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Raman-Induced Timing Jitter in Dispersion-Managed
Optical Communication Systems
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Abstract—The moment method is used to calculate the Raman-
induced timing jitter generated by amplifier-induced fluctuations
in the energy, frequency, and position of optical pulses propagating
inside dispersion-managed fiber links. Using a Gaussian form for
chirped optical pulses in combination with the variational analysis,
we obtain an analytic expression for the timing jitter whose predic-
tions agree well with the numerical results obtained by solving the
nonlinear Schrödinger equation directly. The effects of third-order
dispersion are also included in the analysis. We also apply the mo-
ment method to standard solitons propagating inside dispersion-
decreasing fiber as well as to chirped return-to-zero (CRZ) light-
wave systems. We apply our results to a specific 160-Gb/s system
and find that the Raman jitter resulting from intrapulse Raman
scattering limits the transmission distance in all three cases.

Index Terms—Dispersion management, optical fiber communi-
cation, optical solitons, Raman scattering, timing jitter.

I. INTRODUCTION

M ODERN dispersion-managed lightwave systems are
limited mainly by the nonlinear effects occurring inside

optical fibers and by the amplified spontaneous emission (ASE)
added at the amplifiers [1]–[3]. Optical solitons can solve the
first problem to some extent since they use the self-phase mod-
ulation (SPM), a dominant nonlinear mechanism, to balance
the residual dispersion [4]. However, the ASE noise remains
a serious limitation of soliton systems; it manifests through
a reduced signal-to-noise ratio and an increased timing jitter
at the optical receiver [2]. At bit rates of up to 10 Gb/s or so,
timing jitter results mostly from the Gordon–Haus (GH) effect
that has its origin in ASE-induced frequency fluctuations [5].
However, at higher bit rates for which the pulsewidth becomes
shorter than 5 ps, the Raman-induced timing jitter is likely to
become the most limiting factor. The origin of Raman jitter lies
in intrapulse Raman scattering [4], a phenomenon responsible
for the soliton self-frequency shift (SSFS) and occurring for
short optical pulses whose spectrum is wide enough that its
high-frequency components can amplify the low-frequency
components of the same pulse through the Raman effect [6].
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The Raman jitter occurs for both soliton and nonsoliton sys-
tems and results from the following sequence of events. Fluctu-
ations in the pulse energy induced by the ASE noise at the loca-
tion of lumped optical amplifiers are converted into frequency
fluctuations through intrapulse Raman scattering, which are in
turn translated into timing jitter by the group-velocity disper-
sion (GVD). The Raman jitter has been studied in the context of
constant-dispersion fibers [7] as well as dispersion-decreasing
fibers (DDFs)[8]. However, most lightwave systems make use
of dispersion management. In this paper, we consider the impact
of Raman-induced timing jitter on dispersion-managed (DM)
systems and show that such systems are inherently limited by
it at bit rates of 80 Gb/s or more. Our approach is based on
an extension of the moment method that has been applied re-
cently to calculating the GH jitter in dispersion-managed sys-
tems [9]–[12]. This approach allows us to obtain the analytic
expressions for the timing jitter even when the contributions of
both the intrapulse Raman scattering and third-order dispersion
(TOD) are included.

The paper is organized as follows. We present in Section II the
relevant details of the moment method and show in Section III
how this method provides a simple expression for the Raman-in-
duced frequency shift in DM systems. In Section IV, we obtain
an analytic expression for the timing jitter by focusing on the
case of DM solitons. The same technique is used in Section V
for standard solitons propagating inside DDFs. Section VI is de-
voted to quasilinear CRZ systems. In Section VII, we compare
our analytical results with the numerical simulations and apply
them for calculating the timing jitter for a specific lightwave
system designed to operate at a bit rate of 160 Gb/s. The main
conclusions are summarized in Section VIII.

