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Timing Jitter in Dispersion-Managed Soliton Systems
With Distributed, Lumped, and Hybrid Amplification
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Abstract—We analyze the role of distributed amplification in
controlling timing jitter in dispersion-managed soliton systems
and discuss, using analytical and numerical techniques, how
timing jitter is reduced by up to a factor of two when lumped
amplification is replaced by complete or partial distributed am-
plification. We derive an analytical expression for the timing jitter
at any position within the fiber link in the case of ideal distributed
amplification for which losses are exactly compensated by gain at
every point. We show that the timing jitter is well approximated by
this formula in the case of erbium-based amplification. We derive
a similar expression for the timing jitter for lumped amplifiers and
compare it with the case of distributed amplification. We find that
with erbium-based distributed amplification, timing jitter depends
on the density of dopants and is smaller for lower densities. In the
case of hybrid Raman amplification, the transmission distance of
a 40-Gb/s system can be increased by up to 30% depending on
the amount of Raman gain. Finally, we show that timing jitter
decreases for stronger maps at a given bit rate (constant minimum
pulsewidth).

Index Terms—Dispersion management, jitter, nonlinear optics,
optical fiber communication, optical solitons.

I. INTRODUCTION

GORDON–HAUS timing jitter, arising from the presence
of amplified spontaneous emission (ASE) in modern fiber

links, is one of the major limiting factors for long-haul optical
communication systems, especially at high bit rates exceeding
10 Gb/s [1]–[9]. A general approach for calculating timing jitter
in dispersion-managed (DM) systems was developed by Grigo-
ryanet al. in 1999 [3]. In the past, attention was mostly paid to
estimating timing jitter in lightwave systems with lumped am-
plifiers placed periodically along the DM link [4]–[6]. Although
the effect of distributed amplification on timing jitter has been
studied for uniform-dispersion fibers [7], [8], the combination
of distributed amplification and dispersion management has not
yet been investigated.

We use the approach developed in [3] to compare the ASE-in-
duced timing jitter in DM systems for the cases of lumped, dis-
tributed, and hybrid Raman amplification. In Section II, we ex-
tend the theory of [3] to the case of distributed amplification.
In Section III, we derive an analytic expression for the timing
jitter at any position within the fiber link in the case of ideal dis-
tributed amplification for which losses are compensated by gain
perfectly at every point. We also derive an analytical expression
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for the timing jitter induced by lumped amplifiers and compare
the two cases. In Section IV, we investigate timing jitter in DM
systems for the case of erbium-based distributed amplification,
realized when the transmission fiber itself is lightly doped with
erbium ions. We show that timing jitter can be reduced by about
40% with proper system design and is quite close to the ideal
case. In Section V, we consider timing jitter in DM soliton sys-
tems making use of Raman amplification. We show that consid-
erable jitter reduction occurs when bidirectional, backward, or
even partial Raman amplification is employed. We also investi-
gate timing jitter dependence on other system parameters such
as the bit rate and the map strength.

II. GENERAL FORMALISM

We give in this section a short description of the moment
method for calculating timing jitter [3]. Optical pulse propa-
gation in any lightwave system is governed by the nonlinear
Schrödinger (NLS) equation [9]

(1)

where and are, respectively, local power gain and
loss inside the fiber, is the nonlinear coefficient, is the
second-order dispersion parameter, and represents the
contribution of noise (distributed or lumped) along the fiber
length. The ASE noise contribution vanishes on average, i.e.,

, but has a correlation function of the form [9],
[10]

(2)

where is the spontaneous emission factor, is the
photon energy at the central frequency, and represents
Dirac’s delta function. Both and are nonzero only
within the amplifier in the case of lumped amplification, but
vary with continuously in the case of distributed amplifica-
tion.

