 1 2b̃~0 !#~Ej – Ej!Ej*

1
«0

4
@ s 1 2ã~0 ! 1 b̃~0 !#~Ej* – Ej!Ej

1
«0

4
@ s 1 2ã~0 ! 1 b̃~v j 2 vm!#~Em* – Em!Ej

1
«0

4
@ s 1 b̃~0 ! 1 b̃~v j 2 vm!#~Em – Ej!Em*

1
«0

4
@ s 1 2ã~v j 2 vm! 1 b̃~0 !#

3 ~Em* – Ej!Em , (2.5)

where j, m 5 p or s( j Þ m) and

ã~v! 5 E
0

`

a~t!exp~ivt!dt,

b̃~v! 5 E
0

`

b~t!exp~ivt!dt (2.6)

are the Fourier transforms of the Raman response func-
tions a(t) and b(t), respectively. In obtaining Eq. (2.5),
the terms containing ã(2vp), ã(vp 1 vs), b̃(2vp), and
b̃(vp 1 vs) were neglected because of their relatively
small magnitudes.

We need to make several simplifying assumptions be-
fore the vector theory of Raman amplification can be used
successfully in practice. Both the pump and signal fields
are generally time dependent in practice. We assume
that they vary with time on a time scale long enough that
the effects of group-velocity dispersion are negligible.
The shortest time scale is the bit duration TB related in-
versely to bit rate B of a light-wave system. Dispersive
effects are negligible when fiber length L is a small frac-
tion of the dispersion length LD 5 TB

2 /ub2u, where ub2u is
the group-velocity dispersion parameter. Even at B
5 40 Gbit/s, LD . 100 km if we use ub2u 5 5 ps2/km,
and the effects of group-velocity dispersion can be ne-
glected for L , 20 km.

If we use Eqs. (2.1), (2.3), and (2.4) in the Maxwell
equations together with P(2) 5 0, we find that Ep and Es
satisfy the nonlinear Helmholtz equations
¹2Ej 1
v j

2

c2
«JjEj 5 2

v j
2

«0c2
Pj , (2.7)

where «0 is the vacuum permittivity and «Jj is the linear
part of the dielectric constant resulting from P(1) in Eq.
(2.1). Note that its tensorial nature is important to ac-
count for the PMD effects that have their origin in the bi-
refringence of silica fibers.

Both Ep and Es vectors evolve along the fiber length.
Their magnitudes change because of SRS whereas their
SOPs change because of birefringence. It is common to
choose the z axis along the fiber length and assume that
Ep and Es lie in the x –y plane. This assumption
amounts to a neglect of the longitudinal component of the
two vectors and is justified in practice as long as the spa-
tial size of the fiber mode is larger than the optical wave-
length. In the Jones-matrix notation of Ref. 14, the
pump and signal fields at any point r inside the fiber can
be written as

Ep~r! 5 Fp~x, y !uAp&exp~ikpz !,

Es~r! 5 Fs~x, y !uAs&exp~iksz !, (2.8)

where Fp(x, y) and Fs(x, y) represent the fiber-mode
profile, kp and ks are propagation constants, and the
Jones vectors uAp& and uAs& are two-dimensional column
vectors representing the two components of the electric
field in the x –y plane. Since Fp and Fs do not change
with z, we need to consider only the evolution of uAp& and
uAs& along the fiber.

We substitute Eqs. (2.8) back into Eq. (2.7), integrate
over the transverse mode distribution in the x –y plane,
and assume uAp& and uAs& to be slowly varying functions
of z so that we can neglect their second-order derivative
with respect to z. We write «J on the basis of Pauli ma-
trices as14

~v j
2/c2!«Jj 5 ~kj 1 ia j/2!2s0 2 kjv jb • s, (2.9)

where s0 is a unit matrix. The vector s is formed by use
of the Pauli matrices as s 5 s1ê1 1 s2ê2 1 s3ê3 , where
ê1 , ê2 , and ê3 are the three unit vectors in the Stokes
space and

s1 5 S 1 0

0 2 1 D , s2 5 S 0 1

1 0 D , s3 5 S 0 2 i

i 0 D .

(2.10)

In the Jones-matrix notation, we obtain the following
vector equations governing the evolution of the pump and
signal fields inside an optical fiber:
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j
duAj&
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5 2

a j
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i

2
v jb – suAj&

1
ig jj

3 F2^AjuAj& 1
kb

ka
uAj* &^Aj* uG uAj&

1
2ig jm

3
@~1 1 db!^AmuAm&
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1
z

2
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1 g1uAm&^Amu#uAj&, (2.11)

where j, m 5 p or s (m Þ j), a j accounts for fiber losses,
and z 5 1 when j 5 s but z 5 2vp /vs when j 5 p be-
cause of the SRS process. The vectors ^Au and uA* & are
Hermitian and complex conjugates of uA&, respectively.
The PMD effects in Eq. (2.11) are governed by the bire-
fringence vector b.22 j 5 6 1 depending on the pump-
ing configuration. In the following analysis we assume
the signal propagates forward but the pump can propa-
gate forward (j 5 1) or backward (j 5 2 1), depending
on the pumping configuration.

The nonlinear effects in Eq. (2.11) are governed by the
parameters

ka 5 s 1 2ã~0 ! 1 b̃~0 !, kb 5 s 1 2b̃~0 !, (2.12)

da 5 2$Re@ ã~VR!# 2 ã~0 !%/ka ,

db 5 $Re@ b̃~VR!# 2 b̃~0 !%/ka , (2.13)

where VR 5 vp 2 vs is the Raman shift. These param-
eters are responsible for self-phase modulation and cross-
phase modulation (XPM) and lead to the phenomenon of
nonlinear polarization rotation (NPR). Usually the in-
stantaneous Kerr response dominates and s is so large
that ka ' kb .23 We have also introduced

g jm 5 3v j
2vmka /~8c4kjkmAeff! (2.14)

as the self-phase modulation (m 5 j) and XPM (m Þ j)
nonlinear parameters at the pump ( j 5 p) and signal ( j
5 s) frequencies, where Aeff is the effective core area of
the optical fiber assumed to be the same for both the
pump and the signal.6

The Raman-gain parameters g1 and g2 in Eq. (2.11) ac-
count for the contributions from the isotropic and aniso-
tropic nuclear response, respectively, and are defined as20

g1 5 vs
2vp Im@ ã~VR!#/~c4kpksAeff!,

g2 5 vs
2vp Im@ b̃~VR!#/~2c4kpksAeff!. (2.15)

In general, g2 is much smaller than g1 for optical
fibers.9,21

Equation (2.11) looks complicated in the Jones-matrix
formalism. It can be simplified considerably by writing it
in the Stokes space.14 After introducing the Stokes vec-
tors for the pump and signal as

P 5 ^Apu suAp& [ P1ê1 1 P2ê2 1 P3ê3 , (2.16)
S 5 ^Asu suAs& [ S1ê1 1 S2ê2 1 S3ê3 , (2.17)

and using the relations

uA* &^A* u 5 uA&^Au 2 ^Au s3uA&s3 , (2.18)

uA&^Au 5 $^AuA& 1 ^Au suA& • s%/2, (2.19)

we obtain the following two vector equations governing
the dynamics of P and S in the Stokes space:

j
dP

dz
5 2apP 2

vp

2vs
g1@~1 1 3m!S0P

1 ~1 1 m!P0S 2 2mP0S3#

1 ~vpb 1 Wp! 3 P, (2.20)

dS

dz
5 2asS 1

g1

2
@~1 1 3m!P0S

1 ~1 1 m!S0P 2 2mS0P3#

1 ~vsb 1 Ws! 3 S, (2.21)

where P0 5 uPu and S0 5 uSu are the pump and signal
powers, P3 5 P3ê3 , S3 5 S3ê3 represent projections
along ê3 , and

Wp 5
2

3
@gppP3 1 2gps~1 1 db!S3

2 gps~2 1 da 1 db!S#, (2.22)

