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Abstract

We show that a limiting bit rate exists for dispersion-managed soliton systems and it depends only on the dispersion-

map configuration. We introduce a new map parameter that determines the minimum input pulse width that can be

launched into a dispersion-managed soliton system. We use this parameter to provide simple design rules and ap-

proximate analytic expressions for the three input pulse parameters (pulse width, chirp, and energy) for a two-fiber-

section dispersion map and verify their accuracy numerically. The results confirm the known empirical result that pulse

interactions are minimized for a map strength of about 1.6. They also explain why dense dispersion management is

needed at high bit rates. � 2002 Published by Elsevier Science B.V.

1. Introduction

Dispersion management has proven to be an
important technique as it can be used to lower the
average dispersion of a fiber link even though the
group-velocity dispersion (GVD) is kept relatively
large locally for suppressing four-wave mixing.
The use of dispersion-managed (DM) solitons
provides a number of advantages over the con-
ventional solitons occurring in constant-GVD fi-
bers [1]. However, the design of DM soliton
system requires a careful choice of input parame-
ters (such as the pulse energy, width, and chirp) to
ensure that each soliton recovers its input state
after each map period. A variational technique is

commonly used to find the periodic solutions of a
dispersion map [2]. However, its use still requires a
numerical approach. In this paper we propose
simple design rules that can be quite beneficial in
practice.

The paper is organized as follows. Section 2
outlines the variational approach. The resulting
variational equations for the pulse width and
chirp are solved numerically to show that a
minimum value of the input pulse width exists
for all maps. This minimum value is estimated in
Section 3 by solving the variational equations
approximately and is shown to depend on a
single map parameter Tmap. We use this param-
eter in Section 4 to provide a few simple design
rules. The input pulse energy is estimated in
Section 5. This approach allows us to find ana-
lytic expressions for the pulse energy, width, and
chirp. The main results are summarized in Sec-
tion 6.
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2. Variational analysis

Pulse propagation in a DM lightwave system
can be described by the following nonlinear
Schr€oodinger equation [3]:

i
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o2A
ot2

þ cjAj2A ¼ � i

2
aA; ð1Þ

where A is the pulse amplitude, b2 is the GVD
parameter, c is a nonlinear coefficient, and a ac-
counts for fiber losses and its periodic compensa-
tion through optical amplifiers. All three
parameters are periodic functions of z for a DM
system. The variational method solves Eq. (1) with
the following ansatsz:
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where E � E0e
�az is the energy, E0 being the input

energy of the pulse, T is the width, C is the chirp, X
is the frequency shift, and / is the phase of the
pulse. All five parameters are periodic functions of
z. In practice, X and / can be chosen to be zero at
z¼ 0. However, the input values E0; T0, and C0 of
the remaining three parameters need to be speci-
fied to ensure periodic propagation of the input
pulse through the dispersion map. The evolution
of the pulse width T ðzÞ and the chirp CðzÞ in each
fiber section of a DM system is described by the
following two coupled equations [1]:

dT
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¼ b2C
T

; ð3Þ
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p
T

þ b2 1þ C2ð Þ
T 2
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The DM soliton corresponds to a solution of Eqs.
(3) and (4) with the periodic boundary conditions:
T ð0Þ ¼ T ðLAÞ and Cð0Þ ¼ CðLAÞ, LA being the
amplification period in the system.

Solving the above two variational equations
numerically, we find periodic solutions over a rel-
atively large range of input energy E0. For illus-
tration purposes, we focus on two kinds of maps
that are used commonly in practice. Each map is
made of two types of fibers with dispersions b21

and b22 and lengths l1 and l2. The map A consists
of dispersion-shifted and reverse-dispersion fibers
of nearly equal length ðl1 	 l2 ¼ 5 kmÞ with

b21 ¼ �b22 ¼ �4 ps2=km: The map B is made us-
ing standard (SMF) fiber of 60-km length
ðb21 ¼ �22 ps2=kmÞ and dispersion-compensating
fiber of about 14.5 km length ðb21 ¼ 100 ps2=kmÞ.
We adjust the average dispersion of the map in the
range �0:005 ps2=km to �0:15 ps2=km by chang-
ing the length l2. Although the nonlinear param-
eter c is generally different for different types of
fibers, in this work we use c ¼ 2:5 W�1 km�1 un-
less stated otherwise. This choice does not affect
our conclusions.

