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Timing Jitter in Dispersion-Managed Soliton Systems
With Distributed, Lumped, and Hybrid Amplification

Ekaterina PoutrinaStudent Member, IEEEBNd Govind P. AgrawaFellow, IEEE

Abstract—\We analyze the role of distributed amplification in  for the timing jitter induced by lumped amplifiers and compare
controlling timing jitter in dispersion-managed soliton systems the two cases. In Section IV, we investigate timing jitter in DM
and discuss, using analytical and numerical techniques, how gystems for the case of erbium-based distributed amplification,
timing jitter is reduced by up to a factor of two when lumped - o . . L .
amplification is replaced by complete or partial distributed am- rea!lzed_ when the ”ansm's$'°_” flt_)_er itself is lightly doped with
plification. We derive an analytical expression for the timing jitter ~ €rbium ions. We show that timing jitter can be reduced by about
at any position within the fiber link in the case of ideal distributed ~ 40% with proper system design and is quite close to the ideal
amplification for which losses are exactly compensated by gain at case. In Section V, we consider timing jitter in DM soliton sys-
every point. We show that the timing jitter is well approximated by tems making use of Raman amplification. We show that consid-

this formula in the case of erbium-based amplification. We derive ble iitt ducti hen bidirecti | backward
a similar expression for the timing jitter for lumped amplifiers and erable jitter reduction occurs when bidirectional, backward, or

compare it with the case of distributed amplification. We find that  €ven partial Raman amplification is employed. We also investi-

with erbium-based distributed amplification, timing jitter depends  gate timing jitter dependence on other system parameters such

on the density of dopants and is smaller for lower densities. Inthe as the bit rate and the map strength.

case of hybrid Raman amplification, the transmission distance of

a 40-Gh/s system can be increased by up to 30% depending on

the amount of Raman gain. Finally, we show that timing jitter Il. GENERAL FORMALISM

decrea_ses for stronger maps at a given bit rate (constant minimum  \ye give in this section a short description of the moment

pulsewidth). method for calculating timing jitter [3]. Optical pulse propa-
Index Terms—Dispersion management, jitter, nonlinear optics, gation in any lightwave system is governed by the nonlinear

optical fiber communication, optical solitons. Schrédinger (NLS) equation [9]
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a: 2 of
ORDON-HAUS timing jitter, arising from the presence . .
of amplified spontaneous emission (ASE) in modern fib%‘r’hereg(z) and o(z) are, respectively, local power gain and

: . : inside the fibery, is the nonlinear fficientds is th
links, is one of the major limiting factors for long-haul optica 0ss inside the fibery, is the nonlinear coefficienty; is the

cati ; llv at hiah bit rat dsecond-order dispersion parameter, @n, ¢) represents the
communication systems, especially at nign bit rates exCeediigh, ., ion of noise (distributed or lumped) along the fiber
10 Gb/s [1}-[3]. A general approach for calculating tlmlng”merength. The ASE noise contribution vanishes on average, i.e.

in dispersion-managed (DM) systems was developed by Grigo- . . .
ryanet al.in 1999 [3]. In the past, attention was mostly paid t n(z, 7)) = 0, but has a correlation function of the form [9],

estimating timing jitter in lightwave systems with lumped am- ol

plifiers placed_periodically alo_r!g th_e DM Iink_[4]—_[6]. Although (1, (2, £) (2, ")) = g(2)nep(2)hnb(z — 2 )6(t — ') (2)

the effect of distributed amplification on timing jitter has been

studied for uniform-dispersion fibers [7], [8], the combinatiomwhere n.,(z) is the spontaneous emission factbr, is the

of distributed amplification and dispersion management has mtoton energy at the central frequenwy, and é represents

yet been investigated. Dirac’s delta function. Both, (=) andg(z) are nonzero only
We use the approach developed in [3] to compare the ASE-inithin the amplifier in the case of lumped amplification, but

duced timing jitter in DM systems for the cases of lumped, digary with z continuously in the case of distributed amplifica-

tributed, and hybrid Raman amplification. In Section II, we exion.

tend the theory of [3] to the case of distributed amplification. In the moment method [11], the central positignand the

