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We use the moment method to calculate the Gordon–Haus timing jitter of optical pulses in dispersion-managed
communication systems designed by use of lumped fiber amplifiers. The use of the Gaussian approximation
for the chirped pulses, in combination with variational analysis, allows us to obtain an analytic expression for
the timing jitter that is valid for an arbitrary number of amplifiers within each map period. We use this result
to discuss how jitter is affected when more than one amplifier is used within each map period. We consider
jitter for soliton-based systems as well as for low-power light-wave systems designed by use of the chirped
return-to-zero format. In each case, the effects of dispersion compensation on the timing jitter are studied in
detail. © 2002 Optical Society of America
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1. INTRODUCTION
It has been known for many years that Gordon–Haus
(GH) timing jitter imposes a fundamental limitation on
long-haul soliton systems designed with amplifiers placed
periodically along the fiber link.1–6 Physically, timing jit-
ter originates from spontaneous emission that is added to
the pulse train during its amplification inside each ampli-
fier. It was originally believed that this jitter occurs only
when solitons are used, and perturbation theory devel-
oped for solitons was used to describe it.5 The GH jitter
of solitons has been analyzed in systems made with
constant-dispersion fibers,1 dispersion-decreasing fibers,3

and dispersion-managed (DM) fiber links.7,8

Recently it was recognized that timing jitter can occur
with any transmission format, including the non-return-
to-zero, the chirped-return-to-zero (CRZ), and the DM
soliton formats,7 and it can be calculated by use of the
well-known moment method.9 In this paper we present a
simplified form of the moment method and show that it
can provide approximate analytic expressions for timing
jitter under quite realistic conditions as long as each bit
in the DM system can be approximated by a chirped
Gaussian pulse. We apply this technique to obtain an
analytic expression for timing jitter even when several
amplifiers are present within each map period. We study
the effects of precompensation and postcompensation on
the timing jitter in DM light-wave systems for both low-
power CRZ and soliton formats. We find that one can re-
duce the timing jitter significantly by choosing the pre-
compensation and the postcompensation of residual
dispersion judiciously.
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The paper is organized as follows: In Section 2 we
present the basic moment equations and show how the
position and the frequency shifts acquired by an optical
pulse within an amplifier evolve along the fiber link. In
Section 3 we calculate the variances and the cross corre-
lation of the position and the frequency shifts at each am-
plifier, assuming that the pulse is in the form of a chirped
Gaussian pulse. In Section 4 we show how the two shifts
grow along the fiber link as the pulse propagates from one
amplifier to the next. Section 5 deals with the case of
solitons for which the pulse propagates in a periodic fash-
ion and acquires the same parameter values at each am-
plifier. This property permits us to obtain an analytic ex-
pression for the timing jitter even when more than one
amplifier is used in each map period. In Section 6 we
show how the use of postcompensation can reduce the GH
timing jitter of solitons. Section 7 is devoted to the low-
power CRZ system in which the pulse propagates in a
quasi-linear fashion. We are able to obtain an analytic
expression for the timing jitter even in this case. In Sec-
tion 8 we consider how the jitter can be minimized along
the entire link by use of a judicial combination of precom-
pensation and postcompensation. The main results are
summarized in Section 9.

2. MOMENT EQUATIONS
A typical DM system consists of a precompensation fiber
followed by a periodic sequence of anomalous- and
normal-dispersion fibers, and finally a postcompensation
fiber. At least one amplifier is used per map period to
2002 Optical Society of America
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compensate for fiber losses. Each amplifier not only re-
stores the pulse energy to its original input value but also
adds noise through spontaneous emission. This noise
perturbs each optical pulse such that its amplitude,
width, position, chirp, frequency, and phase all vary in a
random fashion along the fiber link. Amplitude fluctua-
tions degrade the signal-to-noise ratio and affect system
performance through a reduced value of the so-called Q
parameter.6 In contrast, frequency fluctuations affect
the pulse position within the bit slot and introduce the
GH timing jitter that also affects the system performance.
In this paper we focus exclusively on the timing jitter is-
sue.