Fig. 1 shows the values of input pulse width as
a function of E0 for the dispersion map A with
average dispersion b2 ¼ �0:01 ps2=km: The
curves marked ‘‘T0’’ represent the input width
while the curves ‘‘Tm’’ correspond to the minimum
pulse width occurring in the fiber section with
anomalous GVD. The inset shows the input chirp
C0 as a function of E0. Solid curves in Fig. 1
represent the loss-less case ða ¼ 0Þ and dashed
curves correspond to a loss of 0.25 dB/km in each
fiber section. We focus on the case of dense

Fig. 1. Input pulse width T0 and corresponding minimum pulse

width Tm as a function of input energy E0 for the map A with

b2 ¼ �0:01 ps2=km. The dependence of input and minimum

pulse widths on the input energy value. Solid curves are for the

loss-less case (a ¼ 0), while a ¼ 0:25 dB=km for dashed. The

inset shows the input chirp in the two cases.
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dispersion management [4–7] in the case of map A
and assume that the amplification period LA in-
cludes 8 map periods Lm : LA ¼ 8Lm ¼ 80 km: We
have verified that the input parameters shown in
Fig. 1 lead to stable propagation of solitons over
more that 105 km (in the absence of noise) when
Eq. (1) is solved numerically by using the split-
step method.

For low pulse energies, both T0 and Tm decrease
rapidly. Moreover, T0 and Tm values nearly coin-
cide, indicating that in this region pulse width does
not oscillate and remains nearly equal to T0. An
important feature is that at some value of E0 ¼ Ec

the curve T0ðE0Þ has a minimum value Tmin
0 . When

E0 exceeds Ec; T0 and Tm curves diverge from each
other, and pulse width starts to oscillate more and
more within each fiber section. The qualitative
character of the curve TmðE0Þ also changes around
Ec from a rapid to a relatively slow decrease, while
T0 slowly increases. The qualitative features shown
in Fig. 1 hold for any two-section dispersion map
having negative b2.

Two parameters are especially important for
DM solitons—the ratio b2=c [8] and the stretching
factor St [9]. In place of the stretching factor we
introduce a new parameter

Tmap �
b21b22l1l2

b21l1 � b22l2

����
����
1=2

; ð5Þ

which depends only on the map parameters b2j and
lj and has units of time. The use of this parameter
is justified later. Fig. 2 shows variations of T0ðE0Þ
and TmðE0Þ for two values of the ratio b2=c and
two values of Tmap. Dispersion maps A (solid
curves) and B (dashed curves), each with two dif-
ferent values of average dispersion ðb2 ¼ �0:01
and �0:15 ps2=km) are used in this calculation. As
we can see from the figure, the b2=c ratio affects
dramatically the energy, at which T0 takes its
minimum value Tmin

0 (in agreement with the result
of [8]), but it does not affect much the minimum
value itself, or the range of pulse oscillations from
T0 to Tm. In contrast, the value of Tmin

0 , as well as
the asymptotic value of Tm at large energies, de-
pends only on the parameter Tmap. These results
show that for a given two-section map configura-
tion, there exists a limiting bit rate that depends on
the value of Tmap.

Considering a wide variety of dispersion maps
with different values of b2=c and Tmap, we find that
for the loss-less case, the value of Tmin

0 always
corresponds to C0 ¼ 
1 (the choice of sign de-
pends on whether b21 is negative or positive, re-
spectively). An important feature is that, in a large
range of b2 values, not only the value of Tmin

0 , but
the whole curve T0ðC0Þ is invariant with respect to
the ratio b2=c. In the next section we use this result
and the qualitative features of Fig. 2 to find the
dependence of T0 on C0 in an approximate analytic
form.