II. M OMENT METHOD

A typical DM system consists of a periodic sequence of
anomalous- and normal-dispersion fibers. An optical amplifier
is inserted for compensating fiber losses after one or several
map periods. Each amplifier restores pulse energy to its original
input value, but at the same time, adds the spontaneous-emis-
sion noise. This noise perturbs each optical pulse such that its
amplitude, width, position, frequency, and phase all vary in a
random fashion along the fiber link. Frequency fluctuations
affect the pulse position because of dispersion and lead to the
GH jitter [5]. Although amplitude fluctuations are believed not
to contribute to the timing jitter, we show in this paper that they
introduce considerable jitter when intrapulse Raman scattering
becomes important.
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Propagation of short optical pulses inside optical fibers is
governed by the following nonlinear Schrödinger (NLS) equa-
tion generalized to include the Raman contribution [4]

(1)

where is the slowly varying amplitude of the pulse enve-
lope, accounts for fiber losses, is the GVD coefficient,
is the TOD parameter, is the nonlinear parameter responsible
for SPM, and the Raman parameter accounts for the SSFS
effect. Equation (1) cannot be solved analytically because the
parameters , , , and are not constants, but vary along
the fiber link in a periodic fashion. Approximate solutions can
be obtained using a variational technique and are found to be
reasonably accurate through numerical simulations [13]–[15].

In the variational technique, each chirped Gaussian pulse
launched initially is assumed to maintain its shape approxi-
mately, and the optical field is written as

(2)
where the amplitude , phase , frequency , time delay ,
chirp , and width all are functions of . The use of variational
method shows that the pulsewidthand chirp evolve with
and satisfy the following set of two equations [13]–[15]

(3)

(4)

The amplitude can be related to the pulse energy through
. The phase equation is not given

here because the dependence of phase plays no role in our
analysis.

In the absence of the ASE and the Raman effect, the shift
in the pulse position and the frequency shiftboth are zero in
(2). The moment method introduces the following two moments
for calculating them [9]

(5)

(6)

where the subscriptdenotes a time derivative. We use (1)–(6)
to find that , , and evolve along the fiber link as

(7)

(8)

(9)

where the last term has been added phenomenological to ac-
count for the effects of lumped amplifiers. More specifically,
is the gain and , , and are random fluctuations in the
pulse energy, frequency, and position, respectively, introduced
by the th amplifier located at a distance. The amplifier gain is
chosen such that it compensates for all fiber losses accumulated
up to that point. As a result, pulse energy decreases exponen-
tially as and recovers its input value at
the next amplifier.

The Raman-induced frequency shift appears in (8) through
the first term while the second term includes frequency fluctu-
ations induced by ASE. Equation (9) shows that the pulse posi-
tion changes in a deterministic fashion both by SSFS and TOD.
Deterministic changes in soliton frequency and position are not
of concern as they do not produce any timing jitter. However,
if the pulse energy fluctuates because of ASE noise, the SSFS
develops a random part which leads to jitter. This is the physical
origin of the Raman jitter. More specifically, ASE-induced am-
plitude fluctuations are converted into timing jitter by the phe-
nomenon of intrapulse Raman scattering.

The timing jitter induced by both Raman and GH effects can
be calculated using , where the angle brackets
indicate average over the ASE noise. For this purpose, we need
the second moments of , , and at every amplifier.
These moments can be calculated using

(10)

where is the change in the optical field from its average
value (i.e, ) at the th amplifier,

is the ASE spectral density of for an amplifier with gain
[3], is the spontaneous-emission factor related to the noise
figure as , and is the photon energy. The two
delta functions account for the fact that the each spontaneous-
emission event is independent of all others.

Using (2)–(6) with (10), we obtain the following expressions
for the variances and cross correlations of the three fluctuations

, , and

(11)

(12)

(13)

where , , and are the energy, width, and chirp of the pulse
at the output of theth amplifier. For a soliton-based system,
the pulse recovers its input parameters at each amplifier if we
assume that the map period is an integer multiple of the
amplifier spacing . This feature simplifies the timing-jitter
calculation considerably for solitons.

