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Abstract

The Raman-induced spectral shift of ultrashort pulses, having its origin in the phenomenon of intrapulse Raman

scattering occurring inside silica fibers, has been mostly studied in the context of optical solitons. We use the moment

method to show that such a spectral shift occurs both in the normal and anomalous-dispersion regimes and depends not

only on the pulse width but also on the frequency chirp associated with an optical pulse. The magnitude of spectral shift

depends on the history of pulse width changes and saturates to a constant value if the pulse broadens considerably

during propagation.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

It was discovered in 1985 numerically [1] that the

spectrum of an ultrashort optical pulse can shift

toward longer wavelengths (a ‘‘red’’ shift) when the
pulse propagates in the anomalous-dispersion re-

gime of an optical fiber as an optical soliton. Such a

spectral shift was observed in a 1986 experiment [2]

by using a stabilized, mode-locked laser capable of

emitting pulses shorter than 1 ps. It was called the

soliton self-frequency shift because pulses whose
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spectrum was red-shifted were propagating as sol-

itons inside the optical fiber used in the experiment.

In fact, Gordon used a perturbation theory of sol-

itons for predicting the magnitude of the spectral

shift and its dependence on the pulse and fiber pa-
rameters [3]. Physically, the spectral shift is attrib-

uted to intrapulse Raman scattering (IRS), a

phenomenon in which high-frequency components

of an optical pulse pump the low-frequency com-

ponents of the same pulse, thereby transferring

energy to the red side through stimulated Raman

scattering. Since 1986, the Raman-induced fre-

quency shift (RIFS) has been studied extensively for
both constant dispersion and dispersion-managed

fibers but mostly in the context of solitons [4–9].
ights reserved.
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From a physical standpoint, it is hard to see why

the Raman-induced red shift of ultrashort pulses

should require the formation of solitons. The IRS

phenomenon should occur for any optical pulse,

irrespective of whether it propagates in the normal-

or anomalous-dispersion regime of an optical fiber.
It should also be affected by the frequency chirp, if

the input pulse is chirped. In this paper we develop

a general theory of IRS using the moment method

and use it to study the effect of frequency chirp on

the RIFS in the cases of both normal and anoma-

lous dispersion. In Section 2 we discuss the moment

method and show how it can be used to calculate

the RIFS. The case of sech-shaped pulses is dis-
cussed in Section 3 where we show that our theory

reduces to that of Gordon [3] when the pulse

propagates as a standard soliton only if the RIFS is

relatively small so that it does not affect the soliton

itself. In Section 4 we consider input pulses in the

form of a chirped Gaussian pulse and discuss the

effects of frequency chirp on RIFS. The main

results are summarized in Section 5.
2. The moment method

Propagation of ultrashort optical pulses in op-

tical fibers is governed by a generalized nonlinear

Schr€oodinger (NLS) equation of the form [9]
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where A is the slowly varying amplitude of the

pulse envelope, a accounts for fiber losses, b2 is the
group-velocity dispersion (GVD) coefficient, b3 is
the third-order dispersion (TOD) parameter, c is
the nonlinear parameter responsible for self-phase

modulation, x0 is the center frequency of the pulse

spectrum and the Raman parameter TR accounts
for IRS. Eq. (1) is difficult to be solved analytically
in general and must be solved either numerically or

by using an approximate analytic technique. For

completeness, we have included all higher-order

terms in Eq. (1). If the pulse width exceeds 1 ps,

the shock term containing x0 and the TOD term

containing b3 can sometimes be dropped.
The variational method is often used [10] for

solving Eq. (1). However, the presence of the IRS

term in Eq. (1) makes the variational technique

unsuitable because the Lagrangian density needed

for it does not exist when TR 6¼ 0. The fundamental
reason behind this is that the IRS terms does not
conserve energy as each red-shifted photon has less

energy than the original one. For this reason, we

adopt the moment method that has been used re-

cently for calculating timing jitter in lightwave

systems [11–13]. The basic idea is to treat the op-

tical pulse like a particle [14] whose energy E,
position T , and the frequency shift X (from the