In the moment method [11], the central positionand the
central frequency of an optical pulse are defined as

(3a)

(3b)

where stands for the time derivative ofand

(4)
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is the energy of the pulse. We introduce a new variablein
(1)–(4) using the definition , where represents the
cumulative net gain from 0 to and is given by

(5)

In order to calculate the timing jitter, it is necessary to know
how and evolve with . Following [3], (3) for and
are differentiated with respect toand (1) is used to eliminate

. One can integrate the resulting differential equations
and introduce the random time shift , which
is found to vary with as

(6)

where and represent the contributions to from fre-
quency and position fluctuations, occurring due to ASE noise
along the fiber link. Their explicit expressions are

(7)

(8)

where is defined as

(9)

In (7)–(9), is defined as . As discussed in [3],
and in (8) and (9) correspond to the deterministic solution of
(1), obtained after setting . Linearized equations (6)–(9)
are used to calculate the timing jitterdefined as
and given by

(10)

Following [3], expressions for , , and terms,
valid for arbitrary pulse shape, are obtained. We apply those
expressions to a chirped Gaussian pulse of the form

(11)

where is chirp, is the pulsewidth at point, is the peak
amplitude of the pulse, and is the phase. We then obtain the
following expressions:

(12a)

(12b)

(12c)

where is the input energy of the pulse. Equations
(10) and (12) provide semi-analytical expressions for the timing
jitter. They can be used for any amplification scheme, whether
lumped, distributed, or hybrid. The only assumption made is
that we use a chirped Gaussian shape for pulses propagating in-
side a DM system. Analyses based on the variational and Her-
mite–Gauss-expansion methods have shown [12], [13] that nu-
merically calculated pulse shapes are close to Gaussian (except
in the pulse wings). In the next section, we justify this approx-
imation by comparing timing jitter calculated using the actual
pulse shape (taken from a NLS-based propagation code) and the
pulse shape given by (11).

III. A NALYTICAL TREATMENT

In this section, we use (12) to calculate variances and cross
correlation of and for a DM soliton communication system
and calculate timing jitter for lumped and distributed amplifica-
tion scheme. We focus on the case of ideal distributed amplifica-
tion first. We consider a DM system in which each map period

consists of two fiber sections with dispersion parameters
and , respectively, and the local gain at every

point, so that in (12). We assume for simplicity that
both fiber sections have the same value of losses. The results
can be generalized later to the case of an arbitrary loss profile.
The variables , , and are now constants in (12).
Using the variational equation for the pulsewidth [9] in (12b),
we can express the variance ofin terms of cross correlation
of and as

(13)

where

(14)

is a dimensionless parameter.
To calculate the variance of and cross correlation of and

, we need to calculate in (12) the integrals like

(15)

Performing the first integral numerically, we find thatgrows
with almost linearly (with an accuracy of about 0.01%) as

, where and are the input values
of chirp and pulsewidth, respectively. This result has a phys-
ical basis since the ratio represents the spec-
tral width of a chirped pulse. The spectral width remains con-
stant for a linear system and does not change much if the non-
linear length of the system is much larger than the local dis-
persion length. Even numerical solutions of the nonlinear vari-
ational equations show that the ratio oscil-
lates around its input value within each map period with a neg-
ligible amplitude. To estimate the second integral in (14), we



764 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 5, MAY 2002

approximate by a linear function of in each fiber sec-
tion and make use of the fact that, for ideal loss compensation
( ), the chirp-free point is located in the middle of each
fiber section [12].

Using (13) in (12a), we perform the remaining two inte-
grations for calculating using a geometrical approach.
In short, noting that is a piecewise continuous
function, we carry out the integration over. We then repeat
the same process for integrating overand complete the inte-
gration in (12b) and (12c). Using the notation ,
where is the number of complete map periods up to the
distance and is a fractional distance in the next map period

, the final result for timing jitter is given as

(16)

where is the dispersion accumulated over a distance:

(17)

so that , being the
average dispersion of the map. Further, ,
and the functions and are defined as

if

if
(18)

if

if
(19)

where , in (16).
Before discussing this analytic result, we derive a similar for-

mula for the lumped amplification case, for which both
and are nonzero only within each amplifier whose length
is quite short ( 10 m). Using for the amplifier
gain, where is the amplifier spacing, the integrals in (12) can
be performed analytically as

(20a)

(20b)

(20c)

where is a staircase function representing the number of
amplifiers up to the coordinate, and

(21)

Using (20), we complete the integrations in (12), employing the
same geometrical approach described earlier. The final result for
the variance of timing jitter at a distance in system
with an arbitrary dispersion map within each amplification pe-
riod is given as

(22)

where is the number of amplifiers up to the distanceand
is the fractional distance in the next amplification period

. We keep different notations for amplification period
and map period since (22) applies to the case of dense

DM in which each amplification period contains several map
periods.

