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All-optical hysteresis control by means
of cross-phase modulation

in semiconductor optical amplifiers

Drew N. Maywar and Govind P. Agrawal

The Institute of Optics, University of Rochester, Rochester, New York

Yoshiaki Nakano

Department of Electronic Engineering, University of Tokyo, Tokyo, Japan

Received August 31, 2000; revised manuscript received February 12, 2001

We describe the principle of operation of an all-optical flip-flop based on dispersive bistability in a distributed
feedback semiconductor optical amplifier. Cross-phase modulation controls the photonic bandgap and Bragg
resonances of the amplifier, thereby shifting the hysteresis and switching thresholds to higher or lower powers.
We give the details of a simple theoretical model that is used to simulate the set and reset operations. We also
experimentally investigate the dependence on set-signal power and the response to back-to-back set signals,
and we apply the theoretical model to understand these experimental results. © 2001 Optical Society of
America
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1. INTRODUCTION
Optical signals that experience a nonlinear refractive in-
dex while interacting with a diffraction grating can ex-
hibit dispersive bistability.1,2 Feedback from the grating
(commonly called distributed feedback, or DFB) creates
Bragg resonances, at wavelengths that depend on the
nonlinear refractive index. Bistable switching occurs
when changes in signal power shift a Bragg resonance
through the signal wavelength, thereby reinforcing the
power change and creating a positive feedback loop.3

In semiconductor optical amplifiers (SOAs), the refrac-
tive index depends significantly on the carrier density.4

Optical signals that deplete the carrier density experience
a strong nonlinear refractive index with an effective n2
; 1029 cm2/W (Ref. 5), which is seven orders of magni-
tude greater than the Kerr nonlinearity of silica fibers.
In addition to this strong nonlinearity, SOAs exhibit in-
herent gain, are compact, and are capable of integration,
making them appealing as building blocks of functional
photonic gates.6,7

Exploiting the SOA carrier-induced nonlinearity for
dispersive bistability, researchers have realized an all-
optical flip-flop,8,9 in which a built-in Bragg grating can be
used for feedback (in place of Fabry–Perot facet reflec-
tions) to allow integration onto a single substrate with
other photonic gates.2,10 The two output states of the
flip-flop are simply where the signal’s input power PH in-
tersects the two branches of the hysteresis curve, as
shown in Fig. 1. The output power of the signal can be
set and reset between Pon and Poff by varying PH through
the upward and downward switching thresholds,
respectively.8

Recently, set and reset techniques were demonstrated
in which auxiliary optical signals were used; and in which
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the holding-beam input power PH remained constant.10

The separation of holding and control functionality is ad-
vantageous because it allows the holding-beam source to
be optimized solely for wavelength and power stability.
Furthermore, set and reset can then be performed di-
rectly by signals from an optical network. The new con-
trol techniques are based on cross-phase modulation
(XPM) and therefore possess a wide wavelength range of
operation (set range of .35 nm and reset range of .160
nm10); hence, control signals can come from a variety of
wavelength channels in modern-day wavelength-division
multiplexed systems, in which the channel spacing is
;0.8 nm.

This paper describes the XPM-based control techniques
by using a theoretical model, and it applies this model to
an experimental investigation into set-pulse effects. In
Section 2, we develop a model of the bistable system (com-
posed of the holding beam, index grating, and SOA carrier
nonlinearity), and we simulate the set and reset opera-
tions by varying the holding-beam input power PH .
Auxiliary control signals are introduced into the model in
Section 3, where we show how flip-flop operation is
achieved by varying the bistable hysteresis curve. In
Section 4, the model is used to explain our experimental
investigation into the flip-flop’s dependence on the set-
signal power and its response to back-to-back set signals.

2. BISTABLE SYSTEM
The time-dependent theoretical study of dispersive bista-
bility in DFB SOAs must account for the carrier-density
dynamics and the bistable signals’s interaction with the
carrier density and the diffraction grating. A model in-
corporating these features was previously presented,2 and
2001 Optical Society of America
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it was used to study pulses that undergo bistable switch-
ing. In this section, we describe equations that govern
the bistable system, along with a solution and its approxi-
mations; this presentation facilitates the description of
the all-optical flip-flop, and it is the starting point for in-
corporating auxiliary control signals into the model.
This incorporation is addressed in Section 3.