3. Analytical estimate of T0

We obtain an approximate analytic formula for
the input pulse width in the loss-less case, setting
a ¼ 0 in Eq. (4). This approach is justified because,
as one can see from Fig. 1, Tmin

0 value and the
range of pulse oscillations are almost the same in a
DM system with no loss and in a DM system
having 0.25 dB/km loss in each fiber section. This
observation remains valid for systems with short-
period dispersion maps, having any number of

  
 

 

Fig. 2. Same as Fig. 1 except that two different values of b2=c
are shown for two different maps: (a) b2=c ¼ �0:004 ðps2 WÞ,
(b) b2=c ¼ �0:06 ðps2 WÞ. Solid curves are for map A

(Tmap ¼ 3:16 ps) while dashed curves are for map B

ðTmap ¼ 26:9 psÞ. Loss a ¼ 0 in all cases.
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map periods within the amplification period. In
such systems, Tmin

0 also corresponds to jC0j 	 1
even in the presence of loss. This is the conse-
quence of the fact that in short-period maps the
chirp-free point is close to the middle of fiber
segments even in the presence of losses (in the loss-
less case it is exactly in the middle [10]). The im-
portance of this observation will become clear
from what follows.

Eq. (3) can be integrated formally to find

T 2ðzÞ ¼ T 2
0 ðzÞ þ 2

Z z

0

b2ðzÞCðzÞdz: ð6Þ

Thus, T ðzÞ can be determined if CðzÞ is known.
Since a closed form expression for CðzÞ is not
available, we follow an empirical method. Nu-
merical simulations show that the chirp C can be
represented, with an accuracy better than 0.1%, as
a linear function of z in each fiber section for en-
ergy values in the range from 0 to about 5ÊE0.
Using the fact that the chirp-free points are situ-
ated in the middle of each section for a ¼ 0 [10], we
approximate the chirp in each map period as

CðzÞ ¼
C0 1� 2

l1
z

� �
if 06 z6 l1;

�C0 1� 2
l2

z� l1ð Þ
� �

if l1 6 z6Lm:

8><
>:

ð7Þ
Using Eq. (7) in Eq. (6), we obtain the following
approximate expression for pulse width:

T 2ðzÞ ¼
T 2
0 þ 2b21C0 1� z

l1

� �
z if 06 z6 l1;

T 2
0 � 2b22C0 1� z�l1ð Þ

l2

� �
z� l1ð Þ if l1 6 z6Lm:

8><
>:

ð8Þ
In order to connect T0 and C0 values, we consider
the ratio ð1þ C2Þ=T 2 because it represents the
spectral width of a chirped pulse. In a linear sys-
tem, this ratio remains constant and is equal to
1=T 2

m. Numerical simulation show, that this ratio
does not change much with propagation even in a
DM system when the nonlinear length [3] is much
larger than the local dispersion length. More spe-
cifically, it oscillates within each map period
around its average value ð1þ C2

0Þ=T 2
0 by less than

1%. Since the ratio ð1þ C2Þ=T 2 is almost constant
during the propagation, the integral

IðzÞ �
Z z

0

1þ C2 z0
� 

T 2 z0ð Þ dz0 	 1þ C2
0

T 2
0

z; ð9Þ

grows almost linearly with z. We can estimate the
error by calculating I using Eqs. (7) and (8). The
result is found to be

IðzÞ ¼
� 2C0

D1l1
zþ e1ðzÞ; 06 z6 l1;

I l1ð Þ þ 2C0

D2l2
z� l1ð Þ þ e2 z� l1ð Þ; l1 < z6 Lm;

8><
>:

ð10Þ
where eiðzÞ ði ¼ 1; 2Þ is defined as

eiðzÞ � � 1

2

aibi � ciffiffiffiffiffiffiffiffi
c3i bi

p tan�1
ffiffiffiffi
ci
bi

r
ðliÞ

� ��

� tan�1
ffiffiffiffi
ci
bi

r
ðli

�
� 2zÞ

��
ð11Þ

and ai; bi; ci are given by

ai �
C2
0

l2i
; bi � 
 1

2
b2iC0li þ T 2

0 ;

ci � � b2iC0

2li
:

ð12Þ

In (12), the upper and lower signs correspond to
the first (i¼ 1) and second (i¼ 2) fiber sections,
respectively. For all practical maps, e1 and e2 are
found to be negligible. Numerical simulations also
confirm that the error in Eq. (9) does not exceed
0.2%.