In Section I, we derive an analytic expression for the timingentral frequency2 of an optical pulse are defined as

jitter at any position within the fiber link in the case of ideal dis-

. INTRODUCTION

o>
tributed amplification for which losses are compensated by gain t,(2) = / tu)? dt/ E (3a)
perfectly at every point. We also derive an analytical expression o
Qz) = / (ufu — wgu™) dt/ 2E (3b)
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is the energy of the pulse. We introduce a new variabla Foy - o /Z % (2) d /Zl / /
(1)—(4) using the definitions = v/Gv, where@ represents the (FS) Eo Jo Pelz) da 0 90 e (#)
cumulative net gain from 0 te and is given by CGTHO(Z) dY (12b)
.2 hvg (7
z 2y _ Yo / N1 N2 /
G(z) = exp </ [9(2") — ()] dz') . (5) (5% = Ey Jo 9(# nep(#)G ()T dz - (12¢)
0

In order to calculate the timing jitter, it is necessary to kno\’\/hereE0 = E(0) 'is the "?p“t energy of the pulse. Equat.ior']s
how £. and € evolve with z Following’ 3], (3) fort, andQ2 \?’10) and (12) provide semi-analytical expressions for the timing
E . ; - - P jitter. They can be used for any amplification scheme, whether
are differentiated .W'th respect toand .(1) |s_used tp eI|m|na_te lumped, distributed, or hybrid. The only assumption made is
zzﬁ;trg dnjcgiﬂénrtaer?(;zﬁ iihn?eresig[mi dt'ﬁe_re?tt";ll Vev?]lijciﬁlor}ﬁat we use a chirped Gaussian shape for pulses propagating in-
is found to vary with as L B side a DM system. Analyses based on the variational and Her-
: mite—Gauss-expansion methods have shown [12], [13] that nu-
Stp(z) = F(2) + S(2) (6) merically caICL_JIated pulse shapes are close_to (_Baus_sian (except
in the pulse wings). In the next section, we justify this approx-
where F and S represent the contributions @, from fre- imation by comparing timing jitter calculated using the actual
guency and position fluctuations, occurring due to ASE noisrilse shape (taken from a NLS-based propagation code) and the

along the fiber link. Their explicit expressions are pulse shape given by (11).
F(z) = / Ba(2V6QUZ) d ) 1. ANALYTICAL TREATMENT
0 S (VG e In this section, we use (12) to calculate variances and cross
S(z) =i / _G / (t—t,) correlation ofF andS for a DM soliton communication system
0 E J_w and calculate timing jitter for lumped and distributed amplifica-

tion scheme. We focus on the case of ideal distributed amplifica-
[afr exp(—iQt) — g* fr exp(iQ2t)] dt} dz'  tion first. We consider a DM system in which each map period
L,, consists of two fiber sections with dispersion parameters
(8) 3.1 andp,., respectively, and the local gaiiiz) = « at every
point, so that7(») = 1 in (12). We assume for simplicity that

whereé( is defined as both fiber sections have the same value of lossebhe results

= (G [ can be generalized later to the case of an arbitrary loss profile.
6Q(z) = —/ ol / The variables3(z), g(z), andn.,,(z) are now constants in (12).
0 - Using the variational equation for the pulsewidth [9] in (12b),
. ) . ) we can express the variance®fin terms of cross correlation
(g7 fr exp(i€2t) + qu f;, exp(—i$2t)] dt} dz'. (9) of F andSpas
In (7)~(9),q is defined ag = v exp(i2t). As discussed in [3}; (8%) = 2AFS) + QuL§z/Lum (13)

andZ in (8) and (9) correspond to the deterministic solution %here
(1), obtained after setting,, = 0. Linearized equations (6)—(9)
are used to calculate the timing jittedefined as? = ((6t,,)?) Qa = hvonepgLom/Eo (14)

and given by
is a dimensionless parameter.

o2 = (F?) + 2(FS) +(S?). (10)  To calculate the variance ¢f and cross correlation ¢f and

) ) S, we need to calculate in (12) the integrals like
Following [3], expressions faF2), (2FS), and(S?) terms,

valid for arbitrary pulse shape, are obtained. We apply thosell(z) _ /~ 14+ C%(2) dz, I(z) = /k Cde 1)
expressions to a chirped Gaussian pulse of the form a T2(z) ’ o