From (16) and (22), we note that the largest contribution to
timing jitter comes from the first term resulting from frequency
fluctuations and increasing with distance as. If we use (9), the
variance of frequency fluctuations , accumulated within
one map period (or amplification period in the case of lumped
amplifiers) is given by

(23)

where the subscripts and stand for distributed and lumped
amplification, respectively. In (16) and (22), the term in the first
square brackets represents the variance . For constant-dis-
persion fibers and for lumped amplification,

term with converts to the standard Gordon–Haus
formula [1], [2] . We have
also verified that, for constant dispersion, reduces to the
equivalent expression in [1], [2] when a hyperbolic secant pulse
shape is used instead of a Gaussian shape in (11).

We now focus on the effect of distributed amplification on
timing jitter. Consider first the timing jitter at the end of a map
period by setting . Several differences are apparent from
(16) and (22). In the case of lumped amplification, the term
depends only on the average dispersion irrespective of the actual
map configuration, while this is not the case for ideal distributed
amplification. The term grows as for lumped ampli-
fication, but only linearly with in (16), indicating that cross
correlation is less important in the case of distributed amplifica-
tion. For lumped amplification, the variance , representing
direct temporal shift of a soliton by ASE, does not depend on
dispersion, but this is not so for distributed amplification, as seen
from (13). This is the consequence of the fact that such position
fluctuations happen only when noise is added. For lumped am-
plification, noise is not added outside amplifiers, while noise is
added all along the fiber length in the case of distributed ampli-
fication.
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Consider now the timing jitter inside a map period so that
. As seen from (16) and (22), the-dependent terms pro-

vide additional contribution to timing jitter within each map pe-
riod, which depends on the accumulated dispersion over
the fractional distance within each map period (or the am-
plification period ). Since is periodic, we expect timing
jitter to exhibit oscillatory behavior. As seen from (16) and (22),
the amplitude of such oscillations grows aswith distance,
while the first term in (16) and in (22) grows as. This means
that jitter never oscillates down to zero asincreases and the
relative contribution of the oscillating terms to the total timing
jitter decreases as . For long distances such that ,
taking the limit and in -dependent terms in
(16) and (22), we note that this additional contribution is posi-
tive or negative depending on the sign of the product . For
example, for the system with an even number of fiber sections
within the map period, this contribution is negative if the sign
of is opposite to the sign of average dispersion.

An important question is how much timing jitter can be re-
duced by using distributed amplification. To answer this ques-
tion, we consider a long-haul light-wave system such that the
number of map periods (or amplifiers in the case of lumped
amplification) is very large. Taking the limit and
in (16) and (22), the timing jitter is reduced for distributed am-
plification by the factor

(24)

In most cases of practical interest,
when the system is designed to have the same value

of the minimum pulsewidth. The energy ratio under
such conditions, increasing. However, this increase, being of
the order of , does not overcome the reduction
in timing jitter due to the ratio . The net result is
that timing jitter can be reduced by using distributed amplifica-
tion.

Fig. 1 shows timing jitter for lumped and distributed ampli-
fication schemes calculated at the end of each amplifier (each
map period in the distributed case) using (16) and (22) based
on the Gaussian shape ansatz (solid curves). To estimate the
error introduced by this ansatz, circles show the results when
the exact pulse shape obtained by solving the NLS equation
is used in (10). In the lumped case, we consider a dense DM
system with an amplifier spacing of 80 km and assume eight
map periods within one amplifier period. Each map period has
5 km of fiber with ps /km and 5 km of fiber with

ps /km, resulting in the average dispersion of
0.1 ps /km. Losses in each fiber section are 0.2 dB/km, and

the value of nonlinearity is W km . The input pulse
parameters (width , chirp , and energy ) are obtained by
solving the variational equations numerically [9]. The minimum
value of pulsewidth is kept fixed at 3.11 ps [full-width
at half-maximum (FWHM) 5.18 ps] in all cases to ensure a
40-Gb/s bit rate. For lumped amplification, the input parameters

Fig. 1. Comparison of timing jitter as a function of transmission distance for
lumped and ideal distributed amplification schemes for dispersion maps with
S = 1:49 (solid lines) andS = 3:73 (dashed lines). Circles represent
results obtained using the numerical pulse shape.

are ps, , pJ, while for ideal dis-
tributed amplification ps, , and

pJ. The map strength of this system, defined as

(25)

where is the FWHM of the pulse at the
minimum pulsewidth point, equal to .