Neglecting e1 and e2 in Eq. (10), we notice that
I(z) varies linearly with z but with different slopes.
Assuming that the average dispersion is relatively
small, we find the average slope and equate it to
ð1þ C2

0Þ=T 2
0 from Eq. (9). We then obtain the

following expression for the input pulse width in
terms of C0 and dispersion-map parameters:

T0 ¼ Tmap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

0

C0j j :

s
ð13Þ

Note the appearance of a single map parameter
Tmap defined as in Eq. (5). This parameter has units
of time and plays an important role in the fol-
lowing discussion. The dependence of input pulse
width on the input chirp C0 for the four DM sys-
tems of Fig. 2 is shown in Fig. 3. Open lines rep-
resent the values of input pulse width T0 calculated
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using Eq. (13), while solid circles show the results
obtained by solving variational Eqs. (3) and (4)
numerically. We find a very good agreement up to
chirp values of jC0j ¼ 3. Although four dispersion
maps are used for in Fig. 3, only two curves appear
in this figure because, as was mentioned before, the
dependence of T0ðC0Þ curve on the ratio b2=c is
negligible when the average dispersion is much
smaller than the local dispersion value. For that
reason, the curves for b2=c ¼ �0:004 and
b2=c ¼ �0:06 are indistinguishable in Fig. 3.

Eq. (13) can be used to find the minimum pulse
width. Noticing that the chirp is zero at the loca-
tion of the minimum pulse width point and using
the fact that ð1þ C2

0Þ=T 2
0 	 1=T 2

m, the minimum
pulse width is given by

Tm ¼ Tmapffiffiffiffiffiffiffiffi
C0j j

p : ð14Þ

Eq. (14) provides the average value of minimum
pulse width in sections with positive and negative
dispersions, but these values do not differ much in
the region around jC0j 	 1. A comparison with
numerical solutions shows that Eq. (14) is accurate

to within 2% up to the values of input chirp
jC0j 	 3. Several interesting conclusions can be
drawn from Eqs. (13) and (14). First, the minimum
value of the input pulse width from Eq. (13) indeed
occurs for jC0j ¼ 1, as also found numerically.
Second, when jC0j ¼ 1, Tm is just equal to the map
parameter Tmap. The input pulse width in this case
is T0 ¼

ffiffiffi
2

p
Tmap, showing that pulse width is stret-

ched by the factor of
ffiffiffi
2

p
within each fiber link

when input pulse width corresponds to its mini-
mum width allowed for a given dispersion map.

4. Design rules

Eq. (14) shows that the qualitative change of
the TmðE0Þ curve in Figs 1 and 2 from a very rapid
to a very slow decrease is due to 1=jC0j dependence
of the minimum pulse width. The value of jC0j, as
seen in the inset of Fig. 1, increases rapidly with
increased energies. According to the above dis-
cussion, the map parameter Tmap is an important
design parameter for system characterization,
since

ffiffiffi
2

p
Tmap and Tmap describe, respectively, the

minimum possible input width and the corre-
sponding shortest pulse width in the fiber link for a
given dispersion map.