. . Performing the first integral numerically, we find thatgrows
— it —tp) + Z</>> with z almost linearly (with an accuracy of about 0.01%) as
Li(z) = (1 + C3)/12, whereC, andTj are the input values
(11) . ) ) ,
of chirp and pulsewidth, respectively. This result has a phys-
whereC'is chirp,T'is the pulsewidth at /¢ point,, is the peak ical basis since the ratig'1 + C*(2)/T'(z) represents the spec-
amplitude of the pulse, and is the phase. We then obtain theéral width of a chirped pulse. The spectral width remains con-

(144C)(t —tp)?
272

u(z, t) = ug exp <—

following expressions: stant for a linear system and does not change much if the non-
L ) ) linear length of the system is much larger than the local dis-
2hio [* - ion length. E ical solutions of the nonlinear vari-
F2) — / Bolz1) dz / Bolz) dz persion length. Even numerical solutions of the nonlinear val
o Eo Jo 2(21) daa 0 2o(22) dz2 ational equations show that the ratjgl + C2(z)/7(z) oscil-

=, ~ 1+ C%2) 4 12 lates around its input value within each map period with a neg-
" 9(z" nsp( )G(z’)TQ(z’) # (123) }igible amplitude. To estimate the second integral in (14), we
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approximateC(~) by a linear function of: in each fiber sec- whereN,;(z;) is a staircase function representing the number of

tion and make use of the fact that, for ideal loss compensatiamplifiers up to the coordinatg, and

(¢ = «), the chirp-free point is located in the middle of each

fiber section [12]. Qi = hvonep(Gy — 1)/ Ep. (22)
Using (13) in (12a), we perform the remaining two inte-

grations for calculatingF2) using a geometrical approach.Using (20), we complete the integrations in (12), employing the

In short, noting that3:(z2)I1(22) is a piecewise continuous same geometrical approach described earlier. The final result for

function, we carry out the integration oves. We then repeat the variance of timing jitter at a distange= n L 4+ in system

the same process for integrating ogerand complete the inte- with an arbitrary dispersion map within each amplification pe-

gration in (12b) and (12c). Using the notatien= mL,, + =, riod is given as

wherem is the number of complete map periods up to the

distancez andz is a fractional distance in the next map period o _o Lt cs b2 —1)2n — 1)/6
(0 <z < Ly,), the final result for timing jitter is given as or(n, z) = T2 [bon{n = 1)(2n = 1)/
2 + b(x)bon(n — 1) + b*(x)n]
oa(m, x)
14 C2 + QiColbon(n — 1) + 2b(x)n] + QiTyn  (22)
= Qu=my
0

5 wheren is the number of amplifiers up to the distancandz
-[bom(m = 1)(2m = 1)/6 + bobum(m — 1)/2 + Aom/3 g the fractional distance in the next amplification per{@d<
+ b(x)bom(m — 1) + b*(z)m + b(z)bym + A(z) /3] x < L4). We keep different notations for amplification period
+ Qu4Coleom + e(z)] + QdTo2 [m 4 /L] (16) L. and map period.,,, since (22) applies to the case of dense
DM in which each amplification period contains several map
whereb(z) is the dispersion accumulated over a distarice periods.
[ o From (16) and (22), we note that the largest contribution to
b(x) = / Pa(a’) dzx (17) timing jitter comes from the first term resulting from frequency
¢ _ _ fluctuations and increasing with distance-AsIf we use (9), the
so thatby = b(Ly) = barly + bazlz = fByLin, 5 being the yariance of frequency fluctuations?), accumulated within
average dispersion of the map. Furthber= bo + (22 — f2)l2,  one map period (or amplification period in the case of lumped

and the functiong\(x) ande(x) are defined as amplifiers) is given by
2b?(x) /Ly, if0<ax<l )
2 1+ G
A(z) = [1b(x)[b(z) + Baalx — 11)] (6%, = Qd,lT—OQ (23)
+635(z — 11)?x]/ Lom, ifly <z <L,
(18) where the subscript¢ and! stand for distributed and lumped
Bor(22)2 — 3/3) /Ly, fO0<z<l amplification, respectively. In (16) and (22), the term in the first
1 T2 ’ 12 o 13 square brackets represents the varigif#. For constant-dis-
e(z) =< — {/2# — Paa <(x —h) @-h) )} . persion fiberg3z; = B2z = 32) and for lumped amplification,
L | 6 2 3 (F?) term withz = 0 converts to the standard Gordon—Haus
ifly <ax<Lnp formula [1], [2] (F2) = (6Q2%),83L2 Y"1, (n —i)%. We have