Since the deviation of pulse shape from Gaussian ansatz in-
creases with map strength, we consider a similar system with
a map strength of . To increase the map strength
we keep same geometry but increase dispersion values in both
fiber sections to ps /km, ps /km. The
input parameters in this case are ps, ,

pJ, for lumped amplification, and ps,
, pJ, in the ideal distributed amplifica-

tion case. In all cases we use for lumped amplifiers
(corresponds to a noise figure of 4.8 dB) and for ideal
distributed amplification.

Several conclusions can be drawn from Fig. 1. Timing jitter
increases with transmission distanceas in all cases, as
expected for the Gordon–Haus jitter. However, it is smaller by
about a factor of 2 when distributed amplification is used. The
approximations made in deriving (16) and (22) lead to the 0.02%
error in comparison with the result of (12) and are not noticeable
at the scale of Fig. 1. The curves calculated using the exact pulse
shape (obtained by solving the NLS equation) show that the
error in timing jitter values when using a Gaussian pulse shape
is less than 2% and nearly vanishes for smaller values of .

To see how well (24) for the reduction factor works, we com-
pare its predictions with the results shown in Fig. 1. We find that
the error in the reduction factor given by (24), in comparison
with the similar factor calculated using full analytical theory
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(a)

(b)

Fig. 2. Timing jitter variations within each map period for lumped and
distributed amplification for the map withS = 1:49.

[(16) and (22)] reduces to less than 10% after about seven am-
plification periods. Moreover, at distances larger than 14 ampli-
fication periods, the error becomes less than 5%. We have also
verified that these error values do not change much with the map
strength.

Fig. 2 shows how timing jitter oscillates within each map pe-
riod for lumped and distributed amplification schemes. In the
lumped case [Fig. 2(a)], no jitter occurs until the first amplifier
is encountered at a distance of 80 km. Since in the map consid-
ered, the sign of is opposite to the sign of average dispersion,
jitter is reduced within each map period in comparison with its
values in the ends of the periods. The value in the end of each pe-
riod increases with distance as. For long distances such that

, eventually the oscillations in timing jitter within each
period become small in comparison with its average value. In
the distributed amplification case [Fig. 2(b)], similar behavior
occurs, except that jitter starts to grow from and has
overall smaller values.

In the next two sections, we calculate timing jitter accounting
for local gain variations which occur invariably in real DM sys-
tems. In Section IV, we consider the case in which gain is pro-
vided by erbium ions distributed throughout the fiber link and
take into account pump absorption and depletion for
the bidirectional pumping scheme. In Section V, we focus on the
case of Raman amplification.

IV. ERBIUM-BASED DISTRIBUTED AMPLIFICATION

To calculate the actual variations of the gain along the
fiber, we use the two-level model of [15]. We solve numerically
the multiple rate equations, accounting for gain saturation and
pump depletion and assuming a bidirectional pumping scheme
at 1480 nm. The inversion factor is obtained using

(26)

where and are the ion densities of the upper and lower
energy levels participating in stimulated emission, respectively,
and and are the emission and absorption cross sections
for the signal wavelength, respectively. The distributed gain can
be written as , where is the overlap
factor between the doped region and the fiber mode. Neglecting
the population of the third and higher levels, the total dopant
density is . The parameter is then related to
the gain as

(27)

We take cm , cm
and , the values appropriate for a Ge–Er-doped silica
fiber at 1550 nm [16]. From the noise standpoint of view,
should be as small as possible. However, pump power increases
as is approaches its minimum possible value [7], [17]. As a
compromise, we choose cm , a value that
requires pump power of about 100 mW for a 80-km pump-sta-
tion spacing. We also consider a larger density value of

cm with a reduced pump power of about 50 mW.
Such values are normally used for distributed erbium-doped
fibers [7]. For each density value, we calculate timing jitter
numerically using (12) with the actual gain profile and using
(16) obtained for ideal loss compensation . In both
cases, inversion parameter is calculated from (26). For per-
fect loss compensation is constant with values of 1.4 and
1.97 for the values given above.

