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Statistics of polarization-dependent gain in fiber-based
Raman amplifiers
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We develop an analytic model for finding the statistics of polarization-dependent gain (PDG) in fiber-based
Raman amplifiers. We use it to find an analytic form for the probability distribution of PDG and study
how the mean PDG and the variance of PDG f luctuations depend on the PMD parameter. We show that
mean PDG as well as PDG f luctuations are reduced by approximately a factor of 30 in the case of backward
pumping. © 2003 Optical Society of America
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Raman amplif ication in optical fibers has become quite
important for designing modern light-wave systems be-
cause of its potential for providing a relatively f lat gain
over a wide bandwidth.1 – 3 Several experimental stud-
ies have shown not only that the gain of such amplif iers
depends on the state of polarization of the input signal
but also that this polarization-dependent gain (PDG)
f luctuates over a wide range because of the random
nature of polarization-mode dispersion (PMD) in opti-
cal fibers.4,5 It is important to know the statistics of
PDG, its relationship to the operating parameters of a
Raman amplif ier, and the conditions under which the
PDG can be reduced to acceptable low levels. In this
Letter we develop an analytic model for studying the
statistics of PDG in fiber-based Raman amplif iers.

Introducing the Stokes vectors P and S for the pump
and signal fields in the usual way2 and using the gen-
eral form of the nonlinear polarization for silica glass,6

we obtain the following two vector equations:
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where vp and vs are the carrier frequencies associated
with the pump and signal waves, respectively, aj and
gj � j � p, s� account for f iber losses and nonlinearities
at these two frequencies, respectively, P0 � jP j and
S0 � jSj represent the pump and signal powers, respec-
tively, and gR is the Raman-gain coeff icient. We ne-
glect the Raman gain for orthogonally polarized beams
because of its small magnitude.6,7 Birefringence vec-
tor b accounts for the PMD-induced rotation of
the Stokes vectors on the Poincaré sphere, and
the effects of nonlinear polarization rotation in-
duced by self- and cross-phase modulations are
governed by vectors WNL

p � 2/3�22S1, 22S2, P3� and
WNL

s � 2/3�22P1, 22P2, S3�. The choice of 1 and 2
signs in Eq. (1) depends on whether the pump beam
copropagates or counterpropagates with the signal.
0146-9592/03/040227-03$15.00/0
As a simplif ication, we assume that P0 ..S0 and ne-
glect pump depletion. Since the SRS process depends
only on the relative orientation of P and S, we choose to
work in a rotating frame in which the pump polariza-
tion remains fixed. Pump equation (1) then contains
only the loss term and can be easily integrated. Sig-
nal equation (2) takes the form

dS�dz � 2asS 1
1
2
gR �S0P 1 P0S� 2 VRb 3 S , (3)

where VR � 6vp 2 vs; the minus sign corresponds
to backward pumping. Vector b is related to b by a
rotation. Typically, the fiber length is much longer
than the birefringence correlation length, and b can
be modeled as a three-dimensional stochastic process
with

�b�z�� � 0 , �b�z1�b�z2�� �
1
3

D2
p
$
I d�z2 2 z1� , (4)

where
$
I is the second-order unit tensor and Dp is the

PMD parameter.
The integration of Eq. (3) over f iber length L pro-

vides the amplif ier gain [dB] G � a ln �S0�L��S0�0��,
where a � 10�ln 10 � 4.343. The PDG is defined as
D � Gmax 2 Gmin and is itself random because both
the maximum and minimum values of G, which we
obtain by changing the signal polarization, are ran-
dom. Similarly to the case of polarization-dependent
losses,8,9 we introduce a PDG vector D such that its
magnitude gives the PDG value D and its direction
corresponds to the direction of S�L� for which the gain
is maximum. By use of Eq. (3), this vector is found to
satisfy the following equation:
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where bD is the unit vector in the direction of
D. If the PDG is not too large, the first term in
Eq. (5) can be Taylor expanded to the first order as
D coth�D�2a� � 2a. Equation (5) then reduces to
linear Langevin equation

dD�dz � agRP 2 VRb 3 D , (6)
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which can be solved easily. The solution is given by

D�z� � agR
$
R�z�

Z z

0

$
R21�z0�P �z0�dz0, (7)

where the PMD-induced rotation matrix
$
R�z� is ob-

tained from d
$
R�dz � 2VRb 3

$
R. It can be shown

that for fibers much longer than the birefringence cor-
relation length the dynamics of D corresponds to that
of Brownian motion in three dimensions [see Ref. 10,
where Eq. (7) is used for the PMD vector]. As a result,
D follows a three-dimensional Gaussian distribution.