(19) also verified that, for constant dispersigf§2?), reduces to the

- - . equivalent expression in [1], [2] when a hyperbolic secant pulse

whereAg = A(L,,), €0 = €(Ly,) in (16). . . ; .
Before discussing this analytic result, we derive a similar fo?—hape Is used instead of a GauSS|a_n s_hape n (11).'. .
mula for the lumped amplification case, for which beth(z) .. We now focus on th_e effect.of. d'S.t.”bUted amplification on
andg(z) are nonzero only within each amplifier whosé Iength'.ng Jitter. Cpn5|der first the t|m.|ng jitter at the end of a map
is quite short10 m). UsingG; = exp(aT.) for the amplifier period by setting: = 0. Several dlfferenc_e_s are apparent from
gain, wherel 4 is the amplifier spacing, the integrals in (12) calglG) and (22). Inthe case of Iumped a_mpl_lflcanon,g_tﬁ“é’) term
be performed analytically as depends only on the average dispersion irrespective of the actual
map configuration, while this is not the case for ideal distributed
hvo 7 14+ C(4)? amplification. The(FS) term grows as? for lumped ampli-

! !
Eo Jo g(ZQ)HS"(ZQ)G(z’Q)T(z’Q)Q 9% fication, but only linearly withz in (16), indicating that cross
1+ C2 correlation is less important in the case of distributed amplifica-
= QIT Ni(z2) (202)  tjon. For lumped amplification, the varian¢§?), representing
hvo [ 0 direct temporal shift of a soliton by ASE, does not depend on
B g(Z)nep(21)GH(21)C(21) d2; dispersion, but this is not so for distributed amplification, as seen
0 from (13). This is the consequence of the fact that such position
= QicoNl(zl) (20b) fluctuations happen only when noise is added. For lumped am-
oo [* (2 nesp(z)G~HZNTF() d7 plification, noise is not added outside amplifiers, while noise is
Eo Jo ' added all along the fiber length in the case of distributed ampli-

= QT3 Ni(z) (20c) fication.
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Consider now the timing jitter inside a map period so thi 7
z # 0. As seen from (16) and (22), thedependent terms pro-
vide additional contribution to timing jitter within each map pe
riod, which depends on the accumulated dispersian over
the fractional distance within each map period,,, (or the am-

Lumped Amplifigrs

plification periodL 4). Sinceb(x) is periodic, we expecttiming z g -

jitter to exhibit oscillatory behavior. As seen from (16) and (22 =

the amplitude of such oscillations grows &swith distance, }2

while the first term in (16) and in (22) grows a$. This means & 6 Distributed Amplifiers
that jitter never oscillates down to zero asncreases and the ‘g

relative contribution of the oscillating terms to the total timin¢®™ 4

jitter decreases ag/z. For long distances such that> L,,,
taking the limitre > 1 andn > 1 in z-dependent terms in
(16) and (22), we note that this additional contribution is pos P
tive or negative depending on the sign of the prodge}b,. For - il
example, for the system with an even number of fiber sectio 0 =
within the map period, this contribution is negative if the sig 0 2000 4000 6000 8000 10000
of 321 is opposite to the sign of average dispersin Distance (km)

An important question is how much timing jitter can be re-
duced by using distributed amplification. To answer this queig. 1. Comparison of timing jitter as a function of transmission distance for
tion, we consider  long-hal light-wave System such that fP=d o4 dealcsiriuied amplcaon schemes for ispersion maps i
number of map periods,,, (or amplifiers in the case of lumped results obtained using the numerical pulse shape.
amplification) is very large. Taking the limit > 1 andn > 1

in (16) and (22), the timing jitter is reduced for distributed aMyreTy — 4.94 ps,C = —1.2, E, = 0.22 pJ, while for ideal dis-
plification by the factor tributed amplification, = 4.47 ps,C = —1.0, andE, =
0.0597 pJ. The map strength of this system, defined as