Optical pulse propagation inside any kind of fiber is
governed by the nonlinear Schrödinger equation6

i
]U

]z
2

b2

2

]2U

]t2 1 guUu2U 5 2
ia

2
U, (1)

where U is the slowly varying amplitude of the pulse en-
velope, a accounts for fiber losses, b2 is the group-velocity
dispersion (GVD) coefficient, and g is the nonlinear pa-
rameter that is responsible for self-phase modulation.
For a DM system Eq. (1) cannot be solved analytically be-
cause the three parameters a, b2 , and g are not constants
but vary along the fiber link. Approximate solutions
have been obtained with a variational technique for DM
light-wave systems and were found through numerical
simulations to be reasonably accurate.10–14

The use of numerical solutions for calculating GH tim-
ing jitter is quite time consuming because of the statisti-
cal nature of the problem. The moment method,9 devel-
oped as early as 1971 for the study of self-focusing of laser
beams, provides a short cut for evaluating timing jitter
in DM systems.7 In the moment method, one introduces
pulse energy E, pulse position T, and frequency shift W
(from the original carrier frequency) by using the formu-
las
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where the subscript t denotes a time derivative. One can
use nonlinear Schrödinger equation to find how E, T, and
W vary along the DM link. Differentiating Eqs. (2)–(4)
with respect to z and using Eq. (1), we find that
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5 2aE,
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5 b2W,

dW

dz
5 0. (5)

At each amplifier, E, T, and W change because of gain-
and amplifier-induced noise. As we mentioned above,
noise-induced changes in the pulse energy caused by in-
tensity fluctuations are not considered in this paper.
Thus, pulse energy E is a deterministic quantity that de-
creases as exp(2az) in each fiber section. By construc-
tion, amplifier gain compensates for all fiber losses that
accumulate in the preceding fiber section. Frequency
shift W and temporal shift T are affected by amplifier
noise and change in a random fashion. If we add fluctua-
tions at each amplifier as random kicks at the location of
each amplifier, W and T vary along the fiber link accord-
ing to the equations
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where dWi and dTi are the random frequency and time
kicks imparted by noise at the ith amplifier. These kicks
depend on the amplifier-noise strength and on various
pulse parameters such as width and chirp of the pulse.
The GH jitter can be calculated by solution of Eqs. (6) and
(7).

3. FREQUENCY AND TIME KICKS
Before proceeding with the jitter calculation, we need to
know the statistical properties of the random frequency
and time kicks inside each amplifier. Let dU be the
amount by which amplifier noise changes pulse amplitude
U. At each amplifier, dU is a random function of time.
Furthermore, the changes imposed by different amplifiers
are independent. These properties are quantified by the
equations

^dUi~ti!dUj~tj!& 5 0, (8)

^dUi* ~ti!dUj~tj!& 5 Sid ij~ti 2 tj!, (9)

where ^ & denotes an ensemble average. Source term
Si 5 nsphn(Gi 2 1), where nsp is the spontaneous-
emission factor6 h is the Planck constant, n is the carrier
frequency of the pulse, and Gi is the amplification pro-
vided by the ith amplifier. Physically, Si represents the
spectral density of spontaneous-emission noise.

To quantify the statistical properties of the frequency
and time kicks we use Eqs. (3) and (4) to determine the
kicks and Eqs. (8) and (9) to evaluate their correlations.
Because the changes in pulse amplitude at the various
amplifiers are independent, so also are the frequency and
time kicks. At any amplifier, the frequency and time
kicks have the properties (the subscript i is not shown ex-
plicitly for simplicity of notation)
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where V 5 U exp(iWt). Equations (10)–(12) were de-
rived by Grigoryan et al.,7 who used the numerical solu-
tion of the nonlinear Schrödinger equation in the absence
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of noise to find U and calculate the variances and the
cross correlation of dW and dT.

We use a different approach that permits us to evaluate
these quantities approximately in an analytic form.
More specifically, we employ the Gaussian-shape ansatz,
that is used commonly in a variational analysis of DM
systems and has been found through numerical simula-
tions to be reasonable.10–14 In this approach each pulse
is approximated by a chirped Gaussian pulse of the form

U 5 a exp@if 2 iW~t 2 T ! 2 ~1 1 ic !~t 2 T !2/2t 2#,
(13)

where amplitude a, phase f, frequency W, time delay T,
chirp c, and width t are functions of z. By substituting
Eq. (13) into Eqs. (10)–(12) we find that

^dW2& 5 ~S/E !@~1 1 c2!/t 2#, (14)

^dWdT& 5 ~S/E !c, (15)

^dT2& 5 ~S/E !t 2. (16)

As expected, variances of frequency and time kicks, and
their correlation, are directly proportional to noise
strength S but are inversely proportional to pulse energy
E. This inverse dependence on pulse energy is in agree-
ment with the Gordon–Haus result1 when it is written in
a nonnormalized form. In fact, the Gordon–Haus result
can be obtained from the moment method if the fiber is
assumed to have uniform dispersion and the pulse shape
is assumed to be unchirped, with a sech profile. It should
be stressed that, although the moment method is appli-
cable for pulses of arbitrary shapes, Eq. (13) assumes
Gaussian-shaped pulses. For this reason, Eqs. (14)–(16)
can also be obtained by use of a variational approach
based on the Gaussian-shape ansatz.