original carrier frequency) are defined as:
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where A satisfies Eq. (1). The root-mean square
(RMS) width of the pulse is then defined as

r2 ¼ 1

E

Z 1

�1
ðt � T Þ2jAj2 dt: ð5Þ

The actual pulse width is related to the RMS
width by a constant factor that depends on the

pulse shape. We introduce one more moment re-

lated to the chirp of the pulse by the same constant

factor using the definition

~CC ¼ i
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Using Eq. (1) in Eqs. (2)–(6) the five moments
E, T , X, r and ~CC are found to evolve along the fiber
according to the following set of five ordinary

differential equations:
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Eqs. (7)–(11) reduce the complexity of the prob-

lem but they are still not in a useful form because

they depend on Aðz; tÞ, which is not known until
Eq. (1) is solved. If one has some knowledge of
the pulse shape and its dependence on the five

moments, the problem can be solved approxi-

mately. There are several situations in which pulse

shape is known a priori with a good degree of

approximation. For example, in the case of stan-

dard solitons, pulse shape can be assumed to

maintain ‘‘sech’’ shape even if its width changes

when the higher-orders terms are relatively small
and can be treated as a small perturbation. As

another example, pulse shape remains nearly

Gaussian in a dispersion-managed fiber link under

the same conditions [15]. In general, a Gaussian

pulse can be assumed to maintain its shape during

propagation inside optical fibers if the nonlinear

length is much larger than the dispersion length

[9] and higher-order effects are relatively weak.
We consider these two cases in the following two

sections.
3. Hyperbolic secant pulses

We first consider the propagation of standard

solitons in a fiber with constant dispersion. Nor-

mally, standard solitons are unchirped in the ab-
sence of IRS. However, the chirp-free nature is not

ensured when their spectrum shifts because of IRS.

For this reason, we allow for a chirp on the input

pulse but assume it to be small enough that the

soliton shape does not change. In this case, the

pulse amplitude can be written as

Aðz; tÞ ¼
ffiffiffiffiffi
E
2s

r
sech

t � T
s

� �
exp½i/ � iXðt � T Þ

� iCðt � T Þ2=2s2�; ð12Þ
where the phase / does not depend on t. The width
parameter s and the chirp parameter C appearing
in this equation is related to the RMS width r and
the moment ~CC, respectively, by a constant factor K
such that s2 ¼ Kr2 ¼ ð12=p2Þr2 and C ¼ K ~CC ¼
ð12=p2Þ ~CC. All pulse parameters represent local
values and change along the fiber with z. We
substitute Eq. (12) in Eqs. (7)–(11) and perform

the integration over t. The five pulse parameters
are then found to evolve as:
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These equations look similar to those found

when the variational method is used. In fact, they
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can also be obtained with the variational method

when TR ¼ 0.
Consider first the special case of chirp-free sol-

itons launched in a fiber whose losses are exactly

compensated through distributed amplification

such that losses vanish effectively (a ¼ 0). The
pulse energy E then remains constant. If we ignore
the higher-order effects except for IRS by setting

x0 ¼ 0 and b3 ¼ 0 and use C ¼ 0 in Eqs. (13)–(17),
we find that s remain constant along the fiber, as it
should for solitons. Also, E and s are not inde-
pendent but related to each other by the soliton

condition LD ¼ LNL, where LD ¼ s2=jb2j and

LNL ¼ ðcP0Þ�1 are the dispersion and nonlinear
length scales [9]. This condition can be obtained

from Eq. (17) by setting dC=dz ¼ 0 if we neglect
the X term and relate the peak power P0 of the
solitons to the soliton energy using E ¼ 2P0s. Us-
ing the condition LD ¼ LNL, we find that

E ¼ 2jb2j=ðcsÞ. If we substitute this relation in Eq.
(15), the RIFS evolves as

XðzÞ ¼ � 8TRjb2jz
15s4

: ð18Þ

Eq. (18) is identical to the RIFS magnitude first

estimated by Gordon using perturbation theory

[3]. It shows that the RIFS increases linearly with

distance but scales with pulse width as s�4, thereby
becoming important only for pulses shorter than a

few picoseconds. However, its derivation assumes

that the soliton remains unchirped. From Eq. (17),

C remains zero for solitons only if X ¼ 0. Eqs. (16)
and (17) clearly show that C and s both begin to
change for standard solitons because of the RIFS.