<592>d al ngp E(IJ [(1 +Cg)/T02]d

~ —

Yy T G- D) ol B (T /T L Sl ) L R

SP S map —

(24) Twnw

fr=

~q|\>|:9w

whereTrwum = 1.6651,,;, is the FWHM of the pulse at the
In most cases of practical interegtl + C3)/15]: ~ [(1 + minimum pulsewidth point, equal t§,,,, ~ 1.49.
C3)/T3]4 when the system is designed to have the same valueSince the deviation of pulse shape from Gaussian ansatz in-
of the minimum pulsewidth. The energy rafify/ E§ > 1under creases with map strength, we consider a similar system with
such conditions, increasinfg. However, this increase, being ofa map strength of,,,, &~ 3.73. To increase the map strength
the order of7; In G; /(G — 1), does not overcome the reductiorwe keep same geometry but increase dispersion values in both
in timing jitter due to the rati@L 4 /(G; — 1). The netresultis fiber sections tgh,; = 9.9 ps’/km, 822 = —10.1 pst/km. The
that timing jitter can be reduced by using distributed amplificanput parameters in this case &g = 8.61 ps,C = —2.31,
tion. Eo = 0.729 pJ, for lumped amplification, and, = 8.29 ps,

Fig. 1 shows timing jitter for lumped and distributed ampli€ = —2.31, Ey = 0.270 pJ, in the ideal distributed amplifica-
fication schemes calculated at the end of each amplifier (edan case. In all cases we usg, = 1.5 for lumped amplifiers
map period in the distributed case) using (16) and (22) bas@drresponds to a noise figure of 4.8 dB) ang = 1 for ideal
on the Gaussian shape ansatz (solid curves). To estimate dlstributed amplification.
error introduced by this ansatz, circles show the results whenSeveral conclusions can be drawn from Fig. 1. Timing jitter
the exact pulse shape obtained by solving the NLS equatinereases with transmission distanEeas L? in all cases, as
is used in (10). In the lumped case, we consider a dense EMpected for the Gordon—Haus jitter. However, it is smaller by
system with an amplifier spacing of 80 km and assume eighibout a factor of 2 when distributed amplification is used. The
map periods within one amplifier period. Each map period happroximations made in deriving (16) and (22) lead to the 0.02%
5 km of fiber with 35; = 3.9 ps’/km and 5 km of fiber with error in comparison with the result of (12) and are not noticeable
Boo = —4.1 pg/km, resulting in the average dispersion ofit the scale of Fig. 1. The curves calculated using the exact pulse
—0.1 pg/km. Losses in each fiber section are 0.2 dB/km, arshape (obtained by solving the NLS equation) show that the
the value of nonlinearity isy = 2.5 W—*km~!. The input pulse error in timing jitter values when using a Gaussian pulse shape
parameters (width’, chirp C', and energy) are obtained by is less than 2% and nearly vanishes for smaller value.gf .
solving the variational equations numerically [9]. The minimum To see how well (24) for the reduction factor works, we com-
value 7},,;;, of pulsewidth is kept fixed at 3.11 ps [full-width pare its predictions with the results shown in Fig. 1. We find that
at half-maximum (FWHM) 5.18 ps] in all cases to ensure the error in the reduction factor given by (24), in comparison
40-Gb/s bit rate. For lumped amplification, the input parametensth the similar factor calculated using full analytical theory
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0.15

IV. ERBIUM-BASED DISTRIBUTED AMPLIFICATION

To calculate the actual variations of the gairz) along the
fiber, we use the two-level model of [15]. We solve numerically
the multiple rate equations, accounting for gain saturation and
pump depletion and assuming a bidirectional pumping scheme
at 1480 nm. The inversion factex;, is obtained using

Timi Jitt
iming jittcr (pg)
153

=
R

nsp = UGNQ/(UGNQ - UaNl) (26)

where N, and NV, are the ion densities of the upper and lower
energy levels participating in stimulated emission, respectively,
000 j ‘ ando, ando, are the emission and absorption cross sections
for the signal wavelength, respectively. The distributed gain can
be written ag)(z) = I'(0. N2 — o, N1 ), wherel is the overlap
factor between the doped region and the fiber mode. Neglecting
the populationVs of the third and higher levels, the total dopant
density isV; = N; + N». The parameter;, is then related to
the gain as

(@)

0.08

=)
&

Nsp =

e { JaFNt} @7)

Oe+ 0q 9(#)