III. RAMAN -INDUCED FREQUENCYSHIFT

Along the fiber link , , and evolve as dictated by (7)–(9)
in a periodic fashion. It is useful to consider the first fiber section
of length and integrate these equations to find, , and

just before the first amplifier. Since the noise terms in these
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equations can be set to zero, their solution is relatively simple
and is given by

(14)

(15)

(16)

where represents the power-reduc-
tion factor at a distance. All new parameters involve integra-
tion over the amplifier spacing and are defined as

(17)

(18)

(19)

(20)

Note that several parameters involve local values of the pulse
width and chirp within the map period. These can be obtained
by solving the variational (3) and (4).

The Raman-induced frequency shift is governed by (15) and
depends on the pulse energy and the parametergiven in (18).
In the case of constant-dispersion fibers and ideal distributed
amplification , the pulsewidth remains constant, and the
integral in this equation can be carried out analytically. Using

, the frequency shift at a distanceis given by

(21)

where we used together with
for fundamental solitons. This equation shows that

the Raman-induced frequency shift scales with the pulsewidth
as , a result first derived in 1986 for standard solitons [6].
The factor of 1/2 appears in place of 8/15 because the pulse
shape has been assumed to be Gaussian in deriving (21).

In the case of DM solitons, the situation is quite different.
First, the pulsewidth is not constant but varies in a periodic
fashion along the fiber link. It takes its minimum value in the
middle of each fiber section forming the dispersion map. As a
result, the maximum contribution to the integral in (18) comes
from this region. It is sometimes concluded that SSFS is smaller
for DM solitons if we assume that in (21) corresponds to
the minimum width of a DM soliton [16]. However, one should
note that the pulse energy is enhanced considerably for
DM solitons. Moreover, the contribution where the pulsewidth
is minimum is reduced because of losses. For these reasons, the
Raman-induced frequency shift of DM solitons can exceed that
of standard solitons.

IV. TIMING JITTER FORDM SOLITONS

We now consider the entire fiber link and include the effects
of amplifier noise as well. Denoting by the subscriptthe value
of , , and at the end of theth amplifier and adding the
fluctuations produced by that amplifier, we obtain the following
simple recurrence relations from (14)–(16)

(22)

(23)

(24)

where, for simplicity, we have neglected the contribution of
higher order terms in (24) containing , , and . These
terms involve the product of two small parameters and can be ne-
glected in most case of practical interest. The dominant contri-
bution of the TOD effects is still included in the analysis through
the term.

The recurrence relations in (22)–(24) can be solved for a chain
of amplifiers; we refer to [11] for details. The important quan-
tity we need is the total temporal shift of the pulse at the end
of amplifiers. Of course, when calculating , we also need

and at intermediate amplifiers as seen from (24). The net
result is that involves, single, double, and triple sums over

. When these sums are carried out, the average temporal shift
at the end of th amplifier is given by

(25)

where is the input pulse energy.
To calculate the Timing jitter after amplifiers, we also

need the second moment . As seen from (24), its evalua-
tion requires the variances and cross correlations of, ,
and all of which can be obtained with the help of (11)–(13).
After considerable algebra, we obtain the following analytic ex-
pression for the timing jitter:

(26)

where is the GH contribution to timing jitter and is given
by

(27)

and the quantities , , and are defined as

(28)

(29)

(30)
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The and terms originate from the Raman-induced fre-
quency shift. For this reason, their contribution is referred to as
the Raman jitter in this paper. The dominates in practice for

because of its dependence. The term results
from the TOD effects and becomes quite important for pulses
much shorter than 1 ps. In the absence of the Raman and TOD
effects, we recover the expression for the GH jitter obtained in
our earlier paper [10].

V. TIMING JITTER FORSTANDARD SOLITONS

The preceding analysis of timing jitter is for DM solitons. The
use of standard unchirped solitons requires propagation inside
DDFs to ensure that the soliton shape and width is preserved in
spite of fiber losses [8]. In DDFs, the dispersion decreases at a
rate that matches the power loss. The GVD coefficient of such
fibers decreases exponentially as and
reaches a value at the end of each DDF section.