Thus, Eq. (18) is only valid in the limit in which

the RIFS is small enough that it does not affect the

soliton. We can find the validity condition for Eq.

(18) in the absence of third-order dispersion and

self-steepening, by requiring in Eq. (17) that

jb2jX2  2cE=ðp2sÞ. Using E ¼ 2jb2j=ðcsÞ, this
condition is equivalent to requiring Xs  1. Not-

ing that the spectral width of a pulse scales in-

versely with the pulse width s, we conclude that
Eq. (18) is valid as long as the RIFS remains a

small fraction of the pulse spectral width. In many

practical situations, RIFS becomes large enough

that it exceeds the spectral width of pulse signifi-

cantly.
We thus consider the more general case in

which neither E nor s remains constant along the
fiber. The pulse energy E generally changes be-

cause of gain–loss variations introduced when

losses are compensated periodically using optical

amplifiers [15]. The soliton width s begins to
change as soon as the pulse becomes chirped

ðC 6¼ 0Þ. Using E ¼ E0e�az, the total frequency

shift is found by integrating Eq. (15) and is given

by

XðzÞ ¼ � 4TRcE0
15

Z z

0
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3x0

Z z

0

CðzÞ e
�az
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dz:
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Note that the RIFS depends on the local pulse

width as s�3 and not as s�4, as suggested by Eq.
(18). Of course, the z dependence of C and s
should be calculated by solving Eq. (16) which is

coupled to the chirp Eq. (17), which in turn de-

pends on X itself. It is this interdependence among
s, C and X that governs the eventual magnitude of
the RIFS. The last term in Eq. (19) shows that the

shock term also induces a spectral shift but its

sign (red versus blue shift) and magnitude depend

on how the chirp CðzÞ changes along the fiber
length.

As a numerical example, consider the propaga-

tion of solitons at wavelength k ¼ 1:55 lm with

s0 ¼ 50 fs (full-width at half-maximum about 88 fs)
in a 10-m-long, dispersion-shifted fiber with the

GVD of 4 ps/km nm (jb2j ¼ 5:1 ps2/km). Figs. 1
and 2 show the RIFS and pulsewidth s as a function
of distance z in the cases of anomalous and normal
dispersion, respectively. The nonlinear parameter

c ¼ 1:994 W�1 km�1 was calculated using an ef-

fective core area of 50 lm2. Also a ¼ 0:2 dB/km and
b3 ¼ 0:1 ps3/km. Consider the case of anomalous
dispersion first as it corresponds to the propagation

of solitons. The solid curve in Fig. 1 shows the

Cð0Þ ¼ 0 case that corresponds to standard soli-
tons. The pulse width is indeed maintained in the

beginning, as expected, but begins to increase after

2 m because of the RIFS and TOD effects. The

magnitude of RIFS becomes comparable to the

spectral width of the pulse (about 2 THz) at a dis-
tance of 2 m, and it begins to affect the soliton itself.

Notice that X increases linearly initially up to a

distance of 2 m but then begins to saturate as the



Fig. 1. Evolution of Raman-induced frequency shift (a) and

pulse width (b) when sech-shaped pulses with k ¼ 1:55 lm and
T0 ¼ 50 fs propagate inside a 10-m-long fiber exhibiting

anomalous dispersion (D ¼ 4 ps/km nm). The input chirp pa-

rameter C0 varies in the range 0–0.2 for the three curves.