We takeo, = 3.9 x 1072 cn?, 0. = 3.5 x 1072 cn?
andI’ = 0.4, the values appropriate for a Ge—Er-doped silica
fiber at 1550 nm [16]. From the noise standpoint of vieW,
0.00 ‘ ‘ , ‘ should be as small as possible. However, pump power increases
0 80 160 240 30 w0 ashV, is approaches its minimum possible value [7], [17]. As a
Distance (km) compromise, we choos¥, = 5.5 x 10'* cm™3, a value that
() requires pump power of about 100 mW for a 80-km pump-sta-
%ion spacing. We also consider a larger density valué&/pt=
x 10'* cm~2 with a reduced pump power of about 50 mWw.
Such values are normally used for distributed erbium-doped

fibers [7]. For each density value, we calculate timing jitter

[(?_6) a_nd (22)_] reduces to less th_an 10% after about seven e}m'merically using (12) with the actual gain profile and using
plification periods. Moreover, at distances larger than 14 amgg

Timing jitter (ps)
=]
£

o

@

5
.

Fig. 2. Timing jitter variations within each map period for lumped an
distributed amplification for the map withi,,.,, = 1.49.

o ) 6) obtained for ideal loss compensatigfz) = «]. In both
fication periods, the error becomes less than 5%. We have Qes inversion parametey, is calculated from (26). For per-

verified that these error values do not change much with the map, |55 compensation.,, is constant with values of 1.4 and
strength. i '

. o ) . 1.97 for theN, values given above.
_ Fig. 2 shows how timing jitter oscillates within each map pe- rig 3 shows the timing jitter calculated at the end of each
riod for lumped and distributed amplification schemes. In theyjifier. Solid curves represent timing jitter with the actual

lumped case [Fig. 2(a)], no jitter occurs until the first amplifiegain profile and dotted curves represent timing jitter assuming
is encountered at a distance of 80 km. Since in the map con%d—: . Timing jitter for the case of lumped amplification

ered, the sign ofi;; is opposite to the sign of average dispersioryith ,_, — 1.5 is also shown for comparison (dashed curve).
jitter is reduced within each map period in comparison with itghe input parameters in each case are calculated by solving
values in the ends of the periods. The value inthe end of each #¢s variational equations numerically and are close to the
riod increases with distance &$. For long distances such thatparameters used in Section I1l. In order to verify, how much the
L>> L,,, eventually the oscillations in timing jitter within eachsoliton interaction itself would limit the transmission distance,
period become small in comparison with its average value. fle three cases shown in Fig. 3 were checked for propagation of
the distributed amplification case [Fig. 2(b)], similar behaviog 40-Gb/s pseudorandom pulse train by solving (1) numerically
occurs, except that jitter starts to grow fraln= 0 and has with the split-step method. As an example, we solve (1) using
overall smaller values. (0, t) = 3 b,u,(0, t), whereb, is a binary random variable

In the next two sections, we calculate timing jitter accountingith values 0 and 1, and,, (0, t) is given by (11). In the case
for local gain variations which occur invariably in real DM sysof distributed amplification withV, = 5.5 x 10™* cm~2, using
tems. In Section IV, we consider the case in which gain is pr@, = 4.48 ps,C = —1.0, andEy = 0.0593 pJ (parameters,
vided by erbium ions distributed throughout the fiber link andorresponding to 3.11-ps minimum pulsewidth, accounting for
take into account pump absorption and deplefign) # «] for the actual gain profile), we obtain the contour map shown in
the bidirectional pumping scheme. In Section V, we focus on ti¥ég. 4. These results were obtained without including amplifier
case of Raman amplification. noise and show that interaction among solitons does not affect
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;| / ; )
/ Tumped /
Lumped Amplifiers / \ /
-~ 6 — »;; 6
g & J
g 3
= =
24 £
.E g
& =
/ backward
5 2
/ -~ bidirectional
" /&
_ ﬁ = ideal
0 O T T T
' 0 2000 4000 6000 8000
0 2000 4000 6000 8000

Dis tance (km)
Distance (km)

] o ) _Fig. 5. Timing jitter at the end of each map period for distributed Raman
Fig. 3. Timing jitter at the end of each map period for the systems withmplification (solid lines) with bidirectional and backward pumping schemes.
erbium-based amplification (solid lines) for the dopant densities of (®or the same DM system, lumped amplification.,( = 1.5) and ideal
Ne=15.5 x10* cm=? and (b).V, = 9 x 10** cm~. Dotted lines show the distributed amplification., = 1) are also shown for comparison (dashed
results obtained assuming perfect loss compensation. Dashed line represgiis).
timing jitter for the same DM system with lumped amplification.