The moments of D can be obtained from Eq. (6) by
use of a standard procedure.11 It is appropriate to
treat Eq. (6) in the Stratonovich sense. In the case of
forward pumping, we obtain

d�D��dz � 2h�D� 1 agRPine2apz bP , (8)

d�D2��dz � 2agRPine2apz bP ? �D� , (9)

d
$
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$
C 1 h��D2�$I 2 �D� �D�� , (10)

where h � 1�Ld � D2
pV2

R�3, Ld is the PMD diffusion
length, Pin is the power of the input pump polarized
along the bP direction, and

$
C is the covariance matrix

defined as
$
C 	 �DD� 2 �D� �D�. Equations (8) and (9)

provide the following analytical results:
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where Leff is the effective fiber length defined as Leff �
�1 2 exp�2apL���ap.

An analytical expression of
$
C can also be obtained

by integration of Eq. (10). It is convenient to choosebP along an axis of the Stoke space, say bP � be1, so that
$
C is diagonalized. The probability density function of
D then can be written as
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where D0 � j�D�j and s
2
k and s2

� are the variances of
the PDG vector in the parallel and perpendicular di-
rection of bP , respectively. They can be obtained from
Eq. (10) in analytical form. It turns out that sk , s�

when PMD is small because the pump amplif ies only
the copolarized signal and prevents it from scattering.
When Leff ..Ld, �D2� .. �D�2 so that sk � s�.

Similarly to the case of the PMD vector, we need to
find the distribution p�D�, where D � jDj, because that
is what is measured experimentally. The distribution
of D can be found from Eq. (13) after D is written in
spherical coordinates and after integrating over the
two angles. The result is found to be
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where s2 � s2
��r 2 1�, r � s2

��s2
k , and erf is the error

function. Figure 1 shows how p�D� changes with
Dp for a 10-km-long fiber with losses of 0.273 and
0.2 dB�km for the pump and the signal, respectively.
The pump power is 0.3 W, and the signal is located
at the Raman-gain peak �VR�2p � 13.2 THz�, where
the gain coefficient gR � 0.61 W21�km.1 In the limit
Dp ! 0, p�D� becomes a delta function located at the
maximum Raman gain, since no gain exists for the
orthogonally polarized signal. As Dp increases, p�D�
broadens quickly because PMD scatters the signal
polarization randomly. When Dp is large enough
that Leff ..Ld, p�D� becomes Maxwellian, and its
peak shifts to much smaller values. This is the
behavior that was observed experimentally in the
study reported in Ref. 4.

To compare our theory with experiments more quan-
titatively, we used the PDG distribution in Eq. (14) to
calculated the mean value of PDG, �D�, and the rms
value of PDG f luctuations, sD � ��D2� 2 �D�2�1�2. Fig-
ures 2 and 3 show how these two quantities vary with
the PMD parameter after both of them are normal-
ized to the average gain Gav � agRPinLeff�2 [dB] so
that the curves are pump-power independent. The
parameters values are the same as in Fig. 1. As ex-
pected, mean PDG decreases monotonically as Dp in-
creases. Note, however, that �D� can be as large as
30% of the average gain for Dp � 0.05 ps�

p
km, and it

decreases slowly with Dp after that, reaching a value of
8% for Dp � 0.2 ps�

p
km. This is precisely what was

Fig. 1. Probability distribution of PDG as a function of Dp
for a 10-km Raman amplifier pumped with 0.3 W of power
in the forward direction.
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Fig. 2. Mean PDG as a function of PMD parameter, nor-
malized to the average Raman gain. The inset shows the
same data plotted as a function of 1�Dp.