Ws 5
2

3
@gssS3 1 2gsp~1 1 db!P3

2 gsp~2 1 da 1 db!P#. (2.23)

The vectors Wp and Ws account for the self-phase
modulation-induced and XPM-induced NPR. The pa-
rameter m 5 g2 /g1 is a measure of the anisotropy and de-
pends in general on the pump-signal detuning VR . It
has a value of approximately 0.012 for silica fibers at the
Raman gain peak.20 In most of the previous work m has
been set to zero.8,18

Because of fiber birefringence, both P and S rotate on
the Poincaré sphere around the same axis but with differ-
ent rates as dictated by the magnitude of vpb and vsb.
However, the SRS process depends only on the relative
orientation of P and S. To simplify the following analy-
sis, we chose to work in a rotating frame in which the
pump Stokes vector P is not affected by birefringence. In
the Stokes space, the required transformation is V
5 RJV8, where V is an arbitrary vector in the Stokes
space and the rotation matrix RJ evolves with z as

dRJ

dz
5 jvpb 3 RJ . (2.24)

In practice, the beat length of residual birefringence (;1
m) and its correlation length (;10 m) are much smaller
than the beat length of NPR (;10 km depending on opti-
cal powers). As a result, rotations of Stokes vectors in-
duced by fiber birefringence are so fast compared with
that induced by NPR that one can average over them.



Q. Lin and G. Agrawal Vol. 20, No. 8 /August 2003 /J. Opt. Soc. Am. B 1619
Appendix A provides details of the averaging procedure.
The averaged equations become

j
dP

dz
5 2apP 2

vp

2vs
g1@~1 1 3m!S0P

1 ~1 1 m/3!P0S# 2 «psS 3 P, (2.25)

dS

dz
5 2asS 1

g1

2
@~1 1 3m!P0S 1 ~1 1 m/3!S0P#

2 ~VRB 1 «spP! 3 S, (2.26)

where « jm 5 2g jm(4 1 3da 1 db)/9, VR 5 jvp 2 vs ,
and B is related to b through RJ .

Equations (2.25) and (2.26) describe SRS under quite
general conditions. We make two further simplifications
in the following analysis. We neglect both the pump
depletion and the signal-induced XPM on the pump be-
cause the pump power is much larger than the signal
power in practice. The pump equation (2.25) then con-
tains only the loss term and can be easily integrated.
The effect of fiber losses is to reduce the magnitude of P
but the direction of P remains fixed in the rotating frame.

Equation (2.26) shows clearly that the Raman gain is
polarization dependent. The gain coefficient varies from
g1(1 1 5m/3) to 4mg1/3, depending on the angle between
the Stokes vectors of the pump and the signal. Random
variations in the fiber birefringence change the relative
orientation between S and P and produce random
changes in the Raman gain. However, the last term,
«spP 3 S, in Eq. (2.26) accounts for the XPM-induced
NPR and does not affect the Raman gain because of its
deterministic nature. We can eliminate this term by
making a further transformation

V 5 expH 2«spF E
0

z

P0~z !dzG p̂ 3 J V8, (2.27)

where p̂ represents the unit vector on the Poincaré sphere
in the direction of P and V is an arbitrary vector in the
Stokes space. After doing so, Eq. (2.26) reduces to

dS

dz
5 2asS 1

g1

2
@~1 1 3m!P0S 1 ~1 1 m/3!S0P#

2 VRb 3 S, (2.28)

where b is related to B in Eq. (2.26) by a deterministic ro-
tation. As optical fibers used for Raman amplification
are much longer than the birefringence correlation
length, b(z) can be modeled as a three-dimensional sto-
chastic process whose first-order and second-order mo-
ments are given by

^b~z !& 5 0, ^b~z1!b~z2!& 5
1

3
Dp

2IJd ~z2 2 z1!, (2.29)

where the angle bracket denotes an ensemble average, IJ

is the second-order unit tensor, and Dp is the PMD pa-
rameter of the fiber. As discussed in Appendix B, we
should treat all stochastic differential equations in the
Stratonovich sense.24

Equation (2.28) can be further simplified by noting that
the first two terms on its right-hand side do not change
the direction of S and can be removed by a suitable trans-
formation. Making the final transformation as

S 5 s expH E
0

zFg1

2
~1 1 3m!P0~z ! 2 asGdzJ , (2.30)

the dynamic equations governing the power and the SOP
of the signal are given by

ds0

dz
5

gR

2
P0~z !p̂ • s, (2.31)

ds

dz
5

gR

2
P0~z !s0p̂ 2 VRb 3 s, (2.32)

where gR [ g1(1 1 m/3), s0 5 usu, and p̂ is the input SOP
of the pump.

Equations (2.31) and (2.32) apply for both the forward
and the backward pumping schemes, but the z depen-
dence of P0(z) and the magnitude of VR depend on the
pumping configuration. More specifically, P0(z)
5 P in exp(2apz) and VR 5 vp 2 vs in the case of
forward pumping but P0(z) 5 P in exp@2ap(L 2 z)# and
VR 5 2(vp 1 vs) in the case of backward pumping,
where P in is the input pump power. In the absence of bi-
refringence (b50), s remains oriented along p̂, and we re-
cover the scalar case.

3. AVERAGE RAMAN GAIN AND OUTPUT
SIGNAL FLUCTUATIONS
Equations (2.31) and (2.32) can be used to calculate the
power S0 of the amplified signal as well as its SOP at any
distance within the amplifier. When the birefringence
vector b is z dependent, the solution depends on how b(z)
changes. In the case of PMD, b(z) fluctuates with time.
As a result, the amplified signal S0(L) at the output of an
amplifier of length L also fluctuates. Such fluctuations
would affect the performance of any light-wave system
making use of Raman amplification. In this section we
calculate the average and the variance of such PMD-
induced fluctuations. We focus on the forward-pumping
case for definiteness. All the results can be converted to
the case of backward pumping by replacing ap with 2ap ,
P in with P in exp(2apL), and VR 5 vp 2 vs with VR
5 2(vp 1 vs).

It is useful to introduce the instantaneous amplifier
gain G defined as G 5 S0(L)/S0(0). We use the vector
theory to find the average Raman gain Gav and the signal
variance ss

2 by using the definitions

Gav 5
^S0~L !&

S0~0 !
, ss

2 5
^S0

2~L !&

^S0~L !&2
2 1. (3.1)

To calculate the average signal power ^S0(L)& at the end
of a Raman amplifier of length L, we need to average Eqs.
(2.31) and (2.32) using a well-known technique discussed
in Ref. 24. Appendix B provides the details of the aver-
aging procedure. The final result leads to the following
two coupled but deterministic equations:

d^s0&

dz
5

gR

2
P0~z !^s0 cos u&, (3.2)
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d^s0 cos u&

dz
5

gR

2
P0~z !^s0& 2 h^s0 cos u&, (3.3)

where h 5 1/Ld 5 Dp
2VR

2 /3, Ld is the PMD diffusion
length, and u is the angle between P and S.

Equations (3.2) and (3.3) are two linear first-order dif-
ferential equations that can be easily integrated. When
PMD effects are quite large, diffusion length Ld becomes
so small that ^S0 cos u& reduces to zero over a short fiber
length of ; Ld . The average gain is then given by (in
decibels)

Gav 5 a@ g1~1 1 3m!P inLeff /2 2 asL#, (3.4)

where a 5 10/ln 10 ' 4.343 and the effective amplifier
length Leff 5 @1 2 exp(2apL)#/ap is , L because of pump
losses. In this case, the PMD reduces the Raman gain
coefficient to g1(1 1 3m)/2, exactly the average of the co-
polarized @ g1(1 1 5m/3)# and orthogonally polarized
(4mg1/3) Raman gain coefficients.8 If pump losses can be
neglected (ap 5 0), Eqs. (3.2) and (3.3) can be integrated
analytically because P0 becomes z independent. The av-
erage gain in this special case is given by

Gav 5 @cosh~kL/2! 1 sinh~kL/2!~ gRP in cos u0 1 h!/k#

3 exp$@ g1~1 1 3m!P in 2 h 2 2as#L/2%, (3.5)

where u0 is the initial angle between S and P and
k 5 @( gRP in)2 1 h2#1/2.