Fig. 3 shows the timing jitter calculated at the end of each
amplifier. Solid curves represent timing jitter with the actual
gain profile and dotted curves represent timing jitter assuming

. Timing jitter for the case of lumped amplification
with is also shown for comparison (dashed curve).
The input parameters in each case are calculated by solving
the variational equations numerically and are close to the
parameters used in Section III. In order to verify, how much the
soliton interaction itself would limit the transmission distance,
the three cases shown in Fig. 3 were checked for propagation of
a 40-Gb/s pseudorandom pulse train by solving (1) numerically
with the split-step method. As an example, we solve (1) using

, where is a binary random variable
with values 0 and 1, and is given by (11). In the case
of distributed amplification with cm , using

ps, , and pJ (parameters,
corresponding to 3.11-ps minimum pulsewidth, accounting for
the actual gain profile), we obtain the contour map shown in
Fig. 4. These results were obtained without including amplifier
noise and show that interaction among solitons does not affect
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Fig. 3. Timing jitter at the end of each map period for the systems with
erbium-based amplification (solid lines) for the dopant densities of (a)
N = 5:5� 10 cm and (b)N = 9� 10 cm . Dotted lines show the
results obtained assuming perfect loss compensation. Dashed line represents
timing jitter for the same DM system with lumped amplification.

Fig. 4. Contour map of the bit sequence over 10 000 km for the 40-Gb/s system
employing erbium-based distributed amplification with bidirectional pumping.

the pulse train at distances as large as 10 000 km. The results
for the other two cases from Fig. 3 look similarly.

Fig. 3 shows that it is possible to achieve about 40% jitter
reduction using distributed amplification with bidirectional
pumping. Assuming Gaussian statistics for timing jitter, the
bit-error rate (BER) can be found as

BER

(28)

where is the bit slot and .
According to (28), for a BER of less than 10, timing jitter
should be less than 8% of the bit slot [2]. This value can be

Fig. 5. Timing jitter at the end of each map period for distributed Raman
amplification (solid lines) with bidirectional and backward pumping schemes.
For the same DM system, lumped amplification (n = 1:5) and ideal
distributed amplification (n = 1) are also shown for comparison (dashed
lines).

increased to 12% by using a forward error correction technique
that can tolerate a BER of 10. In the following discussion, we
use the 8% criteria, which gives a value of 2 ps for the limiting
timing jitter at 40 Gb/s. The dashed line in Fig. 3 shows that
transmission distance is limited to about 2900 km in the case of
lumped amplification, but can be increased up to 4300 km using
the distributed amplification scheme. The dotted lines in Fig. 3
show that timing jitter is well approximated by the analytical
result in (16), especially for relatively low dopant concentration
values. The reason for better agreement for lowervalues is
that gain variations become smaller asis reduced. Note that
even for larger values of , (16) is accurate to within a few
percent.

V. RAMAN DISTRIBUTED AMPLIFICATION

In this section, we consider the distributed Raman amplifi-
cation (DRA) scheme for the same dispersion map used ear-
lier. The input parameters, corresponding to the 3.11-ps min-
imum pulsewidth, are ps, , and

pJ for Raman amplification with bidirectional pumping,
and ps, , and pJ for
backward pumping. These parameters were obtained by solving
the variational equations [9] and were checked numerically for
the 40-Gb/s propagation over long distance. For both pumping
schemes, we use at room
temperature. Gain variations for Raman amplification are
calculated analytically using the condition of full loss compen-
sation and neglecting pump depletion [9].

Fig. 5 shows timing jitter at the end of each amplifier
as a function of transmission distance for bidirectional and
backward pumping schemes. The limiting cases of lumped
and ideal distributed amplification are shown for comparison.
Considerable reduction occurs for both bidirectional and back-
ward pumping schemes, although the bidirectional pumping
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scheme gives smaller jitter values. The horizontal dashed line
in Fig. 4 shows that transmission distance can be increased up
to about 4200 km using a bidirectional Raman amplification
scheme, whereas it would be limited to 2900 km for lumped
amplifiers. Larger jitter values for a backward pumping scheme
result from larger gain variations along the fiber. According
to (12), timing jitter is proportional to and is inversely
proportional to the input energy of the pulse. Although the
parameter for Raman amplification is almost the same as for
ideal distributed amplification, timing jitter is larger for Raman
amplification. This is the consequence of larger gain variations
along the fiber when Raman amplification is used. Comparing
Figs. 3 and 4, we note that jitter values are within 10% of each
other for Raman and erbium-based distributed amplification,
although gain variations are larger in the Raman case. This is
due to larger values for erbium dopants.