Fig. 3. Same as Fig. 2 expect that the rms value of PDG
is plotted as a function of the PMD parameter.

reported in Ref. 4 through experiments and numerical
simulations.

As can be seen in Fig. 3, the rms value of PDG
f luctuations increases rapidly as Dp becomes nonzero,
peaks at a value close to 56% for Dp near 0.01 ps�

p
km,

and then begins to decrease. Again, f luctuations
can exceed 7% of the average gain level even for
Dp � 0.1 ps�

p
km. Both the mean PDG and the rms

value of PDG f luctuations decrease with Dp inversely
for Dp . 0.03 ps�

p
km �Ld , 0.5 km for VR�2p �

13.2 THz�. This can be seen from the insets in Figs. 2
and 3. The linear dependence agrees very well with
the experimental results in Ref. 4.

The D21
p dependence of �D� and sD can be deduced

analytically from Eq. (14) in the limit Leff ..Ld. In
this limit, the PDG distribution p�D� becomes approxi-
mately Maxwellian, and the average and rms values of
PDG are given by
�D� �
4agRPin
p

p DpVR
�Leff �1 2 apLeff�2��1�2. (15)

sD �
q

�3p�8 2 1� �D� � 0.422�D� . (16)

The same equations hold in the case of backward
pumping, except that VR � vp 2 vs should be re-
placed with vp 1 vs. As a result, both �D� and sD are
reduced by a factor of �vp 1 vs���vp 2 vs� � 2vs�VR
when backward pumping is used. Typically, this
factor exceeds 30 in the 1.55-mm region. The peak
value of the curve in Fig. 3 remains the same but its
location shifts to smaller Dp by the same factor. The
validity of Eqs. (9)–(16) depends on the approximation
used for deriving Eq. (6). Using the second term
in the Taylor expansion, we find that the validity
condition is �D� ,,

p
12a � 15 dB. This requirement

can be satisfied for most Raman amplif iers.
In conclusion, a general vector theory has been

presented to describe the polarization-dependent gain
in Raman amplifiers and to f ind its probability dis-
tribution as a function of the operating parameters of
Raman amplif iers. The distribution is close to a
Gaussian distribution when PMD is relatively small
but becomes Maxwellian when the effective fiber
length is much larger than the diffusion length. We
were able to derive analytical expressions for the
average and rms values of PDG. Our analytical
predictions are in agreement with the experimental
results and numerical simulations reported in Ref. 4.

This work was supported by the National Sci-
ence Foundation under grants ECS-9903580 and
DMS-0073923.

References

1. S. Namiki and Y. Emori, IEEE Sel. Top. Quantum Elec-
tron. 7, 3 (2001).

2. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Aca-
demic, New York, 2001).

3. K. Rottwitt and A. J. Stentz, in Optical Fiber Telecom-
munications IV A, I. Kaminow and T. Li, eds. (Aca-
demic, San Diego, Calif., 2002), Chap. 5.

4. P. Ebrahimi, M. C. Hauer, Q. Yu, R. Khosravani, D.
Gurkan, D. W. Kim, D. W. Lee, and A. E. Willner, in
Conference on Lasers and Electro-Optics, Vol. 56 of OSA
Trends in Optics and Photonics Series (Optical Society
of America, Washington, D.C., 2001), p. 143.

5. S. Popov, E. Vanin, and G. Jacobsen, Opt. Lett. 27, 848
(2002).

6. R. Hellwarth, J. Cherlow, and T. Yang, Phys. Rev. B
11, 964 (1975).

7. D. J. Dougherty, F. X. Kartner, H. A. Haus, and E. P.
Ippen, Opt. Lett. 20, 31 (1995).

8. B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top.
Quan. Electron. 6, 317 (2000).

9. A. Mecozzi and M. Shtaif, IEEE Photon. Technol. Lett.
14, 313 (2002).

10. G. J. Foschini and C. D. Poole, J. Lightwave Technol.
9, 1439 (1991).

11. C. W. Gardiner, Handbook of Stochastic Methods, 2nd
ed. (Springer, New York, 1985).