Eq. (13) provides the values of input pulse
width as a function of input chirp. We now con-
sider which range of input chirp values should be
used to obtain the best pulse sequence propaga-
tion. From 1–3 we note that just after T0 takes its
minimum value, Tm continues to decrease while T0
is relatively constant. We expect the longest
propagation distance, as well as a highest bit rate
for a given distance, to occur in this region
ðjC0jJ 1;E0 	 EcÞ. For energies smaller than Ec,
the bit rate is limited by the large values of T0 and
Tm, and for energies much larger than Ec it would
be limited by pulse interactions because of in-
creased pulse stretching and higher pulse energies.
This is confirmed in Fig. 4, where we show the
maximum propagation length as a function of in-
put chirp C0 for 80 and 160 Gb/s. The map with
b21 ¼ 4 ps2=km and b22 ¼ �4 ps2=km is used in
this calculation by choosing b2 ¼ �0:01 and
�0:005 ps2=km for 80 and 160 Gb/s systems, re-
spectively. We also reduce the section length to

Fig. 3. Comparison of the input pulse width predicted by Eq.

(13) (circles) with the numerically calculated values (solid

curves) as a function of input chirp for the four maps of Fig. 2.

Only two curves appear since results are nearly independent of

the ratio b2=c.
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l1 ¼ 0:6 km, for 160 Gb/s system, and use
l1 ¼ 3 km for 80 Gb/s systems. The solid curves
represent the results when losses are neglected and
the dashed curves include 0.25 dB/km loss in each
fiber section and assume 80 km amplifier spacing.
Two points are noteworthy. First, maximum dis-
tance can exceed 6000 km even at 160 Gb/s when
dense DM is used [11]. Second, in all cases the
maximum occurs in the region 1:1 < jC0j < 1:2.

Eqs. (13) and (14) allow us to estimate the
maximum possible bit rate for a given map con-
figuration. For example, consider a dispersion
map made using 70 km of standard fiber
ðb21 ¼ �22 ps2=kmÞ and 15.3 km of DCF
ðb22 ¼ 100 ps2=kmÞ. The average dispersion for
this map is b2 	 �0:1 ps2=km, while Tmap ¼ 27:7
ps. From Eqs. (14) and (13), Tm is about 26.4 ps
and T0 	 39:3 ps at jC0j ¼ 1:1, the chirp value
within the optimum range. Since the shortest pulse
width that can propagate as a DM soliton is 26.4
ps, such a map configuration can never provide a
bit rate of 40 Gb/s for which the bit slot is only 25
ps. To increase the bit rate, according to Eqs. (13)
and (14), one needs to reduce the value of the map
parameter Tmap. From Eq. (5) this is possible by

reducing either the dispersion or the length of fiber
segments.

Consider the design of a 160 Gb/s system. Since
the bit slot is only 6.25 ps wide, the map parameter
Tmap should not exceed 1.06 ps to avoid soliton
interaction. For ðb2i � b2Þ ¼ 
1 ps2=km (i ¼ 1
and 2 in the first and second fiber sections, re-
spectively), according to Eq. (5), we need to take
li 	 2:24 km. Moreover, the section lengths reduce
to only li 	 0:6 km if it is necessary to use larger
local dispersion values of 
4 ps2=km to avoid
four-wave mixing in WDM applications. This re-
sult explains why dense dispersion management is
a necessity for designing systems at bit rates > 40
Gb/s [4–7].

We now discuss the range of map strength [8]
Sm corresponding to the values of input chirp
1:1 < jC0j < 1:2. The map strength parameter in
our notation can be written as

Sm ¼
b21 � b2

� 
l1 � b22 � b2

� 
l2

�� ��
1:665Tmap
� 2 C0j j; ð15Þ

where the factor of 1.665 results from using the full
width at half maximum. For small average dis-
persion values, jb21l1j 	 jb22l2j, and Eq. (15) can
be approximated as Sm 	 1:443jC0j. As discussed
above, pulse interactions are minimized for value
of input chirp jC0j between 1.1 and 1.2. Using
those values, we find that the least interactions
occur for 1:59K Sm K 1:73, which agrees with the
known empirical result that the least interactions
occur for Sm values around 1.6 [9]. For a small
average dispersion value, we can also approximate
Eq. (13) as T 2

0 	 jb21l1jð1þ C2
0Þ=ð2jC0jÞ. Using

C0 	 1:1 and LD � T 2
0 =jb21j, the configuration

giving the map strength of about 1.6 corresponds
to the map for which the length of each fiber
segment is approximately equal to the local dis-
persion length LD.