4. GROWTH OF FREQUENCY AND TIME
SHIFTS
In this section we calculate how the frequency and time
kicks imparted at each amplifier accumulate as the
pulse traverses the entire fiber link. To simplify the cal-
culation we use the minimum pulse width tm along the
link (i.e., the width of the pulse at the transmitter before
it is chirped) for normalization purposes. We introduce
W̄ 5 Wtm and T̄ 5 T/tm as normalized frequency and
time shifts but ignore the overbar for notational simplic-
ity. As a result, W and T are dimensionless quantities in
what follows.

To consider the most general case, we allow for the pos-
sibility that more than one amplifier may be used within
each stage (map period). Consider a DM system with ns
stages, each of which has na amplifiers. Henceforth we
use subscript i to denote a stage number and subscript j
to denote an amplifier number within a stage. By inte-
grating Eqs. (6) and (7) over the fiber section between the
( j 2 1)st and the jth amplifier within the ith stage and
averaging the results, we find that
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is related to the net dispersion in the fiber section be-
tween the amplifiers j 2 1 and j. With the exception of
dj , all quantities in Eqs. (17)–(19) depend implicitly on i.

We apply Eqs. (17)–(19) repeatedly to model pulse
propagation over the entire ith stage. The result is given
by
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Coefficients Ai and Ci are the noise-induced changes in
the frequency and time variances that accumulate over
stage i, and Bi is the noise-induced change in the correla-
tion. Whereas Ai depends only on the frequency kicks,
Bi depends on the correlation kicks and the frequency
kicks (modified by dispersion) and Ci depends on the time
kicks, the correlation kicks, and the frequency kicks
(modified by dispersion).

Equation (23) can be used for calculating the GH tim-
ing jitter over the ith stage. One obtains the total timing
jitter by adding the contributions of ns stages. However,
this step requires knowledge of the coefficients in Eqs.
(24)–(26). The jitter calculation is simplified consider-
ably for DM solitons, which propagate from stage to stage
in a periodic fashion. For this reason we consider the
soliton case first. The nonsoliton case in which pulses
propagate from section to section in a linear but aperiodic
fashion is considered afterward.

5. PERIODIC PROPAGATION
In this section we apply our general formalism to DM soli-
ton systems. Soliton systems are designed such that the
pulse parameters recover their initial values at the end of
each stage of length equal to the map period.15–18 The
periodic nature of pulse propagation simplifies the sum-
mations in Eqs. (21)–(23) considerably because Ai , Bi ,
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and Ci become independent of i. For this reason we drop
the subscript i from these quantities. We use the varia-
tional analysis of DM systems12–14 to find the three pulse
parameters E, t, and c at the beginning of the first stage.
We assume that the initial chirp is generated by propaga-
tion of the pulse through a fiber (called precompensation
fiber) of length Lp and dispersion b2p . For such a light-
wave system it is possible to solve Eqs. (21)–(23) itera-
tively for an arbitrary number of stages. The result is
given by

^W2&ns
5 Ans , (27)

^WT&ns
5 Bns 1 Ads~ns 2 1 !/2, (28)

^T2&ns
5 Cns 1 Bdsns~ns 2 1 !

1 Ads
2ns~ns 2 1 !~2ns 2 1 !/6, (29)

where A, B, and C include the sum over the number of
amplifiers per stage, as indicated in Eqs. (24)–(26).
Equation (29) is our main result in this section. Our ap-
proach provides an analytic expression for the timing jit-
ter that is valid even when multiple amplifiers are used
within each stage. This equation also applies to the case
of dense DM in which multiple map periods are used be-
tween two amplifiers.8

The values of the coefficients A, B, and C in Eq. (29)
depend on the dispersion map and the gain distribution,
which determine the pulse energy and the prechirp. To
demonstrate the most interesting features as simply as
possible, we focus on a 10-Gbit/s system, using two spe-
cific dispersion maps with a map period Lm of ;80 km
(typical value in practice) and consider how the jitter is
affected when a second amplifier is placed within each
stage. One map consists of a 76-km anomalous-GVD sec-
tion of dispersion-shifted fiber @D 5 4 ps/(km-nm),
a50.2 dB/km, Aeff 5 55 mm2], followed by a 3.6-km sec-
tion of dispersion-compensating fiber @D
5 280 ps/(km-nm), a50.4 dB/km, Aeff 5 55 mm2], re-

sulting in an average dispersion of D̄ 5 0.2 ps/(km/nm).
For the 30-ps (full width TFW at half-maximum) un-
chirped pulses used for numerics, the map strength, de-
fined as

S 5 uD1L1 2 D2L2u/TFW
2, (30)

has a relatively low value of S 5 0.62 for this map. An
amplifier is placed at the end of each DM stage of
length Lm 5 79.6 km. The spectral density of noise
is calculated from nsp 5 1.3 (noise figure of ;4.1 dB
for the lumped amplifier). The solid curve in Fig. 1
shows the timing jitter at the end of each amplifier
as a function of transmission distance for tm 5 18.02 ps
(TFW 5 30 ps), nsp 5 1.3, and hn 5 0.8 eV. The
input chirp is c0 5 0.25 and the input peak power is
P0 5 2.74 mW for solitons propagating in such a light-
wave system.