We can use the moment method for standard solitons pro-
vided we use a pulse shape of the form

(31)

Note that the chirp parameter does not appear for standard soli-
tons. Its absence simplifies the analysis considerably. One con-
sequence of the absence of the chirp is that all cross correlations
among , , and vanish at every amplifier. More specif-
ically, the variances and cross correlations at theth amplifier
are given by

(32)

(33)

(34)

The Raman-induced frequency shift is also affected by the
change in the soliton shape. In fact, (7)–(9) are replaced with

(35)

(36)

(37)

In each fiber section of length between two amplifiers, we
can set the noise terms to zero. The integration is then straight
forward. In fact, (14)–(16) remain unchanged but the coeffi-
cients are modified and are given by

(38)

(39)

(40)

where is the effective length defined as

(41)

As before, we neglect the coefficients , and .

The variance of timing jitter can now be calculated analyti-
cally following the same method as before and is given by

(42)

A comparison of (26) and (42) show that the only difference
is the absence of the term and different definitions of the
parameters , and . The GH contribution is also different
and is given by

(43)

As expected, the leading term in timing jitter is due to SSFS
and grows as whereas the GH term grows as . Both of
these contributions agrees with the earlier results of Essiambre
and Agrawal [8]. The same expression applies for constant-dis-
persion fibers with minor changes. In particular, in the coeffi-
cients and are replaced with because and
are constant along the fiber. The parameterremains the same
but coefficient changes to .

VI. TIMING JITTER FORCRZ SYSTEMS

In CRZ systems, input pulses are often prechirped but they
do not follow a periodic evolution pattern. In general, the chirp
and the pulsewidth cannot be calculated analytically because of
the nonlinear effects. However, in quasi-linear links in which
the GVD of each fiber section is so large that the pulse spreads
over several bit slots, the pulse evolution is nearly linear along
the DM link. The chirp and the pulsewidth of the pulses as a
function of distance can then be found analytically [1]. Since
the CRZ system is not periodic, and have different values
at different amplifiers. This feature complicates the calculation
somewhat, but the procedure is straightforward. At theth am-
plifier, the chirp and the pulsewidth are given by

(44)

(45)

where is the minimum pulsewidth related to the input width
of the chirped pulse through . When these
equations are used in (11)–(13) together with , a
problem is encountered for terms with in the denominator.
We solve this problem by assuming that the average dispersion
over each amplifier spacing is small enough that the pulsewidth
does not change much between two amplifiers. This is often the
case in practice. By expanding in a Taylor series in (11)
and (12), the moments and variances are approximately given
by

(46)

(47)

(48)
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The timing jitter can now be calculated from (22)–(24) fol-
lowing the procedure outlined earlier. The result is given by

(49)

where is the GH contribution to the timing jitter and is
given by

(50)

and the quantities , , and are defined as

(51)

(52)

(53)

Because of the dependence of chirp and pulsewidth on distance,
the contribution of grows as as well. When the Raman
effect and TOD are absent, we recover the expression for GH
jitter for CRZ systems obtained in our earlier paper [10].

VII. RESULTS AND DISCUSSION

The analytic expressions for the timing jitter obtained in this
paper are based on the variational and moment methods and as-
sume a specific pulse shape is maintained during propagation
of the pulse. Before using them, we compare their prediction
with the results obtained numerically by solving the NLS equa-
tion (1) while adding the noise at each amplifier. We use the
well-known split-step Fourier method for this purpose [4] and
launch a 32-bit pseudorandom bit sequence into the fiber link.
Timing jitter is calculated by performing the integral in (1) over
the bit slot of each 1 bit. To collect a large enough sample for the
timing-jitter values, the NLS equation was solved repeatedly.