Fig. 2. Same as in Fig. 1 except that fiber exhibits normal

dispersion (D ¼ �4 ps/km nm). The input chirp parameter C0
varies in the range )1 to 0 for the three curves.
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pulse width increases. The use of Eq. (18) would be
inappropriate under such conditions. The dashed

and dash-dotted lines show that even a relatively

small chirp affects the RIFS considerably. For po-

sitive values of C, the pulse is initially compressed,
as expected for b2C < 0 [9], and then broadens after
attaining its shortest width at a distance of about 1
m. For this reason X initially increases before sat-
urating as the pulse broadens. The main point to

note is that the chirp can increase the RIFS

whenever b2C < 0, and fiber is not much longer
than the length at which pulse becomes transform-

limited. For C < 0, pulse begins to broaden im-
mediately, and RIFS is reduced considerably.

Fig. 2 shows the RIFS and pulse width as a

function of distance in the case of normal disper-

sion. The solid line again shows the case Cð0Þ ¼ 0.
Since pulse begins to broaden right away, in con-

trast with the soliton case where pulse width re-

mained constant for up to 2 m, X quickly saturates
and is thus considerably smaller in magnitude in
the case of normal GVD. The dashed and dash-

dotted lines show that it can be enhanced by

chirping the input Gaussian pulse such that

b2C0 < 0. The reason is easily understood by

noting that the pulse can be compressed by a

factor of
ffiffiffi
2

p
for jC0j ¼ 1, and the compression

factor can be increased even more for large values

of the chirp. As seen in Fig. 2, almost entire RIFS
occurs within the first meter of the fiber, where

pulse remains compressed and its magnitude is

about three times larger for jC0j ¼ 1 compared
with the for C0 ¼ 0 case. With sufficiently large
chirp, the RIFS can even become comparable to

that obtained in the case of anomalous dispersion.

We thus conclude that RIFS can be made large

enough to be measurable even in the case of nor-
mal GVD through proper chirp control.
4. Chirped Gaussian pulses

In this section we consider the case of a

Gaussian pulse shape. In particular, we assume

that a chirped Gaussian pulse is launched initially
into the fiber and it maintains this shape during

propagation even thought its width and chirp may

change. The optical field can then be written as

Aðz; tÞ ¼
ffiffiffiffiffi
E
ps

r
exp½�ð1þ iCÞðt � T Þ2=2s2

þ i/ � iXðt � T Þ�: ð20Þ

The width parameter s and the chirp parameter C
appearing in this equation is again related to the



Fig. 3. Evolution of Raman-induced frequency shift (a) and

pulse width (b) when Gaussian-shaped pulses with k ¼ 1:55 lm
and T0 ¼ 50 fs propagate inside a 10-m-long fiber exhibiting
anomalous dispersion (D ¼ 4 ps/km nm). The input chirp pa-

rameter C0 varies in the range 0–0.2 for the three curves.

Fig. 4. Same as in Fig. 3 except that fiber exhibits normal

dispersion (D ¼ �4 ps/km nm). The input chirp parameter C0
varies in the range )1 to 0 for the three curves.
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RMS width r and the moment ~CC by a constant

factor K such that s2 ¼ Kr2 ¼ 2r and C ¼ 2 ~CC,
respectively. Using Eq. (20) in Eqs. (7)–(11) and

performing integrations, the five pulse parameters

are found to evolve as:
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¼ �aE; ð21Þ
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Following the method discussed in Section 3,

the RIFS in the Gaussian case is given by

XðzÞ ¼ � TRcE0ffiffiffiffiffiffi
2p

p
Z z

0

e�az

s3
dz

þ cE0ffiffiffiffiffiffi
2p

p
x0

Z z

0

CðzÞ e
�az

s3
dz; ð26Þ

where CðzÞ and sðzÞ should be found numerically
by solving Eqs. (21)–(25). Eq. (26) should be

compared with Eq. (19) found in the ‘‘sech’’ case.