To see how the jitter is affected by a second amplifier
placed in each DM stage, we optimize the location of the
second amplifier such that pulse breathing is minimized.
For the map under consideration this occurs when the
amplifier is placed at a transmission distance of 35 km in
the dispersion-shifted fiber section of the map. The dot-
ted curve in Figure 1 shows that the GH jitter is reduced
considerably when two amplifiers are used within each
DM stage. We can understand this result by noting that
the gain of each amplifier is lower, resulting in a lower
value of spectral density S. In Fig. 1 the jitter is reduced
by a factor of ;2 when two amplifiers are used.

The second map is designed with standard fiber and
consists of a 66-km anomalous-GVD section of standard-
telecommunication fiber @D 5 16 ps/(km-nm), a50.2 dB/
km, Aeff 5 55 mm2], followed by a 13-km section of
dispersion-compensating fiber @D 5 280 ps/(km-nm),
a50.4 dB/km, Aeff 5 55 mm2], resulting in an average
dispersion of approximately D̄ 5 0.2 ps/(km-nm). From
Eq. (30), the map strength with TFW 5 30 ps is given by
S 5 2.33, indicating considerable breathing of pulse
width in each map period. An amplifier is placed at the
end of each DM stage of length Lm 5 79 km. The solid
curve in Fig. 2 shows the timing jitter at the end of each
amplifier as a function of transmission distance for soli-
tons of the same width used in Fig. 1 to ensure a fair com-
parison. The input chirp is c0 5 0.765 and the input
peak power is P0 5 4.86 mW for solitons propagating in
such a light-wave system. The dashed curve in Fig. 2
shows how jitter is affected when a second amplifier is
placed within each DM stage at a transmission distance
of 24 km (location optimized to minimize pulse breath-
ing). For this location of the amplifier, P050.944 mW,
c0 5 2.05, and the chirp at the intermediate amplifier is
0.534.

A comparison of Figs. 1 and 2 shows several interesting
features. Timing jitter is smaller for the map made with
the standard fiber when one amplifier is used in each
stage. This is a consequence of the higher pulse peak
powers needed for a map with larger strengths. The re-
sultant larger values of pulse energy E reduce fluctua-
tions as indicated in Eqs. (10)–(12). The second amplifier
may increase or decrease the jitter, depending on trans-
mission distance L. For distances up to 2400 km the GH
jitter is greater when two amplifiers are used in each
stage. For longer distances the second amplifier reduces

Fig. 1. Timing jitter for a 10-Gbit/s soliton DM system as a func-
tion of transmission distance. A single amplifier is placed at the
end of each 79-km map period (solid curve), whereas a second
amplifier is present at a transmission distance of 35 km for the
dashed curve. The map has a strength of 0.62 and an average
dispersion of 0.2 ps/(km-nm).



644 J. Opt. Soc. Am. B/Vol. 19, No. 4 /April 2002 McKinstrie et al.
the jitter by a large amount (as much as a factor of 4 in
Fig. 2). The reason behind this somewhat surprising re-
sult is related to the contribution of the B term in Eq.
(29). The second term in Eq. (25) depends on the GVD
accumulated up to the location of the amplifier. For an
amplifier located at the end of each map period, udku in
Eq. (25) is relatively small, but it can be quite large for
the second amplifier located within the map. As a result,
the B term contribution becomes large at moderate dis-
tances even though this term grows as L2 while the A
term grows as L3. This discussion indicates that the use
of multiple amplifiers in each map period can be benefi-
cial for light-wave systems designed with standard fibers
but that the amplifier locations should be chosen judi-
ciously.

To study the multiamplifier case analytically and find
the extent of jitter reduction, we consider the GH timing
jitter in long-haul light-wave systems for which ns is so
large that the dominant contribution to timing jitter
comes from the A term in Eq. (29), which exhibits a cubic
dependence on ns . As discussed above, this limit may
require more than 100 amplifiers, depending on the map
design. In the limit ns @ 1, the dominant A term be-
comes

^T2&ns
' Ans~nsds!

2/3. (31)

Coefficient A is obtained from Eqs. (14) and (24). If we
use the relation (1 1 c0

2)/t0
2 ' 1/tm

2, where tm is the
minimum pulse width within each map period (that is
also equal to the width of the pulse at the transmitter be-
fore it is launched into the precompensation fiber), we can
rewrite relation (31) in physical units as

^T2&ns
'

nsphnb̄2
2L3

3lstm
2 (

j51

na Gj 2 1

Ej
, (32)

where ls is the length of a single stage and L 5 nsls is the
length of the entire DM system. The quantities Ej and
Gj represent the pulse energy at the end of the jth ampli-
fier with gain Gj .