We consider now the practical case of hybrid amplifica-
tion, in which a coded pulse train is amplified periodically
using a module consisting of a lumped fiber amplifier and a
Raman-pump laser injected backward into the fiber to provide
the DRA. In this hybrid scheme, total fiber losses are
compensated using the combination of lumped and Raman
amplification such that , or, equivalently

(29)

where and are, respectively, local and accumulated
Raman gain, is the gain of lumped amplifier, and is
the amplifier spacing. The same dispersion map is used and
input parameters are also comparable to those given earlier.
Fig. 6 shows timing jitter after each amplifier as a function of
transmission distance for several values of the Raman gain.
While the smallest value of jitter occurs when 100% of losses
are compensated using DRA, considerable reduction occurs
even when losses are only partially compensated by the Raman
gain.

We consider the question whether distributed amplification
can allow a longer amplifier spacing. Fig. 7 shows timing jitter
after 3100 km as a function of the Raman gain for 40-Gb/s sys-
tems employing a hybrid amplification scheme with amplifier
spacings of 60, 80, and 100 km. The systems have six, eight,
and ten map periods within each amplifier spacing, respectively,
while the other parameters are the same as before. In each case,
jitter is reduced by up to 40% by using DRA. More importantly,
the use of lumped amplifiers alone leads to limiting jitter in ex-
cess of 2 ps when exceeds 70 km. In contrast, amplifiers
can be placed as much as 100 km apart when an hybrid ampli-
fication scheme is employed. The required Raman gain is only
2 dB for 80-km spacing but becomes 10 dB when amplifiers are
100 km apart.

Finally, we investigate timing jitter dependence on the map
strength of the system. To change the map strength, we vary
the values of the second-order dispersion and while
keeping the average dispersion and minimum pulsewidth

constant. Fig. 8(a) shows timing jitter dependence on the
map strength at a distance of 4000 km for systems with lumped

Fig. 6. Timing jitter after each amplifier as a function of transmission distance
for several values of Raman gain. Losses are 16 dB over 80 km of amplifier
spacing.

Fig. 7. Timing jitter after 3100 km as a function of Raman gain for amplifier
spacings of 60, 80, and 100 km.

amplifiers and bidirectionally pumped DRAs. The param-
eter values used are the same as in Fig. 5. Solid curves corre-
spond to ps and are suitable for a 40-Gb/s system,
while dashed curves with ps are appropriate for a
10–15 Gb/s system. In each case, timing jitter decreases as map
strength is increased. The reason for this decrease is that larger
values of the map strength require higher values of input pulse
energy in order to keep the pulsewidth fixed. Since timing jitter
is inversely proportional to the pulse energy, the jitter decreases
as map strength increases. Input pulse energies for each value of
the map strength are shown on Fig. 8(b) and support this con-
clusion. Note, however, that pulse breathing increases signifi-
cantly for large map strengths, and the system may be limited
by soliton interaction.
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(a)

(b)

Fig. 8. (a) Timing jitter after 4000 km as a function of the map strength in
DM systems with lumped and bidirectionally pumped Raman amplification.
Minimum pulsewidth remains fixed at 3.11 ps (solid lines) and at 8 ps (dashed
lines). (b) Corresponding input energy values.

Fig. 8(a) also shows that timing jitter values are larger for
shorter pulsewidths, although shorter pulsewidths require larger
pulse energies. We have verified that this behavior holds for
erbium distributed amplification as well. The reason for this can
be understood from (16) and (22), which show that the term
growing as with distance is proportional to the ratio

. Numerical solutions of the variational equations
show that this ratio increases for smallervalues, thus giving
rise to a larger timing jitter.

VI. CONCLUSION

We have compared the ASE-induced timing jitter in disper-
sion-managed systems for the cases of lumped, distributed, and
hybrid Raman amplification schemes. We show that, while the
erbium-based distributed amplification gives the smallest timing
jitter value, considerable reduction occurs when bidirectional,
backward, or even partial Raman amplification is employed.
We have derived an analytical expression for the timing jitter
at any position within the fiber link in the case of ideal dis-
tributed amplification for which losses are exactly compensated
by gain at every point. We show that in the case of a low er-
bium-dopant density, timing jitter is well approximated by this
formula. We also derive an analytical expression for the timing

jitter for lumped amplifiers and compare it to the case of dis-
tributed amplification. Finally, we show that timing jitter de-
creases for stronger maps at a given bit rate (fixed minimum
pulsewidth).
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