Although Eqs. (13) and (14) appear similar to
those obtained for a linear system, the presence of
nonlinearity is critical for DM solitons. In fact, a
periodic solution of Eqs. (3) and (4) does not exist
in the linear case (c ¼ 0) unless the average dis-
persion b2 is zero. We have verified through nu-
merical simulations that Eq. (13) remains valid in
the region 16 jC0j6 1:5 with an accuracy better

Fig. 4. Maximum propagation distance as a function of input

chirp for systems operating at 80 and 160 Gb/s bit rates. Loss

parameter a ¼ 0 for solid curves but a ¼ 0:25 dB/km for dashed

curves.
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than 1% as long as the value of b2Lm does not
exceed 	 12% of ðb2i � b2Þli in the ith section
(i ¼ 1; 2). This relation gives, for example, average
dispersion as large as b2 ¼ �0:5 ps2=km for
ðb2i � b2Þli ¼ 20 ps2 and b2 	 �2 ps2=km for
ðb2i � b2Þli ¼ 1500 ps2.

5. Input energy estimation

Eq. (13) provides the input pulse width corre-
sponding to a given input chirp, while the full set
of input parameters also includes the value of in-
put energy E0. In this section we estimate E0 with
the help of the approximate solution given in Eqs.
(7) and (8). Setting a ¼ 0 in Eq. (4), integrating it
over one map period and using the periodicity
condition Cð0Þ ¼ CðLmÞ we obtainZ Lm

0

c0E0ffiffiffiffiffiffi
2p

p
T
þ
Z Lm

0

b2

1þ C2

T 2
dz ¼ 0: ð16Þ

Using Eqs. (7) and (8) and performing the inte-
gration, we arrive at the following expression for
the input energy:

E0 ¼ 2
ffiffiffiffiffiffi
2p

p b21e1 l1ð Þ þ b22e2 l2ð Þ
c01=

ffiffiffiffi
c1

p� 
ln r1 þ c02=

ffiffiffiffi
c2

p� 
ln r2

;

ð17Þ
where ri � ðT0 � li

ffiffiffi
c

p
iÞ=ðT0 þ li

ffiffiffi
c

p
iÞ; c0i is the

nonlinear coefficient in each fiber section ði ¼ 1; 2Þ,
and ei and ci are given by Eqs. (11) and (12). A
comparison with numerical solutions of the vari-
ational equations shows that energy values ob-
tained from Eq. (17) differ by at most 5% from
numerically obtained values in the region around
jC0j ¼ 1, while the difference becomes about 10%
for jC0j 	 1:25. We have verified that energy val-
ues obtained using Eq. (16) give a stable pulse
propagation up to about 40 Mm. Although the
error in E0 leads to larger peak power oscillations
during propagation, the amplitude of the oscilla-
tions does not exceed 
5% of the average peak
power. As discussed in [5], the input energy E0 also
depends on the ratio LA=Lm and in general de-
creases as this ratio increases.

Note that Eq. (17) is derived for a loss-less
system or for systems with distributed amplifica-

tion. The effect of periodic gain/loss variation can
be included by increasing E0 by a factor of
G ln G=ðG� 1Þ, where G is the amplifier gain [2].
This scaling is valid for values of Sm up to 4 for
DM systems with short fiber sections.

6. Conclusions

We have shown that a limiting bit rate exists for
DM systems and it depends only on the dispersion-
map configuration. We have introduced a new map
parameter that determines the minimum input
pulse width that can be launched into the DM sys-
tem.We use this parameter to provide simple design
rules that can be used for estimating the limiting bit
rate. Using the approximate analytic solutions of
the variational equations, we have provided the
input values of the three pulse parameters for a two-
fiber-section dispersion map. We compared our
approximate values of the input chirp, width, and
energy with numerical solutions of the variational
equations and found a very good agreement with
the numerical results. Our results also help to ex-
plain why dense dispersion management is neces-
sary for designing high-bit-rate DM systems.
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