The variance of signal fluctuations requires the second-
order moment ^S0

2(L)& of the amplified signal. Following
the averaging procedure discussed in Appendix B, Eqs.
(2.31) and (2.32) lead to the following set of three linear
equations24:

d^s0
2&

dz
5 gRP0~z !^s0

2 cos u&, (3.6)

d^s0
2 cos u&

dz
5 2h^s0

2 cos u& 1
gR

2
P0~z !@^s0

2&

1 ^s0
2 cos2 u&#, (3.7)

d^s0
2 cos2 u&

dz
5 23h^s0

2 cos2 u& 1 h^s0
2&

1 gRP0~z !^s0
2 cos u&. (3.8)

These equations show that signal fluctuations have their
origin in fluctuations of angle u between the pump and
the signal’s Stokes vectors. The SRS process amplifies
the copolarized signal component with the pump but
keeps the orthogonally polarized one almost unchanged.
Because of this imbalance, SRS rotates S toward P as dic-
tated by Eq. (2.32). However, PMD scatters the signal
SOP away from the pump. If PMD is relatively large, u
changes so fast that the signal experiences only an aver-
age local gain everywhere, and the accumulative fluctua-
tions of the output signal are small. Also, if PMD is neg-
ligible, u changes almost deterministically, and the signal
fluctuations are again small. However, when the effec-
tive fiber length is comparable with the PMD diffusion
length, the signal experiences random gain from section
to section, resulting in large signal fluctuations.
To illustrate the effect of PMD on the performance of
Raman amplifiers, we focus on a 10-km-long amplifier
pumped with 1 W of power using a 1.45-mm laser. The
1.55-mm signal is assumed to be located at the Raman
gain peak (VR/2p 5 13.2 THz). The Raman gain coeffi-
cients have values g1 5 0.60 W21/km and g2
5 0.0071 W21/km.5,9 Fiber losses are taken to be 0.273
and 0.2 dB/km at the pump and the signal wavelengths,
respectively. Figure 1 shows how the average gain and
ss change with the PMD parameter Dp when the input
signal is copolarized (solid curves) or orthogonally polar-
ized (dashed curves) to the pump. The curves are shown
for both the forward- and the backward-pumping
schemes. When Dp is zero, the two beams maintain their
SOPs, and the copolarized signal experiences a maximum
gain of 17.6 dB but the orthogonally polarized one has a
1.7-dB loss, regardless of the pumping configuration.
The loss is not exactly 2 dB because a small gain exists for
the orthogonally polarized input signal (4ag2P inLeff/3).
As PMD increases, the gain difference between the copo-
larized and the orthogonally polarized cases decreases
and disappears eventually.

Fig. 1. (a) Average gain and (b) standard deviation of signal
fluctuations at the output of a Raman amplifier as a function of
the PMD parameter for forward and backward pumping. The
solid and dashed curves correspond to copolarized and orthogo-
nally polarized signals, respectively.
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The level of signal fluctuations in Fig. 1 increases
quickly with the PMD parameter, reaches a peak, and
then decreases slowly to zero with further increase in Dp .
The location of the peak depends on the pumping scheme
as well as on the initial polarization of the pump. The
noise level can exceed 20% for Dp 5 0.05 ps/Akm in the
case of forward pumping. If a fiber with low PMD is
used, the noise level can exceed 70% under some condi-
tions. These results suggest that forward-pumped Ra-
man amplifiers will perform better if a fiber with Dp

. 0.1 ps/Akm is used. The curves for backward pump-
ing are similar to those for forward pumping but shift to
smaller Dp values and have a higher peak. In spite of an
enhanced peak, the backward pumping produces the least
fluctuations for all fibers for which Dp . 0.01 ps/Akm.

Note in Fig. 1 that the curves in the case of backward
pumping are nearly identical to those for forward pump-
ing except that they are shifted to the left. As a result,
the solid and dashed curves merge at a value of Dp that is
smaller by a factor of approximately 30. This difference
is related to the definition of VR 5 jvp 2 vs in Eq. (2.32).
In the case of backward pumping, uVRu 5 vp 1 vs is ap-

Fig. 2. (a) Average gain and (b) level of signal fluctuations as a
function of amplifier length for a fiber with Dp 5 0.05 ps/Akm.
The solid and dashed curves correspond to copolarized and or-
thogonally polarized signals, respectively. The two curves
nearly coincide in the case of backward pumping.
proximately 30 times larger than the value of VR 5 vp
2 vs in the forward-pumping case.

In practice, fibers used to make a Raman amplifier
have a constant value of Dp . Figure 2 shows the average
Raman gain and ss as a function of amplifier length for a
fiber with Dp 5 0.05 ps/Akm. All the other parameters
are the same as in Fig. 1. The solid and dashed curves
correspond to copolarized and orthogonally polarized
cases, respectively (the two curves are indistinguishable
in the case of backward pumping). Physically, it takes
some distance for the orthogonally polarized signal to ad-
just its SOP through PMD before it can experience the
full Raman gain. Within the PMD diffusion length
(around 175 m in this case of forward pumping), fiber loss
dominates and the signal power decreases; beyond the
diffusion length, Raman gain dominates and the signal
power increases. The gain difference seen in Fig. 1 be-
tween the copolarized and orthogonally polarized cases
comes from this initial difference. In the case of back-
ward pumping, the PMD diffusion length becomes so

Fig. 3. (a) Average gain and (b) level of signal fluctuations plot-
ted as a function of pump-signal detuning. The solid and
dashed curves correspond to copolarized and orthogonally polar-
ized cases, respectively. The thin solid curve is for a backward-
pumped Raman amplifier and does not change much with signal
polarization.
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small (approximately 0.2 m) that this difference com-
pletely disappears. The level of signal fluctuations de-
pends strongly on the relative directions of pump and sig-
nal propagation. In the case of forward pumping, ss
grows monotonically with the distance, reaching 24% at
the end of the 10-km fiber. In contrast, ss is only 0.8%
even for a 10-km-long amplifier in the case of backward
pumping, a value 30 times smaller than that occurring in
the forward-pumping case. The curves are almost iden-
tical for all input signal SOPs when Dp 5 0.05 ps/Akm.

So far we assumed that the signal wavelength coin-
cided with the Raman-gain peak. Figure 3 shows the ef-
fect of pump-signal detuning for a 10-km-long amplifier
under the same conditions. The frequency dependence of
Raman gain coefficients was taken from Refs. 5 and 9. In
the case of forward pumping, the average Raman gain is
different for copolarized (solid curve) and orthogonally po-
larized (dashed curve) signals, and the difference is larger
when the signal frequency is close to the pump. How-
ever, the difference disappears when the signal frequency
deviates more than 15 THz from the pump because of in-
creased PMD effects. In the case of backward pumping,
PMD effects are so huge over the whole spectrum that the
differences disappear completely, and the same spectrum
(thin curve) is obtained for all input SOPs of the signal.
Signal fluctuations depend on the PMD parameter as well
as on the Raman gain. The larger the gain, the larger
the fluctuations. For this reason, ss is maximum at the
Raman-gain peak. Again, fluctuations in the case of
backward pumping are 30 times smaller than those in the
case of forward pumping because of the ratio (vp 1 vs)/
(vp 2 vs) ' 30.

4. PROBABILITY DISTRIBUTION OF THE
AMPLIFIED SIGNAL
The moment method used in Section 3 to obtain the aver-
age and variance of the amplified signal becomes increas-
ingly complex for higher-order moments. It will be much
better if we can determine the probability distribution of
the amplified signal because it contains, by definition, all
the statistical information. To this end, we begin by find-
ing the instantaneous gain of the Raman amplifier.

