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Correlation theory of polarization mode
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A general theory is used to describe the correlation properties of polarization mode dispersion (PMD) in a bi-
refringent, linear, dispersive medium such as optical fibers. The theory includes the effects of frequency de-
pendence of birefringence on all orders, and it is capable of providing statistical information about second- and
higher-order correlations among the polarization and PMD vectors. We apply the general theory to study
pulse broadening induced by different-order PMD and PMD-induced pulse distortion through the third- and
fourth-order temporal moments (related to skewness and flatness, respectively). Our analytic results are in
good agreement with numerical simulations. © 2003 Optical Society of America
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1. INTRODUCTION
The phenomenon of polarization mode dispersion (PMD)
becomes of considerable concern as the bit rate of each
channel in a light-wave system increases beyond 10
Gbit/s.1,2 It is anticipated that the performance of long-
haul 40-Gbit/s systems would be limited by PMD, and the
situation would become worse as the bit rate increases to-
ward 80 Gbit/s or more. It is well known that the effects
of higher-order PMD should be included for ultrashort
pulses used in designing such high-bit-rate systems.3 In
a linear dispersive medium, the PMD effects are well de-
scribed by the PMD vector V whose direction is along a
principal state of polarization (PSP), and whose magni-
tude corresponds to the differential group delay (DGD)
between the two PSPs.4 When the bandwidth of optical
pulses is small, the two PSPs can be assumed to remain
constant over the whole pulse spectrum. This approxi-
mation is referred to as the first-order PMD. The mag-
nitude of the PMD vector is known to follow the Maxwell-
ian statistics in this case.5

For short optical pulses, the bandwidth increases
enough that higher-order effects should be included. The
statistics of the second-order PMD vector defined as
dV/dv has been thoroughly investigated in Refs. 5–8.
However, it seems rather difficult to find the probability
distributions of higher-order PMD vectors and the joint
probability of multiple PMD vectors of different frequen-
cies. The correlation functions between the polarization
and the PMD vectors are likely to play an important role
because considerable information about the statistics of
pulse propagation can be obtained through them even
when the joint probability distribution is unknown. For
example, the correlation between two PMD vectors of dif-
ferent frequencies is useful to understand the pulse
broadening induced by PMD effects.9,10 However, if we
consider other effects such as PMD-induced pulse distor-
tion, we would need higher-order correlation functions.
In this paper we develop a general theory that can be
used to describe the correlations among PMD vectors and
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polarizations of an arbitrary order and apply it to discuss
pulse distortion induced by PMD.

2. GENERAL FORMALISM
The propagation of an optical pulse in a linear, birefrin-
gent, dispersive medium can be studied if we consider
each frequency component of the pulse through the Fou-
rier transform

Ã~z, v! 5
1

A2p
E

2`

1`

A~z, t !exp~ivt !dt, (1)

where A(z, t) is the Jones vector of the optical field and
Ã(z, v) 5 a(z, v)exp@iu(z, v)#S(z, v) is its spectrum.
Here, a, u, and S are the amplitude, phase, and state of
polarization (SOP) of the pulse spectrum, and S†S 5 1.
The effects of fiber birefringence in the Jones matrix for-
malism are governed by11

]Ã~z, v!

]z
[

]

]z
S Ãx

Ãy
D

5 iS b0 2 b1/2 2 b2/2 1 ib3/2

2b2/2 2 ib3/2 b0 1 b1/2 D S Ãx

Ãy
D .

(2)

This equation can be rewritten in matrix form as

]Ã~z, v!

]z
[ iFb0~z, v! 2

1

2
b~z, v! • sGÃ~z, v!, (3)

where b0(z, v) is the propagation constant and b(z, v)
5 b1ê1 1 b2ê2 1 b3ê3 is the local birefringence vector
defined in the Stokes space. The vector s is formed by
use of the Pauli matrices and is given by s 5 s1ê1
1 s2ê2 1 s3ê3 , where ê1 , ê2 , and ê3 are unit vectors in
the Stokes space and
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s1 5 S 1 0

0 21 D , s2 5 S 0 1

1 0 D , s3 5 S 0 2i

i 0 D .

(4)

The PMD vector appears when one considers the fre-
quency dependence of polarization S(z, v) through11

]S~z, v!

]v
5 iF t~z, v! 2

1

2
V~z, v! • sGS~z, v!, (5)

where t is the common group delay induced by the disper-
sion, defined as t 5 *0

z(]b0 /]v)dz, and V is the PMD
vector that points along the fast PSP. Note that Eq. (5)
differs slightly from Eq. (6.9) in Ref. 11 because of a dif-
ferent convention that was used for the Fourier
transform.12

In the absence of polarization-dependent losses, the dy-
namics of polarization and PMD vectors are governed
by11,13

]S~z, v!

]z
5 b~z, v! 3 S~z, v!, (6)

]V~z, v!