10000 ' ‘ ' ‘ * ' increased to 12% by using a forward error correction technique
that can tolerate a BER of 10. In the following discussion, we
use the 8% criteria, which gives a value of 2 ps for the limiting
soeer 1 timing jitter at 40 Gb/s. The dashed line in Fig. 3 shows that
70001 1 transmission distance is limited to about 2900 km in the case of
lumped amplification, but can be increased up to 4300 km using
the distributed amplification scheme. The dotted lines in Fig. 3
5000 1 show that timing jitter is well approximated by the analytical
resultin (16), especially for relatively low dopant concentration
values. The reason for better agreement for loWgralues is

9000 t

6000 - 3

Distance (km)

4000 4

30001 1 that gain variations become smaller/sisis reduced. Note that
2000k even for larger values aWV,, (16) is accurate to within a few
percent.
1000 4
a0 a0 200 100 P o 2o s V. RAMAN DISTRIBUTED AMPLIFICATION
Time (ps)

In this section, we consider the distributed Raman amplifi-
Fig.4. Contour map ofthe bit sequence over 10 000 km for the 40-Gby/s systé@tion (DRA) scheme for the same dispersion map used ear-
employing erbium-based distributed amplification with bidirectional pumpindier. The input parameters, corresponding to the 3.11-ps min-
imum pulsewidth, ar§y = 4.737 ps,C = —1.1, andEy =

the pulse train at distances as large as 10000 km. The resQlfgt94 pJ for Raman amplification with bidirectional pumping,
for the other two cases from Fig. 3 look similarly. and7y, = 4.696 ps,C = —1.08, andEy = 0.192 pJ for

Fig. 3 shows that it is possible to achieve about 40% jittddackward pumping. These parameters were obtained by solving
reduction using distributed amplification with bidirectionathe variational equations [9] and were checked numerically for
pumping. Assuming Gaussian statistics for timing jiteithe the 40-Gb/s propagation over long distance. For both pumping

bit-error rate (BER) can be found as schemes, we use,;, = [1 — exp(—hv/kT)] ! = 1.13 at room
temperature. Gain variationgz) for Raman amplification are

BER — 2 /Oo exp <_i> dt — erfe < I ) calculated analytically using the condition of full loss compen-
210 J1y )2 202 2v20 sation and neglecting pump depletion [9].
4o T3 Fig. 5 shows timing jitter at the end of each amplifier
~N———exp | ——5 (28) . . . T
V2T 802 as a function of transmission distance for bidirectional and
backward pumping schemes. The limiting cases of lumped
wherel} is the bit slotandrfc(z) =(2/y/7) [ exp(—y?) dy. and ideal distributed amplification are shown for comparison.

According to (28), for a BER of less than 19 timing jitter Considerable reduction occurs for both bidirectional and back-
should be less than 8% of the bit slot [2]. This value can lveard pumping schemes, although the bidirectional pumping
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scheme gives smaller jitter values. The horizontal dashed lin
in Fig. 4 shows that transmission distance can be increased t g | Total Loss = 16 dB
to about 4200 km using a bidirectional Raman amplification
scheme, whereas it would be limited to 2900 km for lumped
amplifiers. Larger jitter values for a backward pumping scheme
result from larger gain variations along the fiber. According g 61
to (12), timing jitter is proportional ton, and is inversely
proportional to the input energy of the pulse. Althoughihg
parameter for Raman amplification is almost the same as fc
ideal distributed amplification, timing jitter is larger for Raman .
amplification. This is the consequence of larger gain variation:
along the fiber when Raman amplification is used. Comparing
Figs. 3 and 4, we note that jitter values are within 10% of eact
other for Raman and erbium-based distributed amplification
although gain variations are larger in the Raman case. This i
due to largem,;, values for erbium dopants. 0 — m x

We consider now the practical case of hybrid amplifica- 0 2000 4000 6000 8000
tion, in which a coded pulse train is amplified periodically Distance (km)

using a module consisting of a lumped fiber amplifier and l-al 6. Timing jitter after each amplifier as a function of transmission distance

Raman-pump |?-Ser inj?Cted backward in.to the fiber to prOVi(#ﬁq.several values of Raman gain. Losses are 16 dB over 80 km of amplifier
the DRA. In this hybrid scheme, total fiber loss€s,; are spacing.