The optical field E that undergoes bistability within the
DFB SOA can be expressed as

E~x, y, z, t ! 5 Re$êF~x, y !@A~z, t !exp~ibBz !

1 B~z, t !exp~2ibBz !#exp~2ivt !%, (1)

where Re$ % represents the real part, ê is the unit vector
along the transverse-electric orientation of polarization,
F(x, y) is the transverse-mode distribution, and v is the
optical frequency. In the longitudinal direction (z coordi-
nate), the field scatters off of the index grating and is
therefore conveniently expressed as two counterpropagat-
ing terms; A and B are the slowly varying field envelopes
for the forward- and backward-propagating fields, respec-
tively, and the Bragg wave number bB 5 p/L is related
inversely to the grating period L.

The propagation of the electric field is described, in
general, by a wave equation. Representing the grating
as a periodic dielectric function,11 the wave equation
leads to the following coupled-mode equations for the field
envelopes:
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Here v is the group velocity, g is the gain experienced by
the optical modes, a int accounts for internal losses, and k
is the coupling coefficient representing the index grating.
The contribution of spontaneous emission is not included
because the amplified optical signal is expected to be
much stronger. The mismatch between the optical signal
wave number and the Bragg wave number bB is partly ac-

Fig. 1. Bistable hysteresis curve. Two stable transmission
states, Pon and Poff , occur for a single input power PH .
counted for by the detuning parameter d 5 b0 2 bB ,
where b0 is the carrier-density-independent portion of the
signal’s wave number bN .

The carrier-density-dependent portion of the real part
of the optical wave number is given by bN 5 2ag/2. The
linewidth-enhancement factor a couples changes in gain
to the refractive index, both of which are functions of the
carrier density N (Ref. 4); a represents the nonlinearity
that gives rise to dispersive bistability in this system.
Considering a linear change in gain (a 5 dg/dN) and re-
fractive index (b 5 dn/dN) with respect to the carrier
density N, we can express the linewidth-enhancement
factor as a 5 22(v/c)(b/a), where c is the speed of light
in vacuum. The gain g experienced by the optical modes
is related to the carrier density N by4

g~x, y, z, t ! 5 aG@N~x, y, z, t ! 2 N0#, (4)

where N0 is the carrier density at transparency, G is the
optical confinement factor and represents the fraction of
the transverse intensity distribution uF(x, y)u2 that falls
within the gain-region area Wd, and W and d are the
width and thickness of the gain region, respectively.

The carrier density N is the density of electron-hole
pairs, and we assume charge neutrality between the
conduction-band electrons and valence-band holes.4 The
carrier density amplifies the optical signal via stimulated
emission and affects its wave number and optical phase,
and therefore it plays a key role in optical bistability.
For time scales much longer than the intraband relax-
ation time (;0.05 ps), the dynamics of the carrier density
in both SOAs and semiconductor lasers has been success-
fully modeled by a rate equation4
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where D is the diffusion coefficient, and the right-hand
side consists of various mechanisms that create or recom-
bine electron-hole pairs. The first terms represents elec-
trical injection of carriers, where J is the injected current
density and e is the electric charge. The second term ac-
counts for spontaneous and nonradiative recombination
mechanisms, where t is the carrier lifetime; we neglect
the carrier-density dependence of t to simplify our
analysis.7 The final term accounts for stimulated recom-
bination of electron-hole pairs by the optical signal, where
\v is the photon energy, I 5 ^E • E& t is the optical inten-
sity, and ^& t indicates temporal averaging over many op-
tical periods 2p/v.

The carrier rate equation can be simplified consider-
ably by noting that the diffusion length ('2 mm) is longer
than the gain-region thickness d ; 0.15 mm and width
W ; 2 mm (for an index-guided device). Thus, the aver-
age value of the carrier density is used in the transverse
dimensions; averaging rate equation (5) over the active-
region area Wd yields
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where N is now understood to be averaged over the trans-
verse dimensions, G 5 *0

W*0
ddxdyuF(x, y)u2/s is the opti-

cal confinement factor, and s 5 *2`
` *2`
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the mode cross section. Carrier diffusion, which has
been dropped from Eq. (6), is also assumed to smooth out
the spatial holes burned by counterpropagating fields
(typical period '0.2 mm), allowing the intensity interfer-
ence terms to be neglected. The carrier density is as-
sumed to otherwise vary slowly enough that the product
D]2N/]z2 is negligible.