The fluctuating amplifier gain G(L) for a Raman am-
plifier of length L can be found from Eqs. (2.30)–(2.32) as
(in decibels)

GdB 5 a lnFS0~L !

S0~0 !
G

5 aFg1

2
~1 1 3m!P inLeff 2 asLG

1
a

2
gRE

0

L

P0~z !@ p̂~z ! • ŝ~z !#dz, (4.1)

where a 5 10/ln(10) 5 4.343 and ŝ is the unit vector in
the direction of s. Using s 5 s0ŝ in Eq. (2.32), ŝ is found
to satisfy

dŝ

dz
5

gR

2
P0~z !@ p̂ 2 ~ p̂ • ŝ !ŝ# 2 VRb 3 ŝ. (4.2)
In this equation p̂ represents the pump polarization at
the input end. Thus, ŝ becomes random only because of
birefringence fluctuations. If polarization scrambling is
used to randomize p̂, p̂ and ŝ both become random (see
Section 6). However, it is only the scalar product p̂ • ŝ
[ cos u that determines GdB .

To find the probability distribution of GdB , we note that
the second term in Eq. (4.1) can be written as
( i51

N P0(zi)cos@u(zi)#Dz if we divide fiber length L into N
segments of length Dz. Thus the random variable GdB is
formed from a sum of many random variables with iden-
tical statistics. According to the central limit theorem,24

the probability density of G(L) should be Gaussian as
long as the correlation between cos@u(z)# and cos@u(z8)#
goes to zero sufficiently rapidly as uz 2 z8u increases, no
matter what the statistics of p̂(z) and ŝ(z) are. In prac-
tice, we expect this correlation to decay exponentially
over a length of PMD diffusion length Ld . For fiber
lengths L @ Ld , we thus expect GdB to have a Gaussian
distribution. Such a Gaussian distribution of GdB has
been observed experimentally in Ref. 25. Our vector
theory explains this experimental result in a simple way.

Fig. 4. Probability density of an amplified signal for three val-
ues of Dp (Dp in units of ps/Akm) in the cases of (a) copolarized
and (b) orthogonally polarized signals. The amplified signal is
normalized to the input signal power.
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It is clear from Eq. (4.1) that ln@S0(L)# will also follow a
Gaussian distribution. As a result, the probability distri-
bution of the amplified signal power, S0(L), at the ampli-
fier output corresponds to a log-normal distribution26 and
can be written as

p@S0~L !# 5
@ln~ ss

2 1 1 !#21/2

S0~L !A2p
expH 2

1

2 ln~ ss
2 1 1 !

3 ln2FS0~L !Ass
2 1 1

^S0~L !&
G J , (4.3)

where ss
2 is defined in Eq. (3.1) and can be calculated ex-

plicitly as discussed in Section 3.
Figure 4 shows how the probability density changes

with the PMD parameter in the cases of copolarized and
orthogonally polarized input signals, respectively, under
the conditions of Fig. 1. When the PMD effects are rela-
tively small, the two distributions are relatively narrow
and are centered at quite different locations in the copo-
larized and orthogonally polarized cases. When Dp

5 0.01 ps/Akm, the two distributions broaden consider-
ably and begin to approach each other. For larger values
of the PMD parameter Dp 5 0.1 ps/Akm, they become
narrow again and their peaks almost overlap because the
amplified signal becomes independent of the input SOP.

5. POLARIZATION-DEPENDENT GAIN
Similar to the importance of the concept of differential
group delay in describing the PMD effects on pulse propa-
gation, the PMD effects in Raman amplifiers can be quan-
tified by use of the concept of PDG, a quantity defined as
the difference between the maximum and the minimum
values of G while varying the SOP of the input signal.
The gain difference D 5 Gmax 2 Gmin is itself random be-
cause both Gmax and Gmin are random. It is important to
know the statistics of D and its relationship to the oper-
ating parameters of a Raman amplifier, because they can
identify the conditions under which the PDG can be re-
duced to acceptable low levels. In this section we intro-
duce a PDG vector and use it to describe the statistics of
PDG.

The polarization-dependent loss is often described by
introducing a polarization-dependent loss vector.27,28

The same technique can be used for the PDG in Raman
amplifiers. The PDG vector D is introduced in such a
way that its magnitude gives the PDG value D (in deci-
bels), but its direction coincides with the direction of S(L)
for which the gain is maximum. From Eqs. (2.31) and
(2.32), the dynamic equation for D is found to be

dD

dz
5

gR

2
D cothS D

2a D @P 2 ~P • D̂ !D̂#

1 agR~P • D̂ !D̂ 2 VRb 3 D. (5.1)

where D̂ is the unit vector in the direction of D. Appendix
C provides details of the derivation of this equation. If
the PDG is not too large, D coth(D/2a) can be expanded in
a Taylor series as
D cothS D

2a D ' 2a 1
D2

6a
. (5.2)

Keeping only the linear terms in D, Eq. (5.1) reduces to
the following linear Langevin equation:

dD

dz
5 agRP 2 VRb 3 D. (5.3)

The validity of this linearized equation depends on the
conditions under which the D2 term in Eq. (5.2) can be
neglected. The validity condition can be written as
Dmax ! A12a ' 15 dB. This requirement is satisfied in
practice for most Raman amplifiers.

Equation (5.3) can be readily solved because of its lin-
ear nature. The solution is given by

D~L ! 5 agRRJ ~L !E
0

L

RJ21~z !P~z !dz, (5.4)

where the PMD-induced rotation matrix RJ (z) is obtained
from dRJ /dz 5 2VRb 3 RJ . For fibers much longer than
the birefringence correlation length, the dynamics of D
corresponds to that of the Brownian motion in three di-
mensions [see Ref. 29, where Eq. (5.4) is used for the PMD
vector]. As a result, D follows a three-dimensional
Gaussian distribution.

The moments of D can be obtained from Eq. (5.3) using
the same procedure as that used in the last section for cal-
culating the average gain and signal fluctuations.24 In
Appendix D we provide the details. As shown there, the
first two moments and the covariance matrix CJ defined as
CJ 5 ^DD& 2 ^D&^D& satisfy

d^D2&

dz
5 2agRP0~z !p̂ • ^D&, (5.5)

d^D&

dz
5 2h^D& 1 agRP0~z !p̂, (5.6)

dCJ

dz
5 23hCJ 1 h@^D2&IJ 2 ^D&^D&#. (5.7)

Equations (5.5) and (5.6) can be easily integrated over fi-
ber length L. They provide the following analytical re-
sults in the case of forward pumping:

^D& 5
agRP inp̂

h 2 ap
@1 2 apLeff 2 exp~2hL !#, (5.8)

^D2& 5
2~agRP in!2

h2 2 ap
2

@~1 2 apLeff!exp~2hL !

2 1 1 ~ap 1 h!Leff~1 2 apLeff/2!#. (5.9)

In the case of backward pumping, ^D& and ^D2& are also
given by these equations provided ap is replaced with
2ap , P in is replaced with P in exp( 2 apL), Leff is redefined
as @exp(apL) 2 1#/ap , and VR 5 vp 2 vs in the expres-
sion of h is replaced by VR 5 2(vp 1 vs). An analytical
expression for CJ can also be obtained by integrating Eq.
(5.7).
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We now consider the probability distribution of the
PDG vector. It is convenient to choose p̂ along an axis of
the Stoke space, say p̂ 5 ê1 , because matrix CJ is then di-
agonal. The probability density function of D [ D1ê1
1 D2ê2 1 D3ê3 in this case can be written as

p~D! 5
~2p!23/2

s is'
2

expF2
~D1 2 D0!2

2s i
2

2
D2

2 1 D3
2

2s'
2 G ,

(5.10)

where D0 5 u^D&u whereas s i
2 and s'

2 are the variances of
the PDG vector in the parallel and perpendicular direc-
tions of p̂, respectively. Both can be found from Eq. (5.7)
in an analytical form as

s i
2 5 hE

0

L

@^D2& 2 ^D&2#exp@23h~L 2 z !#dz, (5.11)

s'
2 5 hE

0

L

^D2&exp@23h~L 2 z !#dz. (5.12)

These equations show that s i , s' when PMD is small
because the pump mostly amplifies the copolarized signal.
When the effective fiber length Leff is much larger than
the PMD diffusion length Ld , ^D2& @ ^D&2 ' 0 and
s i ' s' . In this case, p(D) becomes a uniform three-
dimensional Gaussian distribution centered at zero.