Fig. 2. Same as Fig. 1, except that here the map consists of
66 km of standard fiber followed by 13 km of dispersion-
compensating fiber, resulting in a map strength of 2.33 and an
average dispersion of 0.2 ps/(km-nm). The second amplifier is
placed at a transmission distance of 24 km.
Relation (32) generalizes the previously derived expres-
sion for timing jitter8 to the case in which multiple ampli-
fiers are used within each map period. Many light-wave
systems are designed with only one amplifier per stage.
In that case the last factor reduces to @exp(als)21#/E0 ,
where E0 is the energy of pulses launched at the input
end and the two kinds of fiber within the map are as-
sumed to have the same value of loss parameter a (it is
assumed to be different in numerical simulations, as is
also the case in practice). With several identical ampli-
fiers per stage such that they have the same gain and are
spaced apart by ls /na , Gj 5 exp( als /na) 5 Gt

1/na, where
Gt 5 exp(als) is the total gain of the all amplifiers in each
stage of length ls . The pulse energy at the output of
each amplifier is also the same because each amplifier is
designed to recover the input pulse energy. We can thus
set Ej 5 E0 in relation (32). The change in timing jitter
with the use of multiple amplifiers is then given by a re-
duction factor defined as

fr~na! 5
^T2&na

^T2&na51
5 na

Gt
1/na 2 1

Gt 2 1
. (33)

Figure 3 shows the reduction factor as a function of na
for several values of stage length ls (map period). Al-
though there is a limit to how large na can be in practice,
the use of several amplifiers reduces timing jitter in the
same way that it reduces amplifier noise.19 The reduc-
tion factor is relatively small when the stage length is
only 25 km but can exceed 5 for a 75-km map. Notice
also that almost the entire reduction occurs when a sec-
ond or third amplifier is placed. For a 75-km map, the
second amplifier reduces the jitter by a factor of 3. This
result is consistent with that shown in Fig. 1 when the
second amplifier is roughly in the middle of the map. In
the case of Fig. 2, the second amplifier is not in the
middle, and Eq. (33) does not apply. Nevertheless, jitter
is seen to be reduced by approximately a factor of 3.

The limit in which na tends to infinity corresponds to
the case of uniformly distributed amplification. Our
analysis shows that timing jitter is reduced when distrib-
uted amplification is used in place of one lumped ampli-
fier per stage, and the reduction factor is given by

Fig. 3. Reduction in timing jitter when several amplifiers are
placed at equal distances in each map period.
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^T2&distrib

^T2& lumped
5

als

exp~als! 2 1
5

ln Gt

Gt 2 1
, (34)

where Gt is the total gain of the single lumped amplifier.
As a simple example, for an 80-km map period, Gt 5 40
if we assume a total loss of 16 dB over ls 5 80 km. Tim-
ing jitter should be reduced by a factor of 10.6 according
to Eq. (34). However, this result is based on the assump-
tion that input pulse parameters remain unchanged in
the two cases. In practice, the periodicity condition re-
quires lower pulse energies in the case of distributed am-
plification. Inasmuch as frequency noise variance scales
inversely with E in Eq. (14), the reduction in timing jitter
in practice is expected to be considerably smaller than
that predicted by Eq. (34).

6. EFFECT OF POSTCOMPENSATION
In this section we consider the effect of postcompensation
of residual dispersion nsds on the timing jitter. A post-
compensation fiber of length Lf with dispersion b2 f is
placed after the last amplifier such that the total disper-
sion of the entire fiber link becomes small (even zero).
We can calculate the effects of a postcompensation fiber
on the frequency and time shifts, and their correlation, by
omitting the noise terms in Eqs. (21)–(23) and replacing
i 2 1 with ns , i with f, and ds with df 5 b2 fLf /tm

2. Fo-
cusing again on the dominant A term, which varies as
ns

3, and introducing y 5 2df /(nsds), where y represents
the fraction of postcompensation, we find the final jitter at
the end of the postcompensation fiber:

^T2& f ' Ans~nsds!
2~ y2 2 y 1 1/3!. (35)

The minimum value occurs for y 5 0.5, and the jitter
variance is reduced by a factor of 4 for this minimum
value. The same conclusion was reached in an earlier
study in which constant-dispersion fibers were used.20

Our analysis shows that postcompensation is also useful
for DM soliton systems.