We first consider a 10-Gb/s dispersion-managed system. The
dispersion map consists of 10.5 km of anomalous-GVD fiber
with ps/(km-nm) and 9.7 km of normal-GVD fiber with

ps/(km-nm). Each fiber section has 0.2-dB/km losses
and a nonlinear parameter W /km. The amplifiers
spacing is 80.8 km. The spectral noise density was calculated
using . The input-pulse parameters were found using
the periodicity conditions for solitons and have values

ps, , and pJ. The pulsewidth [full-
width at half-maximum (FWHM)] of about 20 ps needed for the
10-Gb/s system is large enough that the contribution of Raman
jitter is expected to be negligible. This is indeed found to be the
case. Fig. 1 shows the timing jitter obtained numerically (shown
by asterisks) and compares it with the results obtained using

Fig. 1. Timing jitter for a 10-Gb/s DM soliton system with 80.8-km amplifier
spacing. The solid line shows the analytical prediction of the moment theory
while the asterisks show the numerical values obtained by solving the NLS
equation. The dispersion map is such that� � �0:2 ps /km.

(27). The agreement is quite reasonable and justifies our use of
the variational and moment methods.

To include the Raman jitter, we next consider a dispersion-
managed system capable of operating at 160 Gb/s. The use of
dense dispersion-management is essential at such high bit rates
[17]. The dispersion map consists of 1.0 km of anomalous-GVD
fiber with ps/(kmnm) and 1.0 km of normal GVD
fiber with ps/(kmnm). All other parameters re-
main the same. We also need the values forand ; we
choose fs and ps /km. Optical amplifiers
are spaced 40 km apart for this system. The input-pulse param-
eters were again found using the periodicity condition and have
values ps, , and pJ. The FWHM
of the pulse is only about 2 ps because of the 6.25-ps bit slot
at 160 Gb/s. This feature makes the Raman effect important
enough that we expect it to dominate the jitter. We compare
the analytical results obtained using (26) to the results of nu-
merical simulation (stars) in Fig. 2. Notice the rapid growth of
the jitter because of the Raman contribution to the total timing
jitter. The numerical values are somewhat larger compared with
the predicted values. We attribute this discrepancy to the jitter
induced by the intrachannel effects that are not include in our
analysis but are automatically included in the numerical simu-
lations. This fact should be kept in mind.

We now use our analytic results to study the role of the Raman
and TOD effects. All of the following results are for a 160-Gb/s
DM system using the same map that was used for Fig. 2. Fig. 3
shows the the timing jitter for the DM-soliton case as a func-
tion of distance. The dashed line show the contribution of GH
jitter, while the solid line adds the contribution of the Raman
jitter. Solid dots are obtained when the effects of TOD are also
included. The most important conclusion one can draw from
Fig. 3 is that the Raman contribution begins to dominate after a
distance of 400 km (ten amplifier spacings) because of its
dependence on the number of amplifiers but the TOD contribu-
tion is negligible. Since the Raman contribution dominates the
jitter after 500 km, the system performance is likely to be lim-
ited by the Raman-induced frequency shift at high bit rates.
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Fig. 2. Same as in Fig. 1 except that bit rate is increased to 160 Gb/s and
amplifier spacing is reduced to 40 km. A dense dispersion map (map period 2
km) is used with� = �0:1 ps /km. The Raman contribution becomes quite
important at such high bit rates.

Fig. 3. Timing jitter for the 160-Gb/s DM solitons system with the map used
for Fig. 2. The dot-dashed line shows the GH contribution alone while the solid
line adds the Raman contribution. The filled circles include the TOD effects.

One may wonder whether the DDFs will help in reducing the
Raman jitter. We consider the 160-Gb/s soliton system again
but replace the dispersion map with a 45-km-long DDF with

ps/(kmnm). All other parameter remain the same
but the input pulse energy was set to 0.9 pJ so that it corresponds
to a standard fundamental soliton. Fig. 4 shows the dependence
of timing jitter on distance for such a system. The dashed line
shows the GH jitter obtained from (43), the solid line adds the
contribution of the Raman jitter from (42), and solid dots include
the effect of TOD as well. Notice that the timing jitter is much
larger for DDFs compared with the case of DM solitons. This
is due to a relatively large value of the average dispersion. If
we design the standard soliton system with the same average
dispersion using a DDFs whose decreases from 0.24 to 0.03
ps /km over 45 km (required pulse energy of 0.17 pJ), we obtain
the results shown in Fig. 5. Timing jitter is now smaller than that
for DM solitons shown in Fig. 3. This qualitative change is due
to different energy dependence for the Raman and GH jitters.
The Raman jitter has its origin in energy fluctuations whose

Fig. 4. Timing jitter for a 160-Gb/s soliton system based on DDFs with
amplifiers spaced 45-km apart. The dot-dashed line shows the Gordon–Haus
contribution alone while the solid line adds the Raman contribution. The filled
circles include the TOD effects. The average dispersion is�1.275 ps/km.