In practice, one is often interested in the statistics of
the PDG magnitude D. Its probability density can be
found from Eq. (5.10) after writing D in spherical coordi-
nates and integrating over the two angles. The result is
found to be

Fig. 5. Probability distribution of PDG as a function of Dp un-
der conditions of Fig. 1. The PDG value is normalized to the av-
erage gain Gav .
p~D! 5
D

2s is
expF2

D2~r 2 1 ! 2 rD0
2

2s 2 G
3H erfFD~r 2 1 ! 1 rD0

A2s
G

1 erfFD~r 2 1 ! 2 rD0

A2s
G J , (5.13)

where s 2 5 s'
2 (r 2 1), r 5 s'

2 /s i
2, and the error func-

tion is defined as erf(x) 5 (2/Ap)*0
xexp(2y2)dy. Figure 5

shows how p(D) changes with Dp in the case of forward
pumping. All the parameters are the same as in Fig. 1.
The PDG values are normalized to the average gain
Gav 5 ag1(1 1 3m)P inLeff /2 (in decibels) so that the
curves are pump-power independent. In the limit
Dp → 0, p(D) becomes a delta function located at the
maximum gain difference (almost 2Gav) as little gain ex-
ists for the orthogonally polarized signal. As Dp in-
creases, p(D) broadens quickly because PMD changes the
signal SOP randomly. If Dp is relatively small, diffusion

Fig. 6. (a) Mean PDG and (b) variance sD (both normalized to
the average gain Gav) as a function of PMD parameter under
forward- and backward-pumping conditions.
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length Ld is larger than or comparable with the effective
fiber length Leff , and p(D) remains centered at almost the
same location but broadens because of large fluctuations.
Its shape mimics a Gaussian distribution. When Dp is
large enough that Leff @ Ld , p(D) becomes Maxwellian
and its peak shifts to smaller values. This is the behav-
ior observed experimentally in Ref. 12.

The mean value of PDG, ^D&, and the variance of PDG
fluctuations, sD

2 5 ^D2& 2 ^D&2, can be found by use of
the PDG distribution in Eq. (5.13). Figure 6 shows how
these two quantities vary with the PMD parameter for
the same Raman amplifier used for Fig. 1. Both ^D& and
sD are normalized to the average gain Gav . As expected,
the mean PDG decreases monotonically as Dp increases.
The mean PDG ^D& is not exactly 2Gav when Dp 5 0 be-
cause the gain is not zero when pump and signal are or-
thogonally polarized. Note however that ^D& can be as
large as 30% of the average gain for Dp 5 0.05 ps/Akm in
the case of forward pumping and it decreases slowly
with Dp after that, reaching a value of 8% for Dp

5 0.2 ps/Akm. This is precisely what was observed in
Ref. 12 through experiments and numerical simulations.

Fig. 7. (a) Mean PDG and (b) variance sD (both normalized to
the average gain Gav) as a function of amplifier length under for-
ward and backward pumping. The solid and dashed curves cor-
respond to Dp 5 0.05 and 0.15 ps/Akm, respectively.
In the case of backward pumping, the behavior is nearly
identical to that in the case of forward pumping except
that the curve shifts to a value of Dp smaller by a factor of
approximately 30.

As seen in Fig. 6(b), the rms value of PDG fluctuations
increases rapidly as Dp becomes nonzero, peaks to a value
close to 56% of Gav for Dp near 0.01 ps/Akm in the case of
forward pumping, and then begins to decrease. Again,
fluctuations can exceed 7% of the average gain level even
for Dp 5 0.1 ps/Akm. A similar behavior holds for back-
ward pumping, as seen in Fig. 6. Both the mean and the
rms values of PDG fluctuations decrease with Dp in-
versely for Dp . 0.03 ps/Akm (Ld , 0.5 km for VR/2p
5 13.2 THz). This Dp

21 dependence is in good agree-
ment with the experimental results in Ref. 12.

The Dp
21 dependence of ^D& and sD can be deduced ana-

lytically from Eq. (5.13) in the limit Leff @ Ld . In this
limit, the PDG distribution p(D) becomes approximately
Maxwellian and the average and rms values of PDG in
the case of forward pumping are given by

^D& '
4agRP in

ApDpuVRu
@Leff ~1 2 apLeff /2!#1/2, (5.14)

sD ' @~3p/8 2 1 !#1/2^D&. (5.15)

The same equations hold in the case of backward pump-
ing except that uVRu 5 vp 2 vs should be replaced with
vp 1 vs . Figure 7 shows the mean PDG and the rms
value of PDG as a function of propagation distance for a
Raman amplifier with Dp 5 0.05 ps/Akm. All the pa-
rameters are the same as in Fig. 2. Both ^D& and sD are
negligibly small in the case of backward pumping, indi-
cating the advantages of such a pumping scheme.

6. POLARIZATION SCRAMBLING OF THE
PUMP
The technique of polarization scrambling is sometimes
used to reduce the PDG in Raman amplifiers.30,31 In this
technique, the pump SOP is changed randomly as the sig-
nal is amplified so that the signal undergoes different lo-
cal gain in different parts of the fiber, resulting effectively
in an average gain that is independent of the signal SOP.
The theory developed in Section 5 can be used to find the
dependence of the PDG on the degree of polarization
(DOP) of the pump wave.

Polarization scrambling does not change the total
power of pump as only its SOP is changed randomly. If
we assume that p̂(z) is a stationary stochastic process, its
correlation at two points within the fiber can be written
as

^@ p̂~z1! 2 ^p̂&#@ p̂~z2! 2 ^p̂&#&

[ GJ~z2 2 z1! 5 GJ0G~z2 2 z1!, (6.1)

where the correlation matrix GJ(z2 2 z1) is assumed to be
separable as shown in Eq. (6.1). The DOP of the pump is
related to the average of p̂ as dp 5 u^p̂&u.32 The pump
DOP dp , the covariance matrix GJ0 , and the correlation
function G(z2 2 z1) depend on how scrambling rotates p̂
randomly on the Poincaré sphere. When the pump is
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completely polarized (no scrambling), dp 5 1 and GJ0

5 0; in the opposite limit in which the pump is com-
pletely unpolarized, dp 5 0 and GJ0 5 IJ/3. The form of
G(z2 2 z1) depends on the specific scrambling technique
used in practice. In the following discussion, we assume
it to vary as G(z2 2 z1) 5 exp(2gcuz2 2 z1u), where gc
5 1/lc and lc is the correlation length. In practice, lc de-
pends on the coherence length of the pump source and is
typically ;1 m.

Because of the randomness of the pump polarization,
the XPM-induced NPR term in Eq. (2.26) becomes ran-
dom as well. However, correlation length lc is so small
compared with the NPR beat length (;10 km) that the
NPR term contributes only from the rotation around the
average pump polarization ^p̂&. The NPR induced by the
pump polarization fluctuations is negligible if we replace
the deterministic transformation in Eq. (2.27) with

V 5 expH 2«spF E
0

z

P0~z !dzG ^p̂& 3 J V8, (6.2)

where V is an arbitrary vector in the Stokes space (Ap-
pendix E provides more details). Therefore, Eqs. (2.31)
and (2.32) remain valid even in the presence of pump po-
larization scrambling.