]z
5 b~z, v! 3 V~z, v! 1 bv~z, v!,

(7)

where S is the normalized Stokes vector of the polariza-
tion defined as S 5 S†sS. It is normalized such that
S–S51. The subscript v denotes the frequency deriva-
tive. It is evident that the frequency dependence of PMD
vector V is governed by that of the birefringence vector b.
PMD is a consequence of the randomly varying birefrin-
gence along the fiber length. It is important to note that
both the orientation of the principal axes and the magni-
tude of birefringence are random.

Physically, it is reasonable to view the fiber as an array
of concatenated sections whose lengths are small enough
that their birefringence can be considered constant inside
each section.11–15 Within each section, the frequency de-
pendence of birefringence is deterministic. Random cou-
pling occurs only between different fiber sections because
of the random rotations of the principal axes. It is ex-
pected that the frequency dependence of b will not change
from section to section. It is thus reasonable to assume
that b(z, v) can be factored as

b~z, v! 5 f~v!b~z !, (8)

where f(v) represents the frequency dependence and is a
deterministic function, whereas b(z) is a Gaussian ran-
dom process with a correlation length of ;0.1 km. In
practice, one is interested in the PMD effects at distances
much larger than the correlation length. For such large
distances, b(z) can be considered a Markovian Gaussian
process (white noise) whose first two moments are given
by

^b~z !& 5 0, ^b~z1!b~z2!& 5 h2IId ~z2 2 z1!, (9)

where the angle brackets denote an ensemble average, II

is a unit tensor, and h represents the rms value of bire-
fringence b(z).

Since the birefringence vector b(z, v) is a three-
dimensional vector that moves uniformly in the Stokes
space and its amplitude is frequency dependent on any or-
der (i.e., the local DGD is frequency dependent on any or-
der), the model includes the random rotations of principal
axes as well as the random phase additions, while it
maintains the frequency dependence of birefringence on
all orders. Using Eq. (8) in Eqs. (6) and (7), the dynamic
equations for the polarization and the PMD vectors be-
come

]S~z, v!

]z
5 f~v!b~z ! 3 S~z, v!, (10)

]V~z, v!

]z
5 f~v!b~z ! 3 V~z, v! 1 fv~v!b~z !. (11)

For each frequency, the polarization and the PMD vectors
evolve randomly along the fiber. The polarizations and
the PMD vectors of different frequencies follow the same
dynamics but with different random phase shifts and PSP
rotations at each fiber section because of the frequency
dependence of birefringence. Mathematically, Eqs. (10)
and (11) constitute a set of six nonlinear Langevin equa-
tions. The moments of polarization and PMD vectors can
be calculated by use of the well-known technique based on
the Stratonovich calculus.16–18 Although there is some
ambiguity between the Ito and the Stratonovich interpre-
tations, the Stratonovich calculus is considered the natu-
ral limit of real physical models.16,18 For this reason we
used it to investigate the statistical behavior of the polar-
ization and the PMD vectors and their correlations for dif-
ferent frequencies. In Appendix A we provide the math-
ematical details and show how to determine the
Stratonovich generator for the PMD and the polarization
vectors of different frequencies.

3. SECOND-ORDER CORRELATION
FUNCTIONS
Generator G in Eq. (A10) of Appendix A can be used to cal-
culate the correlation between the PMD vectors and the
polarization vectors at n different frequencies. If we con-
sider only the correlation between two PMD vectors of dif-
ferent frequencies, V(z, v1) and V(z, v2), the generator
reduces to

G 5
h2

2
$22f1

2V1 • ¹1 2 2f2
2V2 • ¹2

1 @~ f1v
2 1 f1

2V1
2!II 2 f1

2V1V1#:¹1¹1

1 @~ f2v
2 1 f2

2V2
2!II 2 f2

2V2V2#:¹2¹2

1 2@ f1vf2vII 1 f1f2@~V1 • V2!II 2 V2V1##:¹2¹1

1 2~ f2f1vV2 2 f1f2vV1! • ~¹2 3 ¹1!%, (12)

where subscripts 1 and 2 denote the frequency compo-
nents at v1 and v2 , respectively. For example, f1
5 f(v1), f1v 5 fv(v1), and ¹1 operates on V(z, v1).
The dynamic equations for the correlation between
V(z, v1) and V(z, v2) are
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d^V1 • V2&

dz
5 ^G~V1 • V2!& 5 2h2~ f1 2 f2!2^V1 • V2&

1 3h2f1vf2v , (13)

d^V1V2&

dz
5 2h2~ f1

2 1 f2
2!^V1V2& 2 h2f1f2^V2V1&

1 h2@ f1v f2v 1 f1 f2^V1 • V2&#II. (14)

The dynamic equation for ^V2V1& can be written by inter-
changing subscripts 1 and 2 in Eq. (14). These equations
can be easily integrated to yield the following analytic ex-
pressions:

^V1 • V2& 5
3f1v f2v

~ f1 2 f2!2 $1 2 exp@2h2z~ f1 2 f2!2#%,

(15)

^V1V2& 5
f1v f2vII

~ f1 2 f2!2 $1 2 exp@2h2z~ f1 2 f2!2#%.