To study how postcompensation affects timing jitter, we
consider the 10-Gbit/s soliton systems with the dispersion
map used for Fig. 2 @D̄ 5 20.2 ps/(km-nm), S 5 2.33].
Figure 4 shows changes in timing jitter for several values
of y when a single amplifier per map period is used. In
the absence of postcompensation ( y 5 0), jitter becomes
quite large with increasing distance (the dotted curve in
Fig. 4). Even a small value of postcompensation reduces
jitter considerably. The three most noteworthy proper-
ties of the single-amplifier system are that (i) jitter can be
reduced but cannot be eliminated through postcompensa-
tion, (ii) jitter can be minimized with an optimum length
of postcompensation fiber ( y 5 0.5), and (iii) 100% post-
compensation makes the situation worse than when there
is no compensation. We have also shown what happens
when y 5 20.5 to emphasize that even an increase in the
net dispersion is better for distances below 2500 km
rather than full compensation ( y 5 1). This is so be-
cause the B term in Eq. (29) also contributes significantly
to the timing jitter for moderate distances, whereas rela-
tion (35) is based on the dominant A term.

One can reduce the timing jitter whether ds is positive
or negative. However, if ds has the same sign as the
GVD of the first fiber in each stage (and hence the sign
opposite the GVD of the prechirp fiber), the GVDs of the
prechirp and postcompensation fibers will have the same
sign, and the pulses will broaden monotonically in the
postcompensation fiber. This broadening may reduce the
eye opening. Consequently, postcompensation is most
useful when the average GVD has the sign opposite that
of the GVD of the first fiber in each stage, and the reduc-
tion in timing jitter coincides with the narrowing of the
pulses in the postcompensation fiber.

An interesting question is whether postcompensation
remains an effective technique for reducing timing jitter
even when several amplifiers are used in each map pe-
riod. Figure 5 shows the jitter under conditions identical
to those of Fig. 4, except that here a second amplifier is
placed at a transmission distance of 24 km (location opti-
mized to reduce the extent of pulse breathing). The op-
timum value of y is now given by yopt 5 0.5
1 B/(Ansds). It depends on the ratio B/A and varies

from 20.5 to 0.5 as the as the distance increases above
10,000 km. Indeed, in Fig. 4 negative values of y, which

Fig. 4. Effect of postcompensation on timing jitter of a 10-Gbit/s
DM soliton system for the dispersion map used in Fig. 2 (map
strength, S 5 2.33). Jitter is plotted as a function of transmis-
sion distance for four values of y that represent the fraction of
postcompensation.

Fig. 5. Same as Fig. 4, except that a second amplifier is placed
at a transmission distance of 24 km.
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increase the net dispersion, produce the lowest value of
timing jitter for distances up to 5000 km. The reason for
this is related to the contribution of the B term in Eq.
(29), which scales as ns

2. As discussed above, this be-
havior is caused by the B term in Eq. (20), which is pro-
portional to the chirp and scales as ns

2. The presence of
the second amplifier causes the chirp to be large at the lo-
cation of the first amplifier. It appears that the contribu-
tion of the B term can be canceled under some conditions
by use of negative values of postcompensation parameter
y. These results suggest that the role of postcompensa-
tion requires a careful analysis when multiple amplifiers
are used in each map period.

7. APERIODIC PROPAGATION
In this section we focus on a CRZ light-wave system in
which input pulses are prechirped and then propagated
along the DM link in a quasi-linear fashion without the
necessity for periodicity; i.e., pulse width and chirp are
not intended to recover their input values after each am-
plifier. A postcompensation fiber is still used to reduce
the average dispersion to close to zero. We investigate
how timing jitter evolves in such a quasi-linear aperiodic
system. As before, both time and frequencies are nor-
malized with tm for scaling.

For (low-power) CRZ systems,21–24 the dependences of
chirp and width on distance are well approximated by
analytical solutions of the linear Schrödinger equation.4

In fact, the combination (1 1 c2)/t 2 remains constant be-
cause it is related to the pulse spectral width, which re-
mains unchanged in a linear system. Consequently,
when the average dispersion is nonzero, the chirp and the
width have different values at every amplifier in every
stage. The solution of Eqs. (21)–(23) can be written in
terms of width tm of the unchirped width at the transmit-
ter. Let cij be the chirp at the jth amplifier in the ith
stage. Then the linear propagation of a pulse through
the aperiodic DM system shows that the chirp accumu-
lates as

cij 5 c0 1 F ~i 2 1 !ds 1 (
k51

j

dkG , (36)

where c0 5 dp 5 b2pLp /tm
2 is the (initial) chirp at

z 5 0. Here b2p is the dispersion parameter of the fiber
of length Lp used for pulse prechirping.