As before, the PDG vector satisfies Eq. (5.1). This
equation can again be simplified to obtain Eq. (5.3) with
the only difference that now both p̂ and b are random.
The solution is still given by Eq. (5.4). More importantly,
the probability distribution of D remains Gaussian (in all
three dimensions) as long as fiber length L is much longer
than the correlation length associated with pump polar-
ization scrambling. However, as the pump polarization
varies with z, the solution of Eqs. (5.5) and (5.6) is given
by

^D~L !&b 5 agRE
0

L

P0~z !p̂~z !exp@2h~L 2 z !#dz, (6.3)

^D2~L !&b 5 2agRE
0

L

P0~z !p̂~z ! • ^D~z !&bdz,

5 2~agR!2E
0

L

dz1E
0

z1

dz2P0~z1!P0~z2!p̂~z1!

• p̂~z2!exp@2h~z1 2 z2!#, (6.4)

where the subscript b denotes the average over the bire-
fringence fluctuations. Since p̂(z) is random as well, we
need to average Eqs. (6.3) and (6.4) over the pump SOP.
In the case of forward pumping, the final analytic expres-
sions are found to be

^̂ D~L !&b&p 5
agRP in^p̂&

h 2 ap
@1 2 apLeff 2 exp~2hL !#,

(6.5)
^^D2~L !&b&p 5
2~agRP in!2Tr~GJ0!

~gc 1 h!2 2 ap
2

3 $~1 2 apLeff!exp@2~gc 1 h!L# 2 1

1 Leff ~gc 1 h 1 ap!~1 2 apLeff /2!%

1
2~agRP in!2dp

2

h2 2 ap
2

$~1 2 apLeff!exp~2hL !

2 1 1 Leff ~h 1 ap!~1 2 apLeff /2!%, (6.6)

where the subscript p denotes average over the ensemble
of pump polarization and Tr stands for the trace. From
Eq. (6.1), Tr(GJ0) is related to the DOP of pump as
Tr(GJ0) 5 1 2 dp

2.
The covariance matrix CJ as defined in Section 5 can

also be found by use of the same technique and requires
averaging over both ensembles of birefringence and pump
polarization. It satisfies the following equation (see Ap-
pendix D for details):

dCJ

dz
5 23hCJ 1 h@^̂ D2&&IJ 2 ^̂ D&&^̂ D&&# 1 Hp , (6.7)

where the last term depends on polarization scrambling
and is found to be

Hp 5 agRP0~z !@^p̂~z !^D~z !&b&p 1 ^^D~z !&b p̂~z !&p

2 ^p̂&^̂ D&& 2 ^̂ D&&^p̂&#.

5
2~agRP in!2GJ0

gc 1 h 2 ap
$exp~22apz !

2 exp@2~gc 1 h 1 ap!z#%. (6.8)

If the pump polarization is not scrambled, dp 5 1 and
GJ0 5 0. In that case Eqs. (6.5)–(6.7) reduce to Eqs.
(5.7)–(5.9), as expected. The same results hold in the
case of backward pumping except that ap is replaced with
2ap , P in is replaced with P in exp(2apL), Leff is redefined
as @exp(apL) 2 1#/ap , and VR 5 vp 2 vs in the expres-
sion of h is replaced by VR 5 2(vp 1 vs).

It is evident from Eqs. (6.5)–(6.7) that scrambling af-
fects the PDG considerably. Although the results are
quite complicated when correlation length lc and effective
fiber length Leff are comparable, they can be simplified
considerably in a practical situation in which Leff @ lc .
This is almost always the case since lc is typically ;1 m
whereas Leff is likely to exceed 1 km. In this limit, Hp in
Eq. (6.8) reduces to

Hp ' 2~agRP in!2GJ0lc~1 2 apLeff!
2, (6.9)

and it becomes negligible in Eq. (6.7) for lc ! Leff . In the
same limit, the first term in Eq. (6.6) becomes much
smaller than the second term and ^̂ D2(L)&& is given by

^̂ D2~L !&b&p '
2~agRP indp!2

h2 2 ap
2

@~1 2 apLeff!exp~2hL ! 2 1

1 Leff ~h 1 ap!~1 2 apLeff /2!#. (6.10)
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Comparing Eqs. (6.5), (6.7), and (6.10) with Eqs. (5.7)–
(5.9) of Section 5, we conclude that the statistics of the
PDG vector remains the same in the presence of polariza-
tion scrambling provided P in is replaced by P indp in all ex-
pressions for the moments of PDG. As a result, the mean
and rms value of PDG are reduced by a factor of
dp . This is exactly what has been observed
experimentally.30,31

The general conclusion that the main effect of polariza-
tion scrambling is to reduce the input pump power by a
factor of dp as far as PDG is concerned allows us to trans-
late all the results of Section 5 with this simple change.
In particular, the probability distributions of the PDG
vector D and the PDG value D follow Eqs. (5.10) and
(5.13), respectively. When the effective fiber length Leff is
much larger than the PMD diffusion length Ld , ^D& and
sD are still given by approximations (5.14) and (5.15) ex-
cept that P in is replaced by P indp . Although we assumed
GJ0 and G(z2 2 z1) to be separable and G(z2 2 z1) to be
exponential in the preceding discussion, the qualitative
behavior is expected to be the same for any form of the
correlation matrix GJ(z2 2 z1) as long as lc ! Leff .

7. SUMMARY
In this paper we have developed a general vector theory
for analyzing fiber-based Raman amplifiers. We have
shown that PMD can induce large fluctuations in the am-
plified signal depending on the value of the PMD param-
eter, although it also reduces the polarization dependence
of the average gain. The amplification factor is found to
follow the Gaussian statistics if it is measured in decibels,
but the amplified signal itself follows a log-normal distri-
bution.

We introduced a PDG vector to describe the nature of
PDG in Raman amplifiers. We found that the probability
distribution of the PDG mimics a Gaussian distribution
when PMD is relatively small but becomes Maxwellian
when the effective fiber length is much larger than the
PMD diffusion length. Based on this probability distri-
bution, we were able to find an analytic form of the de-
pendence of the mean and variance of PDG on the oper-
ating parameters of Raman amplifiers. Both of these
quantities depend inversely on the PMD parameter as
well as on the frequency difference between the signal
and the pump. We applied our vector theory to the case
in which pump polarization is scrambled randomly and
found that the mean PDG depends on the DOP of the
pump polarization linearly.

We used the vector theory to compare the forward- and
backward-pumping schemes used for making Raman am-
plifiers from the standpoint of PMD effects. In general,
the use of backward pumping provides superior perfor-
mance because it reduces the PDG as well as signal fluc-
tuations to negligible levels as long as the PMD param-
eter Dp exceeds a relatively small value of 0.01 ps/Akm.
If forward pumping must be employed for practical rea-
sons, one should use fibers with Dp values larger than
0.1 ps/Akm. Physically speaking, backward pumping
works better since the Stokes vectors P and S rotate in
opposite directions and produce such rapid variations in
their relative orientation angle u that the PMD effects are
averaged over a distance of 0.2 m or so.

In long-haul fiber links, PMD is intentionally reduced
to minimize its effects on pulse broadening. However,
our theory shows that PMD induces large signal fluctua-
tions when the effective fiber length is comparable with
the PMD diffusion length. Discrete Raman amplifiers
typically use a few kilometers long fiber for providing suf-
ficient gain. In the case of forward pumping, large signal
fluctuations (.50%) are predicted to occur for Dp values
; 0.02 ps/Akm. In the case of backward pumping, such
DP values can be tolerated but large signal fluctuations
will reappear for Dp ; 0.001 ps/Akm. If SRS is used for
distributed amplification, one should balance the effect of
PMD-induced pulse broadening and PMD-induced signal
fluctuations carefully.