(16)

Equation (16) shows that the three components of the
PMD vector become uncorrelated when the propagation
distance is long and the variance of the three components
is the same. Physically speaking, random rotation of the
PMD vector fills the Poincare sphere uniformly in the
Stokes space, which means that the three components of
the PMD vectors are uncorrelated and identical. From
Eq. (15), when the frequency difference between the two
PMD vectors vanishes, the correlation reduces to the vari-
ance of the magnitude of the PMD vector, ^V2&
5 3h2fv

2(v)z. Clearly, if we include the frequency-
dependent birefringence beyond the DGD, variance of the
PMD vector itself becomes frequency dependent. This
frequency dependence could be small because local DGD
is dominant for typical pulse bandwidths. Using the gen-
erator method, one can easily find the probability distri-
bution of the PMD vector at a single frequency. It turns
out that the probability distribution of the PMD vector re-
mains Gaussian even when higher-order frequency-
dependent birefringence is considered, but the variance
becomes frequency dependent as found above. When the
frequency difference becomes large, the difference be-
tween functions f(v1) and f(v2) becomes large and the
correlation tends to zero.

A similar approach can be used for correlation between
the polarization vectors at two different frequencies.
Through the generator in Appendix A, the correlation
function was found to be

^S1 • S2& 5 ^S01 • S02&exp@2h2z~ f1 2 f2!2#, (17)

where S01 and S02 is the input polarization vectors at the
two frequencies. Random birefringence causes the SOP
to diffuse uniformly in the Stokes space and also causes
the polarization vectors at different frequencies to become
increasingly uncorrelated as the propagation distance in-
creases. A comparison of Eq. (17) with Eq. (15) shows
that the diffusion rate of polarization is determined by
variance of the PMD.

Equations (15)–(17) are valid for an arbitrary form of
frequency dependence. In practice, f(v) is expanded in a
Taylor series around the central frequency of the pulse.
When the higher-order terms are negligible, birefringence
is dominated by the first-order effects. Using f(v2)
2 f(v1) ' fv(v1)(v2 2 v1) and fv(v1) ' fv(v2), the
correlation function in Eqs. (15) and (17) reduces to the
well-known results9,10,19

^S1 • S2& ' ^S01 • S02&exp@2^V2&~v2 2 v1!2/3#, (18)

^V1 • V2& '
3

~v2 2 v1!2 $1 2 exp @2^V2&~v2 2 v1!2/3#%,

(19)

where ^V2& is constant over the pulse spectrum. Ap-
proximations (18) and (19) were first derived in Refs. 9
and 19 by use of different methods. Here, they appear
naturally from our general theory within the appropriate
limit.

The statistics of the input PMD vector is also of interest
because it is directly related to properties such as pulse
broadening and distortion. The input PMD vector,
V0(z, v), is obtained as the projection of PMD vector
V(z, v) by use of V(z, v) 5 R(z, v)V0(z, v), where
R(z, v) is the rotation matrix of the whole fiber in the
Stokes space.11,20 Through the generator given in Appen-
dix A, it is simple to show that

^~S1 • V1!~S2 • V2!& 5
^S01 • S02&f1vf2v

~ f1 2 f2!2

3 $1 2 exp@2h2z~ f1 2 f2!2#%.

(20)

Since ^(S1 • V1)(V2 • S2)& 5 ^S01 • V01V02 • S02& and
the input polarization is arbitrary, we conclude that
^V0(z, v1)V0(z, v2)& 5 ^V(z, v1)V(z, v2)&. Thus, the
correlation function for the input PMD vector is exactly
the same as that for the output PMD vector.

The results in this section show the power of the gen-
erator technique for finding the correlation functions of
PMD vectors and polarizations. In Section 4 we apply
this technique to calculate several higher-order correla-
tion functions between the PMD and the polarization vec-
tors of different frequencies and relate them to pulse dis-
tortion for investigating the PMD effects beyond pulse
broadening. Since the pulse bandwidth is usually not
large enough to make significant higher-order birefrin-
gence effects, we assume that the local DGD is constant
and use the approximation f(v2) 2 f(v1) ' (v2
2 v1)fv , where fv is constant over the pulse bandwidth.

4. PULSE DISTORTION AND BROADENING
The pulse broadening is governed by the rms width of the
pulse defined as s 2 5 t 2̂ 2 ( t̂)2, where

t̂ 5 E
2`

1`

tA†~z, t !A~z, t !dt

5 2iE
2`

1`

Ã†~z, v!Ãv~z, v!dv, (21)
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t 2̂ 5 E
2`

1`

t2A†~z, t !A~z, t !dt

5 E
2`

1`

Ãv
†~z, v!Ãv~z, v!dv, (22)

and the circumflex denotes the average over the pulse in-
tensity profile. We have assumed that the optical field
A(z, t) and its spectrum Ã(z, v) are normalized such
that

E
2`

1`

A†~z, t !A~z, t !dt 5 E
2`

1`

Ã†~z, v!Ã~z, v!dv 5 1.

