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Nonlinear Theory of Polarization-Mode Dispersion for Fiber Solitons
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We consider the evolution of optical solitons inside a nonlinear dispersive fiber with random
birefringence, causing polarization-mode dispersion. We convert the pair of coupled nonlinear
Schrödinger equations satisfied by the orthogonally polarized components into a Fokker-Planck
equation using the collective-variable approach. We solve this equation and derive expressions for the
probability density functions associated with the differential group delay and the pulse width in the
limit of large propagation distances.
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It is well known that pulses of light can propagate
inside an optical fiber in a way that preserves their shape
when the dispersive and nonlinear effects are properly
balanced [1]. Such optical solitons are being pursued for
transmitting digital information [2]. If the fiber is ran-
domly birefringent (due to variations in its core diameter
or mechanical stresses along it), the two polarization
components of the optical signal propagate at different
speeds because of their different refractive indices. This
phenomenon of polarization mode dispersion (PMD)
causes differential group delay (DGD), whose stochastic
nature impacts the performance of fiber-optic communi-
cation systems severely, especially at high bit rates [3–5].
The existing theory of PMD considers each frequency
component of an optical pulse separately.

The effects of PMD on solitons have been observed
experimentally [6] and studied theoretically [7–13]. It is
found that solitons are more robust to PMD than linear
pulses because the nonlinearities of the fiber that help
preserve the shape of the soliton also inhibit large devia-
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tions in the DGD induced by PMD [11]. In this Letter, we
study this phenomenon analytically using a fully non-
linear theory. More specifically, we derive a linear partial
differential equation that describes the evolution of the
probability distribution of the DGD at the fiber output.
Our approach is based on a Fokker-Plank equation origi-
nally developed by Chandrashekhar [14] to describe
globular clusters of stars. The adaptation of this theory
allows us to obtain a Fokker-Plank equation that
includes the effects of both the PMD and the fiber non-
linearity. The probability distribution we predict is
markedly different from the linear theory and can be
used to calculate the moments associated with the pulse
width.

Let us begin our quantitative study with the basic
equations governing the propagation of an optical pulse
in a fiber with random birefringence. As is well known
[1], Maxwell’s equations in this case reduce to a set of two
coupled nonlinear Schrödinger (NLS) equations. In the
Jones-matrix formalism, these equations can be written
in the following compact form [7–9]:
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where � � ��1; �2; �3� is related to Pauli spin matrices.
In our notation, the two polarization components of the
optical pulse form a spinor  ��; t�. In the solitons units
used commonly [1], z � �LD is the distance along the
fiber axis and t0 � tT0 is the reduced time [1]. Here, LD is
the dispersion length and T0 is a measure of the pulse
width. The vectors b0 and b1 govern the PMD effects
resulting from random birefringence changes along the
fiber length and thus depend on � but not on t. Bire-
fringence fluctuations can be modeled by a Markoffian
random process with Gaussian white noise.

The state of polarization at a given location and instant
is governed by the Stokes vector s�t; �� �  y� �t; ��; if
integrated over all time, it gives the Stokes vector at any
location: S �

R
sdt. The quantity s0 �  y is the local
intensity of the field. The PMD effects appear in Eq. (1)
through the vectors b0 and b1 defined in the Stokes space.

Our theory is based on the observation that, in the
absence of the PMD effects, Eq. (1) has an exact soliton
solution given by [8]

 � Asech�t� exp�i�=2�; (2)

where A � �cos�; sin�� and � is an arbitrary angle repre-
senting the partition of soliton amplitude between its two
polarization components. The PMD effects perturb  . To
study how the PMD perturbs  , it is convenient to view
the optical field as a Hamiltonian dynamical system, with
the distance � along the fiber playing the role of an
evolution (‘‘time’’) variable [15]. This variable should
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be distinguished from the physical time variable t. The set
of all possible initial pulse shapes, M � f : R! g2g, is
the phase space of the dynamical system. It is easy to
verify that the Hamiltonian
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provides the equation of motion for the soliton [Eq. (1)
without the PMD effects] with the Poisson bracket

f �
i �t�;  j�t

0�g � �ij��t� t0�;

f i�t�;  j�t0�g � f �
i �t�;  

�
j �t

0�g � 0;
(4)

where i; j � 1 or 2. With the same Poisson brackets, the
Hamiltonian

H1� � � H� � � b0 � S� b1 � S1;

S1 �
Z
 y�
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yields Eq. (1). The important question is how the soliton
of Eq. (2), whose dynamics is governed by H, is affected
by the two PMD-induced perturbations S and S1 appear-
ing in H1.