APPENDIX A
In this section we derive Eqs. (2.25) and (2.26) after trans-
forming Eqs. (2.20) and (2.21) into a rotating frame and
averaging over fast PMD-induced rotations at the pump
frequency. We follow the averaging procedure described
in Ref. 33 but carry it out in Stokes space rather than us-
ing the Jones-matrix notation. The required transforma-
tion in the Stokes space is governed by matrix RJ obtained
by solving Eq. (2.24). We transform the Stokes vectors P
and S into a reference frame rotating with RJ , i.e., we in-
troduce new Stokes vector P8 and S8 using P 5 RJP8 and
S 5 RJS8. Equations (2.20) and (2.21) take the following
form in the new rotating frame:

j
dP8

dz
5 2apP8 2

vpg1

2vs
@~1 1 3m!S0P8

1 ~1 1 m!P0S8 2 2mP0RJ21S3# 1 Wp8 3 P8,

(A1)

dS8

dz
5 2asS8 1

g1

2
@~1 1 3m!P0S8 1 ~1 1 m!S0P8

2 2mS0RJ21P3# 1 ~VB 1 Ws8! 3 S8, (A2)

where V 5 v i 2 jvp , B 5 RJ21b, and

Wp8 5
2

3
@gppRJ21P3 1 2gps~1 1 db!RJ21S3

2 gps~2 1 da 1 db!S8#, (A3)

Ws8 5
2

3
@gssRJ

21S3 1 2gsp~1 1 db!RJ21P3

2 gsp~2 1 da 1 db!P8#. (A4)

Note that P0 and S0 remain unchanged because RJ does
not change the length of Stokes vectors.

The transformed equations cannot be used in their
present form because Wp8 and Ws8 depend on the random
rotation operator RJ . However, the pump frequency vp is
so large in practice that RJ21P3 and RJ21S3 cover the en-
tire surface of the Poincaré sphere over a short fiber sec-
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tion. For this reason, we average them over all orienta-
tions using the general form of the rotation operator. In
spherical coordinates, RJ can be written as

where f, f0 , and u are three independent random vari-
ables. Further, f and f0 vary uniformly over the range
from 0 to 2p whereas cos u varies uniformly in the range
from 21 to 1.

To perform the average, we first note that

RJ21S3 5 RJ21ê3~ ê3 – S! 5 RJ21ê3~ ê3 • RJ !S8. (A6)

Since ê3 is a column vector (0, 0, 1), the column vector
RJ21ê3 and the row vector ê3 • RJ both correspond to the
third row of matrix RJ . We can now average over u, f,
and f0 using ^sin2 u& 5 2/3, ^cos2 u& 5 1/3, ^sin2 w&
5 ^cos2 w& 5 1/2, and similar relations for other combina-
tions of cosine and sine functions. Repeating the same
procedure for RJ21P3 , we obtain the simple result

^RJ21S3& 5
1

3
S8, ^RJ21P3& 5

1

3
P8. (A7)

Using these averages in Eqs. (A1) and (A2) and dropping
the primes for simplicity of notation, we obtain Eqs. (2.25)
and (2.26).

APPENDIX B
Here we provide details of the derivation of the averaged
equations (3.2)–(3.7) that were used to find the average
and the variance of the output signal. Our method fol-
lows the technique discussed in Ref. 24. The basic idea is
to introduce a new vector dW 5 bdz over a fiber segment
of length dz that is much shorter than the total fiber
length L but still much longer than the birefringence cor-
relation length. Owing to the delta function correlation
of the birefringence vector b in Eq. (2.29), the vector dW is
a Wiener process with the following properties24:

^dW& 5 0, ^dWdW& 5
1

3
Dp

2IJdz,

^dW • dW& 5 Dp
2dz. (B1)

All other higher-order moments of dW vanish.
As discussed in Ref. 24, all the differential equations

involving dW should be interpreted in the Stratonovich
sense in the limit in which b reduces to a delta-correlated
process from a general Markov process. In this interpre-
tation, any nonanticipating function f(z) that appears in
the integral * f(z)dW over a short length segment z to
z 1 dz is evaluated in the middle of the segment at the
point z 1 dz/2. In contrast, the Ito calculus evaluates it
at the left boundary point of the integral. As the Ito in-

RJ 5 S cos u 2 sin u cos w0

sin u cos w cos u cos w0cos w 2 sin w0sin w 2 cos

sin u sin w cos u cos w0 sin w 1 sin w0 cos w cos w
tegral * f(z)dW does not depend on the future, the aver-
age value of this integral vanishes. However, this does
not happen for the Stratonovich integral because f(z

1 dz/2) depends not only on its history, but also on dW
within the interval from z to z 1 dz.

Consider now the stochastic differential equations
(2.31) and (2.32). Before we can calculate any moments,
we need to convert them from the Stratonovich to the Ito
form. The conversion process is described in Chap. 4 of
Ref. 24 and we follow it here. To illustrate the main
steps, we consider Eq. (2.32) without the drift term and
write it as

ds 5 s~z 1 dz ! 2 s~z ! 5 2VRdW 3 s~z 1 dz/2! (B2)

(Stratonovich sense). Note that s on the right-hand side
is evaluated in the middle of the segment. We expand it
in a Taylor series as

s~z 1 dz/2! 5 s~z ! 1
dz

2

ds~z !

dz

1 ¯ 5 s~z ! 2
VR

2
dW 3 s~z ! 1 ¯ .

(B3)

Substituting this expansion in Eq. (B2), we obtain the Ito
version of this equation as

ds 5 2VRdW 3 s~z ! 1
VR

2

2
dW 3 @dW 3 s~z !# 1 ¯ .

(B4)

We now average over the second- and higher-order terms
using the vector identity

dW 3 ~dW 3 s! 5 dW~dW – s! 2 s~dW • dW! (B5)

and obtain the following Ito equation in the sense of a
mean-square limit24:

ds 5 2VRdW 3 s~z ! 2
1

3
Dp

2VR
2 s~z !dz (B6)

(Ito sense). The net effect of conversion is the appear-
ance of a new term in the original Eq. (B2) when it is con-
verted to the Ito sense. Following this procedure, Eqs.
(2.31) and (2.32) can be converted to the following Ito ver-
sion of these equations:

ds0 5
gR

2
P • sdz, (B7)

ds 5
gR

2
Ps0dz 2 hsdz 1 VRs 3 dW, (B8)

sin u sin w0

in w0 cos w 2 cos w0 sin w

s w 2 cos u sin w0 sin w
D , (A5)
u s

0 co
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where h 5 Dp
2VR

2 /3 as defined in the text. If we average
Eqs. (B7) and (B8) over dW, the last term in Eq. (B8) dis-
appears, resulting in two deterministic equations. As p̂
is fixed, we can introduce the angle u using s • p̂
5 s0 cos u and obtain Eqs. (3.2) and (3.3).

To calculate the second-order moments of s, one can use
Eqs. (2.31) and (2.32) to find the Stratonovich differential
equations governing s0

2, s0s, and ss and then convert
them to the Ito form using the procedure described above.
An alternative method uses Eqs. (B7) and (B8) together
with the Ito formula given in Ref. 24. The final equations
become

ds0
2 5 gRP • ~s0s!dz, (B9)

d~s0s! 5
gR

2
@P • ~ss! 1 Ps0

2#dz 2 h~s0s!dz

1 VR~s0s! 3 dW, (B10)

d~ss! 5
gR

2
~Ps0s 1 s0sP! 2 3h~ss!dz 1 hs0

2IJdz

1 VR~ss! 3 dW 2 VRdW 3 ~ss!. (B11)

When we average over dW, all the terms containing dW
disappear and the three equations become deterministic.
Making inner products s0s • p̂ and (s • p̂)2 and rewriting
them as s0

2 cos u and s0
2 cos2 u, we finally obtain Eqs. (3.6)–

(3.8).