(23)

The dagger represents the Hermitian conjugate.
Consider the input pulse spectrum to be Ã(0, v)

5 a(v)exp@iu(v)#S0 , where a(v), u(v), and S0 are the
amplitude, phase, and polarization of the initial pulse
spectrum; S0

†S0 5 1. We assume that the input polar-
ization state is fixed for all frequency components, and
thus S0 is constant over the whole pulse spectrum. Since
variation of the optical field with frequency is governed by
Eq. (5), we substitute it into Eqs. (21) and (22) to obtain
pulse broadening in the form

s 2 5 s0
2 1 sdisp

2 1 sPMD
2, (24)

where s0 is the rms width of the input pulse, sdisp
2

5 @t 2 2 ( t̄)2# 1 2@tuv 2 t̄uv# is the broadening induced
by fiber dispersion, and the PMD-induced broadening
sPMD is given by11,20

sPMD
2 5

1

4
@V0

2 2 ~V0 • S0!2# 2 @~t 1 uv!~V0 • S0!

2 ~ t̄ 1 uv!~V0 • S0!#. (25)

Here the overbar denotes the average over the input spec-
trum, i.e., ḡ 5 *

2`
1` g(v)Ã†(0, v)Ã(0, v)dv, S0

5 S0
†sS0 is the normalized Stokes vector of the initial

field, uv 5 du/dv is related to the initial chirp, and
V0(z, v) is the input PMD vector.

It is difficult to find an analytic expression for the prob-
ability distribution of PMD-induced pulse broadening.
However, the ensemble-averaged values provide an esti-
mate of average pulse broadening. Since ^V0(z, v)&
5 0, the average broadening induced by PMD becomes

^ sPMD
2& 5

1

4
@^V0

2& 2 ^~V0 • S0!2&#. (26)

Karlsson and Brentel9 and Sunnerud et al.21 obtained
this expression for unchirped Gaussian pulses after ne-
glecting higher-order frequency-dependent birefringence.
Our analysis shows that Eq. (26) can also be used directly
for pulses of arbitrary shape and arbitrary initial chirp. It
includes higher-order frequency-dependent effects of bire-
fringence as well.

To investigate the higher-order PMD effects, we expand
the input PMD vector into a Taylor series as

V0~z, v! 5 (
n50

1` 1

n!
V0

~n !vn,
where

V0
~n ! 5 ]nV0 /]vnuv5v0

is the nth-order frequency derivative of the input PMD
vector at the central frequency v0 of the pulse spectrum,
which we refer to as the (n 1 1)th-order PMD vector so
that it corresponds to the usual definition of the second-
order PMD vector for n 5 1. Substituting V0(z,v) into
Eq. (26), the PMD-induced broadening becomes

^ sPMD
2& 5

1

4 (
N50

1` H vNF (
m50

N
^V0

~m !
• V0

~N2m !&

m!~N 2 m !! G
2 (

m50

N
vm vN2m

m!~N 2 m !!
S0

• ^V0
~m !V0

~N2m !& • S0J , (27)

where the overbar means average over the input spec-
trum as before. Since the correlation between the PMD
vectors of two frequencies, as shown in Eq. (19), is sta-
tionary in the frequency domain when we neglect the
higher-order frequency-dependent birefringence, it is easy
to show that

^V0
~m !

• V0
~N2m !& 5 ~21 !N2m^V0

~N !
• V0

~0 !&, (28)

(
m50

N
^V0

~m !
• V0

~N2m !&

m!~N 2 m !!

5 ^V0
~N !

• V0
~0 !& (

m50

N
~21 !N2m

m!~N 2 m !!
5 0 (29)

for all N > 1. Moreover, the input power spectrum is
usually symmetric, resulting in v2m11 5 0 for all integers
m > 0. With these simplifications, the PMD-induced
pulse broadening becomes

^ sPMD
2& 5

1

4 H ^~V0
~0 !!2& 2 (

N50

1`

~S0 • ^V0
~2N !V0

~0 !& • S0!

3 (
m50

N
v2m v~2N22m !

~2m !!~2N 2 2m !!J . (30)

Equation (30) constitutes one of our main results. It
shows that all the even-order PMD effects (which corre-
spond to odd-order frequency derivative of the input PMD
vector) do not participate in the production of average
pulse broadening. If the first-order PMD is compen-
sated, the dominant PMD effect on the average pulse
broadening is of third order. Note that this does not
mean that the even-order PMD effects are irrelevant for
pulse broadening. They still affect instantaneous pulse
broadening and thus affect the bit error rate and the out-
age probability.22 In other words, the tail of the probabil-
ity distribution of the broadening, which is related to the
system outage, is affected by the even-order PMD effects,
although the rms width of the distribution does not.
Therefore, the ensemble-averaged pulse broadening is not
sufficient to judge the PMD effects. The ensemble-
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averaged pulse broadening is often used to compare dif-
ferent PMD compensation techniques. Our analysis
shows that one should be careful if this quantity is used
because it does not include the effects of all even-order
PMD.