It is evident that the exact shape of the pulse has a

relatively minor effect on the magnitude of the

RIFS. In particular, the functional dependence on

the local pulsewidth and local magnitude of loss
remains exactly the same. Even the numerical

factor of ð2pÞ�1=2 � 0:4 in the Gaussian case is
only slightly larger than the factor of 4=15 � 0:267
found in the ‘‘sech’’ case. This feature indicates

that even if the pulse shape deviates somewhat

from the shape assumed in applying the moment

method, our analysis should still provide a good

estimate of the RIFS in practice.
Figs. 3 and 4 shows the RIFS and pulse width

of Gaussian pulses as a function of distance in the
cases of anomalous and normal dispersion, re-
spectively, for the same 10-m long fiber and for the

same set of parameters used for Figs. 1 and 2. For

a fair comparison with the soliton case, the initial

pulse energy is chosen to be E0
ffiffiffiffiffiffi
2p

p
jb2j=ðcsÞ be-

cause dC=dz ¼ 0 from Eq. (19) for this energy

when X ¼ 0. In all cases, the solid line shows the
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case when C0 ¼ 0. In the case of anomalous dis-
persion (Fig. 3), the Gaussian pulse maintains its

width up to 2 m, similar to the soliton case, and

then broadens because of the RIFS and TOD ef-

fects. As expected, X increases linearly first and

then saturates. Interestingly, the Gaussian pulses
acquires a slightly larger RIFS compared with the

�sech� pulses as dispersion-induced broadening

depends somewhat on the pulse shape. The dashed

and dash-dotted lines show the effects of a positive

initial chirp. Since b2C0 < 0, the pulse undergoes
an initial narrowing stage before broadening. A

comparison of Figs. 1 and 3 shows that the pulses

with nonzero initial chirp experiences the com-
pression stage twice. We attribute this to the im-

balance between the dispersive and nonlinear

effects in the case of initially chirped pulses. Other

qualitative feature are also similar in the two cases.

The case of normal dispersion shown in Fig. 4 is

quite similar to the results in Fig. 2 obtained for

‘‘sech’’ pulses. For chirp-free Gaussian pulses

(solid line), RIFS saturates to a relatively small
value of 0.5 THz. However, this value can be in-

creased by applying a negative chirp such that

b2C0 < 0.
5. Conclusions

This paper shows that the RIFS resulting from
intrapulse Raman scattering is a general phe-

nomenon that occurs for all pulses both in the

normal and anomalous dispersion regimes of an

optical fiber. The variational method cannot be

used to calculate RIFS because of the dissipative

nature of the Raman effect. For this reason, we

use the moment method and apply it to the cases

of ‘‘sech’’ and Gaussian pulse shapes. The results
show that the RIFS depends not only on the

width but also on the frequency chirp associated

with the optical pulse. The RIFS becomes quite

large in the case of ultrashort pulses because, as

seen in Eqs. (19) and (26), it depends on the local

pulse width as s�3 and varies considerably with
the history of pulse width changes. Whenever

pulse width remains nearly constant along the fi-
ber, RIFS can accumulate to relatively large val-

ues. This is the main reason why RIFS can be
quite large for solitons. In the case of standard

solitons, our expression for RIFS reduces to that

of Gordon [3] as long as the RIFS is much smaller

than the spectral width of the pulse. However, we

show that even optical solitons do not maintain

their width when RIFS becomes comparable to or
larger than the spectral width of the pulse. Our

analysis remains valid in this regime and shows

how RIFS saturates to a constant value because

of soliton broadening.

We give numerical examples in both the normal

and anomalous dispersion regime using a 10-m

long fiber in which femtosecond pulses are laun-

ched. Although RIFS is generally smaller for
normal dispersion compared with the case of

anomalous dispersion, it is large enough to be

measurable experimentally. We include the effects

of TOD and self-steepening in our analysis and

show that even though the TOD does not appear

directly in our expression for RIFS, it does affect

the RIFS through the frequency chirp. The main

limitation of our analysis stems from the assump-
tion that the pulse maintains its shape even though

its width may change and it may become chirped.

Our results should be used with caution if the pulse

shape is known to change significantly during

propagation.
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