APPENDIX C
Here we give the derivation of Eq. (5.1), following the
technique discussed in Ref. 27. Consider the evolution of
an arbitrary Jones vector through the linear equation

duA&

dz
5 M~z !uA& [ @m0~z ! 1 m~z ! • s#uA&. (C1)

In general, M(z) is not unitary, and m0(z) and m(z) can
be complex. Since Eq. (C1) is linear, we can introduce a
transfer matrix T(z) as uAout& 5 T(z)uA in&, where uA in&
and uAout& are input and output optical fields. This ma-
trix satisfies

dT~z !

dz
5 @m0~z ! 1 m~z ! • s#T~z !. (C2)

In terms of transfer matrix T, the input and output pow-
ers are related as

^AuA& in 5 ^Au@T~z !T†~z !#21uA&out . (C3)

The Hermitian matrix T(z)T†(z) can be expanded in
terms of the Pauli matrices as T(z)T†(z) [ t0(z) 1 t(z)
• s. It thus evolves as

d@T~z !T†~z !#

dz
5

dt0~z !

dz
1

dt~z !

dz
• s. (C4)

In place of t we introduce u through the transformation

t~z ! 5 u~z !expH E
0

z

@m0~z8! 1 m0* ~z8!#dz8J . (C5)
The same relation holds between t0 and u0 . The new
quantities u0(z) and u(z) are found to evolve with z as

du0

dz
5 2mr – u, (C6)

du

dz
5 2mru0 2 2mi 3 u, (C7)

where mr and mi are the real and imaginary parts of
m, respectively. Equations (C6) and (C7) show that
u0

2 2 u2 5 1 for all z, and thus the operator (TT†)21 can
be written as

@T~z !T†~z !#21 5 @u0~z ! 2 u~z ! • s#

3 expH 2E
0

z

dz8@m0~z8! 1 m0* ~z8!#J .

(C8)

We now apply Eq. (C3) to the signal being amplified by
a Raman amplifier of length L and replace A with As .
Using the definition S0 5 ^AsuAs&, where S0(z) is the sig-
nal power at a distance z, we obtain

S0~0 ! 5 S0~L !@u0~L ! 2 u~L ! • ŝout#

3 expH 2E
0

L

@m0~z ! 1 m0* ~z !#dzJ , (C9)

where ŝout is the unit vector in the direction of S(L)
5 ^Asu suAs&. The amplifier gain (in decibels) can now
be written as

G 5 a lnFS0~L !

S0~0 !
G

5 aE
0

L

@m0~z ! 1 m0* ~z !#dz

2 a ln@u0~L ! 2 u~L ! • ŝout#. (C10)

Note that G takes its maximum value when ŝout is along
u. In contrast, G is minimum when the two vectors are
antiparallel.

The PDG can now be found by use of D 5 Gmax
2 Gmin and introducing the PDG vector as

D [ ûD 5 aû lnS u0 1 u

u0 2 u D , (C11)

where û is the unit vector in the direction of u and
u 5 uuu. From Eqs. (C6) and (C7), D is found to satisfy

dD

dz
5

du0

dz

]D

]u0
1

du

dz
• ¹u~D!

5 2D cothS D

2a D @mr 2 ~mr • D̂ !D̂#

1 4a~mr • D̂ !D̂ 2 2mi 3 D, (C12)

where ¹u operates on u and D̂ [ û is the unit vector in
the direction of D.

We now need to find only mr and mi . If we replace A
with As in Eq. (C1) and follow the steps outlined in this
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Appendix, we find that Eqs. (2.31) and (2.32) take the
form of Eqs. (C6) and (C7). Comparing these equations,
we obtain mr 5 gRP/4 and mi 5 VRb/2. Using the pa-
rameters in Eq. (C12), we obtain the final result given as
Eq. (5.1).

APPENDIX D
Here we provide details on the derivation of Eqs. (5.5)–
(5.7) and (6.7). As discussed in Appendix B, Eq. (5.3) can
be converted into an Ito equation as

dD 5 agRPdz 2 hDdz 1 VRD 3 dW. (D1)

From Eq. (D1) we can calculate dD2 and d(DD) in the Ito
sense and find

dD2 5 2agRP – Ddz, (D2)

d~DD! 5 agR~PD 1 DP!dz 2 3h~DD!dz 1 hD2IJdz

1 VR~DD! 3 dW 2 VRdW 3 ~DD!. (D3)

When we average Eqs. (D1)–(D3) over dW, all the terms
containing dW disappear, and we obtain three determin-
istic equations as

d^D& 5 agRPdz 2 h^D&dz, (D4)

d^D2& 5 2agRP • ^D&dz, (D5)

d^DD& 5 agR~P^D& 1 ^D&P!dz 2 3h^DD&dz 1 h^D2&IJdz.
(D6)

Using the definition of the covariance matrix CJ and not-
ing that

dCJ 5 d^DD& 2 ~d^D&!^D& 2 ^D&~d^D&!, (D7)

we finally obtain Eqs. (5.5)–(5.7).
In the case of pump polarization scrambling, P(z)

5 P0(z)p̂(z), where p̂(z) is random along the fiber. The
covariance matrix CJ is then redefined as the double aver-
age over both random variables. The differential of CJ is
then given by

dCJ 5 d^̂ DD&& 2 ~d^̂ D&&!^̂ D&& 2 ^̂ D&&~d^̂ D&&!. (D8)

By averaging Eqs. (D4)–(D6) over the ensemble of pump
polarization, we obtain

d^̂ D&& 5 agR^P&dz 2 h^̂ D&&dz, (D9)

d^̂ D2&& 5 2agR^P • ^D&b&pdz, (D10)

d^̂ DD&& 5 agR~^P^D&b&p 1 ^̂ D&bP&p)dz

2 3h^̂ DD&&dz 1 h^̂ D2&&IJdz. (D11)

Substituting Eqs. (D9) and (D11) into Eq. (D8), we obtain
Eq. (6.7).

APPENDIX E
Here we provide details of the effects of NPR induced by
the pump when pump polarization is scrambled. We ne-
glect other effects temporarily and consider Eq. (2.26)
with only the XPM-induced NPR term. After making the
transformation in Eq. (6.2), Eq. (2.26) becomes
dS 5 2«spP0~z !dp̂~z 1 dz/2! 3 S~z 1 dz/2!dz (E1)

(Stratonovich sense), where dp̂(z 1 dz/2) 5 p̂(z 1 dz/2)
2 ^p̂& and we have dropped the prime notation for sim-

plicity. Since correlation length lc is much smaller than
the beat length of NPR (;10 km), we cut the fiber into
many sections of lc long, i.e., dz 5 lc . According to the
correlation matrix in Eq. (6.1), p̂(z) is approximately cor-
related within each section of length dz but is approxi-
mately uncorrelated from one section to another. Ex-
panding S(z 1 dz/2) in Eq. (E1) into a Taylor series, this
equation becomes

dS 5 2«spP0~z !dp̂~z 1 dz/2!

3 FS~z ! 1
dz

2

dS

dz
1 ¯Gdz. (E2)

Substituting Eq. (E1) into Eq. (E2), we obtain the Ito ver-
sion of this equation as

dS 5 2«spP0~z !dp̂~z 1 dz/2! 3 S~z !dz

1
1

2
@«spP0~z !dz#2$dp̂~z !dp̂~z 1 dz/2!

• S~z ! 2 @dp̂~z ! • dp̂~z 1 dz/2!#S~z !% 1 ¯

(E3)

When we average this equation over p̂, the first term dis-
appears. As p̂ is correlated within dz and does not
change much, we can replace p̂(z 1 dz/2) with p̂(z) and
perform the average. The final result is

d^S& '
1

2
@«spP0~z !dz#2@GJ0 2 Tr~GJ0!IJ# • ^S~z !& 1 ¯

5 O@~dz !2# (E4)

in the sense of a mean-square limit.24 When correlation
length lc is relatively small, d^S&/dz → 0. As a result,
NPR induced through pump polarization fluctuations
does not diffuse the signal SOP. The net XPM-induced
NPR contribution comes from only the average value ^p̂&,
as shown in Eq. (6.2). This result is easy to understand
physically. It takes some distance for the signal to expe-
rience NPR. However, the pump polarization fluctuates
so fast that the signal can only follow the rotation around
the average pump polarization ^p̂&.
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