PMD not only induces pulse broadening but also leads
to pulse distortion. In particular, PMD transfers energy
between the two polarization components of an optical
pulse and pulls them apart randomly. Thus, PMD can
make the pulse shape asymmetric and flat even for a sym-
metric and sharp input pulse. Similar to the coma and
spherical aberrations that occur in an imaging system, we
apply the concepts of skewness and flatness to describe
the extent of pulse distortion. Skewness and flatness are
related to the third- and fourth-order central moments of
the pulse intensity profile defined as

m3 [ E
2`

1`

~t 2 t̂ !3A†~z, t !A~z, t !dt

5 t̂3 2 3 t̂ t̂2 1 2~ t̂ !3, (31)

m4 [ E
2`

1`

~t 2 t̂ !4A†~z, t !A~z, t !dt

5 t̂4 2 4 t̂ t̂3 1 6 t̂2~ t̂ !2 2 3~ t̂ !4, (32)

where

t̂3 5 E
2`

1`

t3A†~z, t !A~z, t !dt

5 2iE
2`

1`

Ãv
†~z, v!Ãvv~z, v!dv, (33)

t̂4 5 E
2`

1`

t4A†~z, t !A~z, t !dt

5 E
2`

1`

Ãvv
†~z, v!Ãvv~z, v!dv. (34)

The complete expressions of skewness and flatness in-
cluding all-order effects of fiber dispersion, initial chirp,
and PMD are too complicated to present here. If we fo-
cus only on the PMD effects and assume that the input
pulse is symmetric and unchirped and that the fiber dis-
persion has been totally compensated, the skewness and
flatness become (see Appendix B)

m3 5
1

8
$2~V 3 Vv! • S 2 V2~V • S! 1 3V2 ~V • S!

2 2~V • S!3% 2
1

2 H E
2`

1`

@~av!2 2 2aavv#

3 ~V • S!dv 2 ~V • S!E
2`

1`

~av!2dvJ , (35)
m4 5
1

16
$V4 1 4Vv

2 1 8~V • S!~V 3 Vv! • S

2 4V2~V • S!~V • S! 1 6V2~V • S!2

2 3~V • S!4% 1
1

2 H E
2`

1`

V2@~av!2 2 2aavv#dv

1 3~V • S!2E
2`

1`

~av!2dv 2 2~V • S!E
2`

1`

~V • S!

3 @~av!2 2 2aavv#dvJ 1 m40 , (36)

where Vv means the first-order frequency derivative of
the PMD vector V, av and avv are the first- and second-
order frequency derivatives of the input pulse spectrum,
and m40 is the flatness of the input pulse. For a Gaussian
pulse, m40 5 3s0

4. We write the skewness and flatness
in the form of output PMD vectors and polarizations be-
cause they are easier to deal with than the input PMD
vector through the generator given in Appendix A.

An approach similar to that used in Section 3 provides
all the correlation functions that appear in the above ex-
pressions. It can be shown that the third-order correla-
tion ^(V1 • S1)(V2 • S2)(V3 • S3)& 5 0. The PMD vector
and its square are uncorrelated, ^V1

2(V2 • S2)& 5 0.
The correlation of the cross product of the PMD vectors of
two frequencies is zero as well, ^(V1 3 V2) • S1& 5 0. A
direct implication is that the ensemble average of the
cross product of the PMD vector and its frequency deriva-
tive is zero,

^~V 3 Vv! • S& 5 lim
v2→v1

]

]v2
^~V1 3 V2! • S1& 5 0.

Using these results in Eq. (35), we found the ensemble av-
erage of the skewness to be zero, i.e., ^ms& 5 0. Thus, the
PMD effects are equally likely to make the pulse asym-
metric on the leading or the trailing side.

When the first-order PMD effects dominate and we can
neglect the frequency dependence of the PMD vector, the
main contribution to skewness comes from the first three
cubic terms in Eq. (35), and this equation can be approxi-
mated as

m3 '
1

8
$3V2~V • S! 2 V2~V • S! 2 2~V • S!3%

5
1

4
V0x~V0y

2 1 V0z
2!, (37)

where we have written the skewness in terms of the input
PMD vector, V0 5 V0xê1 1 V0yê2 1 V0zê3 . Since the
three components of the input PMD vector are indepen-
dent Gaussian variables, the probability distribution of
this approximated skewness can be in the following semi-
analytic form:
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P~m3! 5 A2

p
S 3

^V2&
D 3/2E

0

1` dy

y

3 expH 2
3

2^V2&
Fy 1 S 4m3

y D 2G J . (38)

To validate the general theory presented in this paper,
we solved Eq. (2) numerically. The PMD parameter Dp is
assumed to be 0.1414 ps/Akm and the correlation length
is assumed to be 1 km. The fiber is divided into many
sections of 1-km length. Inside each section, birefrin-
gence is kept constant. At the end of each section, ran-
dom rotation and random phase shift are induced. Fiber
dispersion is assumed to be zero. The input pulse is
taken to be an unchirped Gaussian pulse such that
A(0, t) 5 A0 exp(2t2/4s0