In the linear regime the frequency kicks do not depend
on the pulse shape. They do depend on the pulse energy
and the amplifier gain, both of which evolve periodically.
It follows from Eqs. (14) and (24) that

Ai 5 (
j51

na

^dWj
2& 5 Sj /Ej (37)

is independent of i. In what follows, we use A in place of
Ai to use this feature explicitly. In contrast, Bi and Ci do
depend on stage index i. The correlation kicks depend on
the chirp, which depends on i and j. By substituting Eq.
(36) into Eq. (25) we obtain

Bi 5 A~c0 1 ids!. (38)
The time kicks depend on t 2/tm
2 5 1 1 c2, which de-

pends on i and j. By substituting Eq. (36) into Eq. (26)
we find that

Ci 5 A@1 1 ~c0 1 ids!
2#. (39)

Although the solution of Eqs. (21)–(23) requires more
algebra for variable coefficients than for constant coeffi-
cients, the algebra is straightforward. The variances and
the cross correlation of W and T are found to be given by
the relatively simple expressions

^W2&ns
5 Ans , (40)

^WT&ns
5 Ans~nsds 1 dp!, (41)

^T2&ns
5 Ans@1 1 ~nsds 1 dp!2#. (42)

As can be seen, the three moments depend on the simple
combination nsds 1 dp , which is the total dispersion
along the link. To calculate the effects of a postcompen-
sation fiber on frequency and time shifts, and their corre-
lation, we omit the noise terms in Eqs. (21)–(23) and re-
place i 2 1 with ns , i with f, and ds with df . The final
result is

^W2&ns
5 Ans , (43)

^WT&ns
5 Ans~nsds 1 dp 1 df!, (44)

^T2&ns
5 Ans@1 1 ~nsds 1 dp 1 df!

2#. (45)

The three moments depend only on the total (precompen-
sated and postcompensated) dispersion. Equations (43)–
(45) are multiple-amplifier generalizations of the single-
amplifier equations in Ref. 8. The timing jitter
expression in Eq. (45) is quite simple. We focus on it in
Section 8.

8. EFFECTS OF PRECOMPENSATION AND
POSTCOMPENSATION
In the absence of precompression or postcompensation,
the timing jitter of a quasi-linear DM system with ds
Þ 0 varies as

^T2&ns
' Ans~nsds!

2. (46)

Comparison with the soliton case shows that the GH jitter
is larger for the linear DM system by a factor of 3 if we
assume the same pulse energy in both cases. However,
validating the quasi-linear approximation requires that
pulse energy E be lower, making the GH jitter larger by
more than a factor of 10 for low-energy pulses. It can be
reduced significantly by use of two or more amplifiers per
map period. Figure 6 shows, as an example, the GH jit-
ter for a CRZ system designed with the same dispersion
map used for Fig. 2 (66 km of standard fiber with 13 km of
dispersion-compensated fiber). To ensure the quasi-
linear nature of pulse propagation, we take the peak
power of each pulse to be only 10% of the peak power
needed in the case of DM solitons. At a distance of 8000
km, jitter exceeds 18 ps when only one amplifier is used
every 79 km. This value of jitter is so large that a 10-
Gbit/s quasi-linear system would be inoperable. How-



McKinstrie et al. Vol. 19, No. 4 /April 2002 /J. Opt. Soc. Am. B 647
ever, the use of a second amplifier reduces the jitter to 7
ps, a value that is acceptable for 10-Gbit/s systems.

A comparison of Figs. 2 and 6 shows that the timing jit-
ter is larger for a CRZ system than for a DM soliton sys-
tem. The reason for large jitter in Fig. 6 is related to the
residual dispersion of 0.2 ps/(km-nm) for each map period.
One can reduce the final variance of the timing jitter to
Ans by setting dp 1 df 5 2nsds , a condition that corre-
sponds to complete dispersion compensation. This be-
havior is confirmed in Fig. 6, which shows that the jitter
is reduced to 3 ps when postcompensation reduces the av-
erage GVD to zero for the entire link. This value should
be compared with the y 5 1 curve in Fig. 4, where the ef-
fect of complete postcompensation on solitons is shown.
The GH jitter under such conditions is less for a linear
CRZ system than for DM solitons.

Although the final timing jitter does not depend on the
ratio of precompensation to postcompensation, the timing
jitter within the system does. In a purely linear CRZ sys-
tem, it does not matter how dp and df are chosen as long
as dp 1 df 5 2nsds . However, most practical CRZ sys-
tems suffer from nonlinear effects to some extent. An
important nonlinear effect is related to pulse-to-pulse in-
teractions. One might try to minimize the timing jitter
within the entire system to minimize the effects of pulse-
to-pulse interactions. At the end of stage i the timing jit-
ter is given by Eq. (42), with ns replaced by i. It is con-
venient to rewrite the right-hand side of Eq. (42) as
Ans(nsds)