Fig. 5. Same as in Fig. 4 except that the avearge dispersion has been reduced
to�0.1 ps /km for comparison with the case of DM solitons.

magnitude is proportional to the pulse energy. In contrast, the
GH jitter is inversely proportional to the pulse energy. Thus,
as the pulse energy decreases, the GH jitter increases but the
Raman jitter decreases.

Finally, we consider timing jitter in CRZ systems using the
same dense dispersion map used for Fig. 2. The pulse energy
was reduced by a factor of ten compared with the case of DM
solitons to weaken the nonlinear effects. The average dispersion
was also lowered to ps /km by changing of the
normal GVD section of the map. The input chirp was chosen
to be equal to , where is the total distance of prop-
agation, so that the pulse is unchirped at the output end. Fig. 6
shows how timing jitter varies as a function of distance. The
dashed line shows the GH jitter expected in the absence of the
Raman contribution . This component of the timing
jitter first increases and then decreases because of precompen-
sation of the GVD . This behavior was predicted in our earlier
paper [10]. The solid line adds the Raman contribution while
the filled circles show the total jitter with the TOD effects in-
cluded. Again, the TOD effects are negligible. The Raman jitter



638 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 3, MAY/JUNE 2002

Fig. 6. Timing jitter for a quasilinear 160-Gb/s CRZ system for the same
dispersion map as in Fig. 3, but for pulses with 10 times reduced energy. The
average dispersion was reduced to�0.05 ps /km. The dot-dashed line shows
the Gordon–Haus contribution alone while the solid line adds the Raman
contribution. The effects of TOD remain negligible unless average dispersion
is close to zero.

dominates after 2000 km in this case, but can be reduced by
reducing the average dispersion of the system. The ideal case
corresponds to because only the linear term is then left
in the timing-jitter expression. The effects due to TOD will then
become dominant.

VIII. SUMMARY

In this paper, we have presented an analytic theory of Raman-
induced timing jitter for high-speed dispersion-managed light-
wave systems using the moment method. The input pulse is as-
sumed to maintain its original Gaussian shape, but its ampli-
tude, width, chirp, position, and frequency are allowed to evolve
along the fiber link. Our analysis can be used in the case of
dense dispersion management, realized using multiple map pe-
riods between two neighboring amplifiers. We have included the
effects of third-order dispersion as well in this paper. We have
checked the accuracy of our approximations by solving the NLS
equation using the split-step Fourier method.

We have applied the general formalism to three types of
lightwave systems corresponding to the use of DM solitons,
standard solitons with DDFs, and CRZ pulses in a quasi-
linear configuration. We were able to obtain simple analytic
expressions for the timing jitter in each case. We compared
the three configurations for a 160-Gb/s system and found
that Raman-jitter variance increases with the numberof
amplifiers as . The Raman jitter begins to dominate after a
few hundred kilometers in the case of DM solitons.
In the case of standard solitons propagating inside DDFs,
the Raman contribution is smaller because of the reduced
pulse energy but the total jitter is quite large. In the case of
quasi-linear CRZ systems, the Raman jitter dominates at large
distances (above 2000 km in Fig. 6), but can be reduced by
lowering the average value of the dispersion so that it is close
to zero. In all cases, jitter can exceed the acceptable value
(about 0.5 ps at 160 Gb/s) after 500 km or so, indicating that

such systems cannot be operated over long distances unless a
jitter-reduction scheme is implemented. The use of parametric
amplifiers is likely to be beneficial in this context [18].
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