2)S0 . Two different cases are
considered here. In one case, a long input pulse with a
full width at half-maximum of 33.3 ps ( s0 5 14.14 ps) is
propagated over a distance of 1000 km. Since A^V2&/s0
5 31.6%, PMD effects are relatively small. In the sec-
ond case, a short input pulse with a full width at half-
maximum of 8.33 ps ( s0 5 3.54 ps) propagates over a dis-
tance of 5000 km. Since A^V2&/s0 5 2.83, PMD effects
are quite large. In each case, we solve Eq. (2) repeatedly
5000 times to collect the statistics for various moments.
Figures 1 and 2 show the probability distributions for the
skewness for the two cases by normalizing m3 with s0

3 .

The solid curve shows the analytic results from Eq. (38).
In the case of large pulse width and small PMD, the
theory agrees well with the numerical simulations be-
cause the first-order PMD effects dominate. In the sec-
ond case of a small pulse width and large PMD, the
theory and numerical simulations agree reasonably well.
However, when the pulse width is reduced to less than 5
ps, the PMD becomes large enough and higher-order
PMD effects become important enough that Eq. (38) be-
gins to deviate from numerical simulations.

The probability distribution of the flatness can be con-
sidered by use of an approach similar to that used for the

Fig. 1. Probability distribution of skewness at a distance of
1000 km. The skewness was normalized to s0

3. The rms
width of the input Gaussian is s0 5 14.14 ps. The PMD param-
eter of the fiber is 0.1414 ps/Akm. We realized 5000 random
rounds. The solid curve represents the analytic results and the
histogram represents numerical simulations.
skewness. When the first-order PMD dominates, the
main contributions to the flatness come from the fourth-
order terms of the PMD vector in Eq. (36) and this equa-
tion becomes

m4 ' m40 1
1

16
$V4 2 4V2~V • S!~V • S!

1 6V2~V • S!2 2 3~V • S!4%

5 m40 1
1

16
~V0y

2 1 V0z
2!~4V0x

2 1 V0y
2 1 V0z

2!.

(39)

Again using the fact that the three components of the in-
put PMD vector are independent Gaussian random vari-
ables, we obtain the probability distribution of this ap-
proximated flatness:

P~m4! 5 A2

p
S 3

^V2&
D 3/2E

0

4Am4 2 m40

3
dy exp$23@16~m4 2 m40! 1 3y2#/~8y^V2&!%

Ay@16~m4 2 m40! 2 y2#
.

(40)

Figure 3 shows the numerical simulated probability dis-
tribution for the PMD-induced flatness in the case of a
long pulse ( s0 5 14.14 ps) that propagates over 1000 km.
The solid curve again shows the analytic prediction of our
theory and agrees well with the results of numerical
simulations. However, when higher-order PMD effects
become significant, the numerical probability distribution
of the flatness deviates significantly from Eq. (40). Nu-
merical simulations show that, when pulses shorter than
5 ps propagate over a distance of 5000 km (Dp
5 0.1414 ps), the usefulness of Eq. (40) becomes ques-
tionable.

Although the exact probability distribution of the PMD-
induced flatness is difficult to find, the exact ensemble-

Fig. 2. Probability distribution of skewness at a distance of
5000 km. The skewness was normalized to s0

3. The rms
width of the input Gaussian is s0 5 3.54 ps. The PMD param-
eter is the same as in Fig. 1. We realized 5000 random rounds.
The solid curve represents the analytic results and the histogram
represents numerical simulations.
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averaged value of the flatness can be obtained through
the technique outlined in Appendix A. Using this ap-
proach, we can obtain the ensemble average of all the
terms in Eq. (36). Appendix C provides more details.
The average value of the flatness is found to be

^m4& 5 s0
4H 27x2

16
1

21x

2
2 ~2x 1 15!Ax 1 1

1
3

100
~5x 2 4 !A10x 1 4 1

16

A3
tan21~A3x 1 3 !

1
456

25
2

16p

3A3
J , (41)

where x 5 ^V2&/3s0
2 5 Dp

2z/3s0
2 and z is the propaga-

tion distance.

Fig. 3. Probability distribution of pulse flatness at a distance of
1000 km. The flatness was normalized to s0

4. The rms width
of the input Gaussian pulse is s0 5 14.14 ps. The PMD param-
eter is the same as in Fig. 1. The solid curve represents the ana-
lytic results and the histogram represents numerical simula-
tions.