2F(z, x), where

F~z, x ! 5 z@e 1 ~z 2 x !2#. (47)

z 5 i/ns is the fractional distance, x 5 2dp /(nsds) is the
fractional precompensation, and e 5 1/(nsds)

2. In most
cases, e ! 1, and we can determine the optimal compen-
sation ratio perturbatively. The analysis is facilitated by
the idealization that z is a continuous variable. When
x 5 0, F is a monotonically increasing function of z.
When 0 , x < 1, F has a local maximum within the sys-
tem. This local maximum is attained when

Fig. 6. Timing jitter for a 10-Gbit/s quasi-linear CRZ system as
a function of transmission distance for the same map used for
Fig. 2. The second amplifier, placed at a transmission distance
of 24 km, reduces the jitter by a factor of ;3 (dotted curve).
zm ' x/3 1 e/2x. (48)

The interior timing jitter is governed by the function
F@zm(x), x#, which is an increasing function of x. In con-
trast, the boundary timing jitter (at the end of each stage)
is governed by F(1, x), which is a decreasing function of x.
The maximum value of jitter in each stage is the larger of
the two timing jitters. It attains its minimum when
F@zm(x), x# 5 F(1, x). This condition is satisfied when

xm ' 3/4 1 e. (49)

This simple result predicts that the jitter along the entire
link can be minimized when ;75% of the link dispersion
is compensated for at the transmitter, with the remaining
25% compensated for after the last amplifier.

To verify this prediction numerically, in Fig. 7 we plot
timing jitter as a function of ns for two amplifiers per map
period and the same dispersion map that was used in Fig.
6. The peak power of each pulse is again only 10% of the
peak power needed in the case of DM solitons. Figure 7
shows that for a specific choice xm ' 3/4 of precompensa-
tion and postcompensation, the jitter is indeed minimized
along the entire CRZ system at the location of amplifiers.

The preceding analysis describes how one can minimize
the timing jitter within the system at the ends of various
stages. According to Eq. (7), the timing jitter oscillates
between the amplifiers within each stage. For systems
in which pulse-to-pulse interactions facilitated by timing
jitter cause severe problems, intrastage oscillations in
timing jitter should also be taken into account, in a man-
ner similar to that described in Section 7.

9. SUMMARY
In this paper we have presented an analytic theory of tim-
ing jitter in DM light-wave systems based on the moment
method and on the assumption of a chirped Gaussian
pulse. Our expression of the timing jitter can be used in
the case of dense DM systems achieved by use of multiple

Fig. 7. Effects of precompensation and postcompensation on
timing jitter of a 10-Gbit/s CRZ system for the same dispersion
map used in Fig. 2: (a) No precompensation and complete post-
compensation; (b) complete precompensation and no postcompen-
sation; (c) 77% precompensation and 23% postcompensation.
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map periods between two neighboring amplifiers. It also
applies in the opposite case in which more than one am-
plifier is used within each map period.

We have applied the general formalism to a soliton DM
system and found a simple analytic expression for the
timing jitter at the ends of such systems. We used this
result to study the effect of a second amplifier within each
map period on the timing jitter. Depending on the dis-
persion map’s details and the transmission distance, the
total jitter may increase or decrease when two amplifiers
per map period are used. In the case of a dispersion map
composed with fibers with high local dispersion (large
map strength), the use of a second amplifier can reduce
the total jitter considerably for long-haul systems, pro-
vided that the second amplifier is placed at a location that
reduces the extent of pulse breathing.

We have investigated the effect of postcompensation of
the total accumulated dispersion on timing jitter of soli-
ton systems. Our results indicate that postcompensation
can be beneficial, provided that its magnitude is opti-
mized properly. More specifically, postcompensation of
residual dispersion by 50% reduces the jitter by a factor of
2 at long distances when a single amplifier is used for
each map period. However, jitter actually increases if
the residual dispersion is eliminated completely by use of
a postcompensation fiber. When there are two or more
amplifiers within each map period the situation becomes
complex, to the extent that an increase in the average dis-
persion may reduce the jitter for moderate distances.

We also applied our analytic theory to a low-power CRZ
system designed such that a prechirped pulse propagates
through the dispersion map without recovering its initial
values at the end of each map period. We were able to
obtain a relatively simple analytic expression for the tim-
ing jitter in such systems, even including the effects of
both precompensation and postcompensation. In gen-
eral, 100% compensation of the total dispersion is essen-
tial for realizing jitter values comparable with those ob-
tained for DM solitons. One may ask what fraction of the
dispersion should be precompensated. We used our ana-
lytic formula to explore the optimum values of precom-
pensation and postcompensation and found that the tim-
ing jitter can be minimized all along the fiber link when
75% of the total dispersion is compensated for at the
transmitter while the remaining 25% is compensated for
at the receiver end for large distances.
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