To answer this question, we note that every observable
of a Hamiltonian system generates some canonical trans-
formation. It is not surprising that the Stokes vector
generates a rotation of the polarization on the Poincaré
sphere as

fu � S;  �t�g � � � u �t�; (6)

where u is an arbitrary vector in the Stokes space. Only
rotations around the third axis are symmetries ofH. Thus
the term b0 in the Hamiltonian will cause rapid (random)
rotations of the polarization of the soliton as it propagates
along the fiber. This could be viewed as a random walk on
the Poincaré sphere. To understand the effect of the S1

term, we consider the canonical transformation
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fu � S1;  �t�g � � � u
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Clearly, S1 induces a differential delay between the two
polarization states: u � S1 advances the polarization com-
ponent with eigenvalue of � � u equal to �1 while delay-
ing the one that has eigenvalue �1. This differential delay
is known as the DGD.

We are interested in the probability distribution of the
PMD vector because of fluctuations in the variables b0
and b1. Thus, we can restrict our attention to a six-
dimensional submanifold of the phase space correspond-
ing to the distortion of the soliton induced by the rotation
of the polarization by b0 and the DGD induced by b1. The
PMD-perturbed state of the soliton is governed by
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Here, � is the PMD vector and  0 � Asech�t� is the initial
pulse launched at � � 0. The matrix exp�i2� � �� is an
element of SU(2) describing the rotation of the soliton
polarization on the Poincaré sphere. The set of these
rotated-delayed solitons configurations forms a six-
dimensional manifold N � SU�2�  R3 with coordinates
��; ��. It is important to stress that the form of the PMD-
perturbed soliton in Eq. (8) is not chosen in an ad hoc
fashion but follows from a systematic use of classical
perturbation theory.

In a deterministic theory of solitons, it is common to
study the soliton dynamics in a reduced-dimensional
space using the collective-variable method [16–18], a
method similar in spirit to the variational method used
in the literature on optical solitons. We apply the same
approach for the stochastic theory developed in this
Letter. By substituting Eq. (8) in Eq. (3) and performing
the integration, the effective Hamiltonian restricted to
the six-dimensional submanifold takes the form
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Here, 	̂	 is the initial polarization state, i.e., 	̂	 �
Ay�A, n̂n is the unit vector obtained by rotating
this initial polarization, n̂n � Ay exp�� i

2� � ��� 
exp�i2� � ��A, and �̂� is the unit vector in the direction
of �.

This effective Hamiltonian describes the cost in ‘‘en-
ergy’’ for rotating or differentially delaying the soliton. It
has a minimum at � � � � 0 and grows to a finite
constant as �! 1. Physically speaking, the nonlinear
effects provide a ‘‘restoring force’’ that resists the PMD-
induced rotations and delays. But when the delay becomes
large, this restoring force goes to zero. We are interested
in the asymptotic (�� 1) probability distribution of the
magnitude of the group delay �, after averaging over the
angles �; �̂� .
Before we calculate this asymptotic probability distri-
bution, it is important to note from the fluctuation-
dissipation theorem that there will also be some
dissipation due to the effects not included in the effective
Hamiltonian—manifested mainly as the transfer of
energy from the soliton to the continuum radiation, also
known as the dispersive waves. To include dissipation, we
note that in the absence of nonlinearities we would
expect the soliton to execute a random walk in the six-
dimensional subspace. As usual, this random walk is
governed by the diffusion equation [14]
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whereD andD0 are the diffusion constants and p��;�; ��
is the joint probability density in the six-dimensional
subspace p��;�� in which random walk occurs. This
equation should be solved with the initial condition
p��;�; 0� � �3����3���.

We are interested only in the probability distribution of
the DGD, equal to the magnitude of the PMD vector �. If
we write � in the spherical polar coordinates and average
p��;�; �� over the five angles, we obtain the following
simple diffusion equation for the probability distribution
of DGD:
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The solution of this equation leads to the Maxwellian
distribution, well known in the linear theory of PMD and
given by [3]

p��; �� � N�2 exp
�
�

�2

4D�

�
: (12)

The diffusion constant can be related to the PMD pa-
rameter Dp of the fiber as D � 3D2

p=�2j�2j�, where the
dispersion parameter �2 of the fiber appears because of
the use of the soliton units. The normalization constant N
ensures that

R
p���d� � 1.

The nonlinearities modify the Maxwellian distribution
in such a way that the less energetic configurations of the
soliton become more probable. In statistical mechanics,
we understand this as the result of the fluctuations and
dissipations being in balance on the average. Physically
speaking, the nonlinear effects will cause a drift in the
direction of the negative gradient of the ‘‘energy.’’ The
term in the Fokker-Plank equation describing this com-
bination of drift and dissipation is determined by two
factors [14]: first, it involves only a first-order derivative
of W; second, the static solution of the Fokker-Plank
equation leads to the Boltzmann distribution e�Hav=Eb ,
where Eb is a constant analogous to temperature. It mea-
sures the ratio of the levels of fluctuations to dissipation.
The final Fokker-Plank equation that we obtain is given
by
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where the parameter  is a measure of the nonlinearity-
induced drift. The average value Hav of the effective
Hamiltonian Heff is obtained by averaging Eq. (9) over
all angles and is found to be

Hav��� �
64�sinh�� � cosh��

27 sinh3�
�

16

9
: (14)

One can think of Hav��� as the potential well created
by the nonlinear effects that opposes the PMD-induced
diffusion.