Fig. 4. Ensemble-averaged pulse flatness changes with propa-
gation distance. The flatness is normalized to s0

4. The PMD
parameter is the same as in Fig. 1. The solid curve represents
the analytic theoretical results and the dashed curve represents
the numerical simulations.
Figure 4 shows the comparison between the analytic
ensemble-averaged flatness in Eq. (41) and the results of
numerical simulations for s0 5 3.54 ps and s0 5 A2 ps.
In each case, the optical pulse is assumed to propagate
over a distance of 5000 km. The analytic theory indeed
agrees well with the results of numerical simulations
even for short pulses. The flatness grows almost qua-
dratically with the propagation distance, which can be
seen from Eq. (41) for x @ 0. When the PMD effects are
large, the main contribution to flatness comes from ^V4&
and ^Vv

2& in Eq. (36).

5. CONCLUSIONS
We have developed a general theory for describing the ef-
fects of PMD on an optical pulse that propagates inside a
long fiber link. The theory includes the frequency depen-
dence of the birefringence and the PMD vector to all or-
ders. We use the Stratonovich calculus for calculating
the correlations of the polarization and PMD vectors at
two or more different frequencies. We first applied the
general formalism to calculate the second-order correla-
tion functions of the polarization vectors and that of the
PMD vectors and showed that our results reduce to those
obtained previously when only the first-order effects were
retained.

To study the effect of PMD on the performance of an op-
tical communication system, we focused on pulse broad-
ening and the extent of pulse distortion characterized
through the skewness and flatness related to the third-
and fourth-order temporal moments of the pulse. We
proved analytically that the even-order PMD effects do
not affect the average value of the rms pulse width. We
have calculated the probability distribution for the skew-
ness and flatness and compared them with those obtained
numerically. Our analytic results are in good agreement
with numerical simulations.

APPENDIX A
Here we use the results from Ref. 18 to find the Stra-
tonovich generator that allows us to calculate the average
of an arbitrary function of the PMD and polarization vec-
tors. Consider the following set of n differential equa-
tions satisfied by n random vectors:

dRi

dz
5 QI ig 1 Ui , i 5 1, 2 ,..., n, (A1)

where QI i is a 3 3 3 tensor and Ui is a three-dimensional
vector. Both QI i and Ui can be functions of Ri . The vec-
tor g describes a three-dimensional Markovian–Gaussian
stochastic process whose first two moments are given by

^g~z !& 5 0, ^g~z1!g~z2!& 5 h2IId ~z2 2 z1!. (A2)

Consider a smooth enough arbitrary function C($Ri%)
in a small interval (z, z 1 dz). Expand C(z 1 dz) in a
Taylor series to obtain (the dependence of C on R1 , R2 ,...
is not shown explicitly)
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C~z 1 dz ! 2 C~z ! 5
dC~z !

dz
dz 1

1

2

d2C~z !

dz2 ~dz !2

1 O@~dz !3#, (A3)

where

dC~z !

dz
5 (

i51

n dRi

dz
• ¹iC~z !, (A4)

d2C~z !

dz2 5 (
i51

n FdRi

dz
• ¹iS dRi

dz D • ¹iC~z !

1
]

]z S dRi

dz D • ¹iC~z !G
1 (

i, j51

n dRj

dz

dRi

dz
:¹i¹jC~z !, (A5)

and the gradient is over Ri (¹i 5 d/dRi). Since g(z) is
random inside the interval (z, z 1 dz), and C(z) is deter-
mined by the history within (0, z), we need to average Eq.
(A3) twice, first over the random variable g inside (z, z
1 dz) and then over the history in the range (0, z),18 i.e.,

d^C~z !&

dz
5 lim

dz→0
K ^C~z 1 dz !&g 2 C~z !

dz L , (A6)

where subscript g denotes averaging over g inside (z, z
1 dz). Using Eqs. (A2)–(A5) and noting that all higher-

order moments can be written in terms of the second-
order moment for a Gaussian process, we obtain

d^C~z !&

dz
5 ^G$C~z !%&, (A7)

where the generator is given by

G 5 lim
dz→0

K (
i51

n dRi

dz
• ¹i 1

dz

2 H(
i51

n FdRi

dz
• ¹iS dRi

dz D • ¹i

1
]

]z S dRi

dz D • ¹iG 1 (
i, j51

n dRj

dz

dRi

dz
:¹i¹jJ L

g

. (A8)

We now apply this technique to the set of stochastic
equations (6) and (7). The two equations can be rewrit-
ten as a single equation in the form of Eq. (A1) if we iden-
tify Ri as a six-dimensional vector @Si ;Vi#, where Si
5 S(z, v i) and Vi 5 V(z, v i). Futhermore, g is a six-
dimensional random vector with three components re-
lated to b and the others being zero, g(z) 5 @b(z);0#.
Ui 5 0 and QI i is a 636 matrix defined as

QI i 5 S 2f~v i!Si 3 0

2f~v i!Vi 3 1 fv~v i!II 0 D . (A9)

The cross-product operator 3 is defined in Ref. 11. We
substituted Eq. (A1) into Eq. (A8) and averaged over b(z)
in the interval (z, z 1 dz) to obtain the following expres-
sion for the Stratonovich generator:
G 5 2h2(
i51

n

fi
2~Si • ¹Si

1 Vi • ¹Vi
!

1
h2

2 (
i, j51

n

$ fif j@~Si • Sj!II 2 SiSj#:¹Si
¹Sj

1 fif j@~Vi • Vj!II 2 ViVj#:¹Vi
¹V j

1 fivfjv¹Vi
• ¹V j

1 @ fif jvVi 2 fjfivVj# • ~¹Vi
3 ¹V j

!