compensated using the combination of lumped and Raman
amplification such thatzr + G = Gy, Or, equivalently

La La
exp </0 gr(2) dz) + G, =exp </0 a(z) dz) (29)

where gg and Gg are, respectively, local and accumulated
Raman gain(, is the gain of lumped amplifier, andl 4 is
the amplifier spacing. The same dispersion map is used anc
input parameters are also comparable to those given earliel
Fig. 6 shows timing jitter after each amplifier as a function of
transmission distance for several values of the Raman gain
While the smallest value of jitter occurs when 100% of losses
are compensated using DRA, considerable reduction occur:
even when losses are only partially compensated by the Rama
gain. 4 ‘ ‘ ‘
We consider the question whether distributed amplification 0 10 15 20
can allow a longer amplifier spacing. Fig. 7 shows timing jitter Raman gain (dB)
after 3100 km as a function of the Raman gain for 40-Gb/s sys-
tems employing a hybrid amplification scheme with amplifieFig. 7. Timing jitter after 3100 km as a function of Raman gain for amplifier
spacings of 60, 80, and 100 km. The systems have six, eigifcings of 60, 80, and 100 km.
and ten map periods within each amplifier spacing, respectively,
while the other parameters are the same as before. In each casmlifiers and bidirectionally pumped DRAs. The, param-
jitter is reduced by up to 40% by using DRA. More importantlyeter values used are the same as in Fig. 5. Solid curves corre-
the use of lumped amplifiers alone leads to limiting jitter in exspond tdl},,;, = 3.11 ps and are suitable for a 40-Gb/s system,
cess of 2 ps whetl 4 exceeds 70 km. In contrast, amplifiersyhile dashed curves witlf},;, = 8 ps are appropriate for a
can be placed as much as 100 km apart when an hybrid amp--15 Gb/s system. In each case, timing jitter decreases as map
fication scheme is employed. The required Raman gain is olrength is increased. The reason for this decrease is that larger
2 dB for 80-km spacing but becomes 10 dB when amplifiers avelues of the map strength require higher values of input pulse
100 km apart. energy in order to keep the pulsewidth fixed. Since timing jitter
Finally, we investigate timing jitter dependence on the map inversely proportional to the pulse energy, the jitter decreases
strength of the system. To change the map strength, we vasg/map strength increases. Input pulse energies for each value of
the values of the second-order dispersjgn and 822 while the map strength are shown on Fig. 8(b) and support this con-
keeping the average dispersiga and minimum pulsewidth clusion. Note, however, that pulse breathing increases signifi-
Tmin CcOnstant. Fig. 8(a) shows timing jitter dependence on tleantly for large map strengths, and the system may be limited
map strength at a distance of 4000 km for systems with lumpbky soliton interaction.

jitter (|

iming j

4_

T

Timing jitter at 3100 km (ps)

4]
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Fig. 8. (a) Timing jitter after 4000 km as a function of the map strength in

DM systems with lumped and bidirectionally pumped Raman amplification.
Minimum pulsewidth remains fixed at 3.11 ps (solid lines) and at 8 ps (dashed|g]
lines). (b) Corresponding input energy values.

[10]

Fig. 8(a) also shows that timing jitter values are larger for{11]
shorter pulsewidths, although shorter pulsewidths require larger
pulse energies. We have verified that this behavior holds fop ]
erbium distributed amplification as well. The reason for this can
be understood from (16) and (22), which show that the term
growing as»* with distancez is proportional to the rati¢1 + [13]
C3) /(T3 Eo). Numerical solutions of the variational equations
show that this ratio increases for smallgrvalues, thus giving

. S [14]
rise to a larger timing jitter.

VI. CONCLUSION [15]

We have compared the ASE-induced timing jitter in disper-[161

sion-managed systems for the cases of lumped, distributed, and
hybrid Raman amplification schemes. We show that, while thél7]
erbium-based distributed amplification gives the smallest timing
jitter value, considerable reduction occurs when bidirectional,
backward, or even partial Raman amplification is employed.
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jitter for lumped amplifiers and compare it to the case of dis-
tributed amplification. Finally, we show that timing jitter de-
creases for stronger maps at a given bit rate (fixed minimum
pulsewidth).
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