Ueda and Kath also derived a Fokker-Plank equation
in the nonlinear regime in a previous study on the effects
of random birefringence [19]. Our Fokker-Plank equation
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(13) is different from theirs. For example, their equation
has a constant static solution. General principles of sta-
tistical physics [14] dictate that the static solution of the
Fokker-Plank equation (which is the case of thermody-
namic equilibrium) should be the Boltzmann distribution.
A reason for this discrepancy turns out to be that the
stochastic differential equation used in Ref. [19] includes
only fluctuations (no dissipation). It is physically wrong
to model a physical system with fluctuations without
including dissipation—it violates the fluctuation-
dissipation theorem. Without dissipation, the energy of a
Hamiltonian system, subject to random fluctuating
forces, would increase on the average, so that eventually
the system will reach a state of infinite temperature. All
states would then be equally probable (constant probabil-
ity density) instead of the states of lower energy being
more probable as the Boltzmann distribution (and physi-
cal intuition) requires. In the case of Brownian motion,
this dissipation is due to viscosity; in our case it is due to
the transfer of energy to continuum radiation.

The Fokker-Plank equation (13) constitutes our main
result. Although it can be solved numerically to study the
impact of nonlinear effects on PMD at any distance �,
one is often interested only in the asymptotic behavior of
the solution as �! 1. There is a static solution of the
form p��� � �2 exp��Hav=Eb�, where Eb � D= . This is
the analog of the Boltzmann distribution that appears in
many physical problems [14]. In our case, Eb plays the
role of the ‘‘equilibrium’’ energy [20].

Usually the probability distribution would tend to this
static solution, as �! 1. But this requires that p��� ! 0
as j�j ! 1 so that

R
p���d� can be normalized to 1. This

is not possible in our case because the ‘‘potential well’’
has a finite range: Hav��� ! 0 for large �. Thus the solu-
tion must reduce to that of the linear equation for large �.
Studying the limit of large � of the solution of the
Fokker-Plank equation results in the following probabil-
ity distribution for the DGD:

p��; �� � N�2 exp
�
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Eb

�
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�
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where N again ensures that
R
1
0 p���d� � 1. This is the

main result of the nonlinear PMD theory developed in
this Letter.

From a practical point of view, the effects of PMD
manifest through broadening of each optical pulse by a
random amount. The root-mean-square (rms) width Tp of
any pulse can be quantified using

T2
p �

R
t2 y�t� �t�dtR
 y�t� �t�dt
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This relation can be used to find the probability distribu-
tion of Tp as well as the various moments of Tp such as the
average value of the pulse broadening factor.

We apply our general results to a specific 40-Gbit=s
system designed to transmit 5-ps solitons (T0 � 2:84 ps)
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FIG. 1. Probability density p��� as a function of DGD � for
several values of the reduction factor r after the pulse has
propagated 3000 km in a fiber with Dp � 0:15 ps km�1=2. The
linear case corresponds to r � 1.
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over 3000 km of optical fiber with the PMD parameter
Dp � 0:15 ps km�1=2. The average DGD in the linear
case is calculated from Eq. (12) to be h�iL � 7:56 ps. In
the nonlinear case, we expect this value to be reduced.We
introduce the reduction factor as r � h�iNL=h�iL and use
it to estimate the parameter Eb in Eq. (15). Figure 1 shows
how the probability density p��� changes as a function of
�, as r is reduced from 1 to 0.7. Figure 2 shows how the
pulse-width distribution p�Tp� changes as a function of
Tp under the same conditions. As expected, both distri-
butions are narrower for solitons. This feature indicates
that solitons resist the PMD effects and experience much
smaller PRD-induced broadening.
FIG. 2. Probablity density p�Tp� as a function of the rms
pulse width Tp for several values of the reduction factor r. The
linear case corresponds to r � 1. All parameter values are the
same as in Fig. 1.

013902-4
In conclusion, we have developed a nonlinear theory of
PMD for solitons propagating inside optical fibers. The
theory converts the pair of coupled NLS satisfied by the
orthogonally polarized components into a Fokker-Planck
equation using the collective-variable approach. We solve
this equation in the asymptotic limit (long fiber lengths)
and derive expressions for the probability density func-
tions associated with the DGD and the pulse width in the
limit of large propagation distances. The predictions of
our theory agree with the experimental data.
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