1 fif j@~Si • Vj!II 2 SiVj#:¹Si
¹V j

1 fif j@~Vi • Sj!II 2 ViSj#:¹Vi
¹Sj

1 fif jvSi • ~¹Si
3 ¹V j

! 2 fjfivSj • ~¹Vi
3 ¹Sj

!%,

(A10)

where subscripts Si and V i denote the gradient on Si and
Vi , respectively.

APPENDIX B
We now give details about the derivation of Eqs. (35) and
(36) for the skewness and flatness used in this paper.
The propagation of optical fields can be described by use
of the Jones matrix as A(z, v) 5 T(z, v)A(0, v), where
T is the transfer matrix and is unitary for a lossless me-
dia. Consider an unchirped pulse so that A(0, v)
5 a(v)S0 , where S0 is the input polarization and is fre-
quency independent. Assume there is no fiber disper-
sion, so that t(z, v) 5 0 in Eq. (5). The frequency de-
rivative of T relates to the PMD vector directly11 as shown
in Eq. (5):

Tv 5 2
i

2
@V~z, v! • s#T, (B1)

Tvv 5
1

4
$2V2~z, v! 2 2iVv~z, v! • s%T. (B2)

Since Av(z, v) 5 TvA(0, v) 1 TAv(0, v) and Avv(z, v)
5 TvvA(0, v) 1 2TvAv(0, v) 1 TAvv(0, v), by substi-
tuting Eqs. (B1) and (B2) into Eqs. (33) and (34), we can
get the analytic expressions for the skewness and flatness
in terms of the output PMD vector V(z, v) and its fre-
quency derivative Vv(z, v). The final result is given in
Eqs. (35) and (36).

APPENDIX C
We now provide more details about the derivation of Eq.
(41) from Eq. (36).

Using the generator in Appendix A, we can find the dy-
namic equations for the correlation functions ^V4&,
^V1

2(V2 • S2)(V3 • S3)&, and

^~V1 • S1!~V2 3 V2v! • S2&

5 lim
v3→v2

]

]v3
^~V1 • S1!~V2 3 V3! • S2&. (C1)

After averaging over the input pulse spectrum, we obtain
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^V4& 5 E
2`

1`

^V4~z, v!&a2~v!dv 5 15s0
4x2, (C2)

^Vv
2& 5 E

2`

1`

dv1a2~v1! lim
v2→v1

]2^V1 • V2&/]v1]v2

5 3s0
4x2, (C3)

where x 5 ^V2&/3s0
2. The other correlations are more

complicated and are given by

Several other integrals appear in Eq. (36), all of which
can be evaluated analytically and were found to be

E
2`

1`

^V2&@~av!2 2 2aavv#dv 5 9s0
4x, (C7)

^~V–S!2&E
2`

1`

~av!2dv 5 2s0
4~Ax 1 1 2 1 !, (C8)

K ~V–S!E
2`

1`

~V–S!@~av!2 2 2aavv#dvL
5 s0

4S 7x 1 8

Ax 1 1
2 8 D . (C9)

The term ^(V–S)4& is determined by the correlation
function ^(V1 • S1)(V2 • S2)(V3 • S3)(V4 • S4)&. Al-
though the dynamic equation associated with this corre-
lation function can be obtained, it can be solved only nu-
merically because of its complexity. The moment
theorem shows that, if a random process is Gaussian, its
derivative should also be a Gaussian random process.23

The non-Gaussian sech probability distribution of the
second-order PMD vector5–8 implies that the PMD vector
is not necessarily a Gaussian random process in fre-
quency domain when higher-order effects are included, al-
though the probability distribution of the PMD vector of
each frequency is exactly a three-dimensional indepen-
dent Gaussian. For the same reason, the term
^(V • S)(V 3 Vv) • S& can be nonzero. However, nu-
merical simulations show that the moment theorem holds
fairly well for the spectrum-averaged correlations. For

^~V–S!~V3Vv! • S& 5 E
2`

1`E
2`

1`

dv1dv2a2~v1!a2~v2!^~V1

^V2~V–S!~V–S!& 5 E
2`

1`E
2`

1`

dv1dv2a2~v1!a2~v2!^V1
2~

^V2~V–S!2& 5 E
2`

1`E
2`

1`E
2`

1`

dv1dv2dv3a2~v1!a2~v2!a2~v3

5 s0
4H 2948

75
2

128p

9A3
1 10x 1 S 4x 2

116

3 DAx
example, ^(V – S)4& ' 3^(V – S)2&2 5 12s0
4(Ax 1 1

2 1)2. We used this approximation in Eq. (41).
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