Because the carrier density enters the coupled-mode
equations through the modal gain g, it is convenient to
formulate a gain rate equation by using Eqs. (6) and (4):

t
dg

dt
5 g0 2 F1 1

PA 1 PB

Psat
Gg. (7)

The quantity g0 5 GaN0(J̄ 2 1) is the small-signal value
of g, J̄ 5 Jt/edN0 is the current density normalized to
its value required to achieve transparency, PA 5 uAu2s
and PB 5 uBu2s are the optical powers of the individual
envelopes, and Psat 5 \vWd/(taG) is the saturation
power.

Gain rate equation (7) can be simplified by assuming
that the average value of the optical power is sufficient to
calculate the saturated gain.2,12 Using the mean power,
and assuming a uniform electrical bias J, we find that the
gain itself no longer varies along the amplifier. An equa-
tion for the uniform gain can be derived by averaging rate
equation (7) over the length of the amplifier L:

t
d^ g&

dt
5 g0 2 F1 1

^PA& 1 ^PB&

Psat
G ^ g&, (8)

where the angled brackets indicate longitudinal averag-
ing. For the final term, we have factored the average of
the gain–power products into the average of their argu-
ments; such a factoring scheme is referred to as the mean-
field approximation.13

The powers PA and PB in Eq. (8) are obtained from the
coupled-mode equations; analytic solutions are possible if
we apply some common assumptions. Under the ap-
proximation that the average power is sufficient to calcu-
late the gain (as discussed above), the gain becomes uni-
form along the amplifier, and we may use its average
value ^g& in the coupled-mode equations.2,12 This is a
sensible approximation for uniform-grating DFB SOAs
because the combined intensity of the counterpropagating
coupled modes can result in a nearly uniform saturated-
gain distribution.2

To further simplify the coupled-mode equations, we as-
sume that the field envelopes A and B adjust instanta-
neously to changes in the SOA gain.2,14 The optical fields
therefore attain their steady state quickly (allowing the
time derivatives to be dropped), and the system dynamics
are determined solely by Eq. (8). This adiabatic approxi-
mation is valid when the unobstructed signal-transit time
through the amplifier (L/vg ' 0.003 ns) is much shorter
than the carrier lifetime (t ' 0.2–1 ns), and when it is
shorter than the rise and fall of the input-field envelope
h(t).

Under the adiabatic and uniform-gain approximations,
coupled-mode equations (2) and (3) become ordinary dif-
ferential equations (of independent variable z) with con-
stant coefficients. The general solutions for the counter-
propagating fields are then4
A 5 A1 exp~igz ! 1 rB2 exp~ 2 igz !, (9)

B 5 q 2 1A1 exp~igz ! 1 B2 exp~ 2 igz !, (10)

where g 5 AD2 2 k2, D 5 d 2 (i/2)^ g&(1 2 ia)
1 i(a int/2), r 5 (g 2 D)/k, and q 5 (2g 2 D)/k. Ap-
plying the boundary conditions of an input-field envelope
h(t) at one facet, that is, A(z 5 2L/2, t) 5 h(t) and B(z
5 L/2, t) 5 0, and assuming that antireflection coatings
nullify the facet reflections, we find that the solutions are

A 5 h
g cos~gj! 1 iD sin~gj!

g cos~gL ! 2 iD sin~gL !
, (11)

B 5 h
ik sin~gj!

g cos~gL ! 2 iD sin~gL !
, (12)

where j 5 z 2 L/2.
Using field envelopes (11) and (12), we find that optical

powers PA and PB are

PA 5 P0z@cosh~2g ij!u1 2 sinh~2g ij!u2

1 cos~2grj!u3 2 sin~2grj!u4#, (13)

PB 5 P0zuku2@cosh~2g ij! 2 cos~2grj!#, (14)

where P0(t) 5 uh(t)u2s is the input power, g 5 gr
1 ig i , u1 5 gg* 1 DD* , u2 5 gD* 1 g* D, u3 5 gg*
2 DD* , u4 5 i(gD* 2 g* D), and z 5 @cosh(2giL)u1
1 sinh(2gi L)u2 1 cos(2gr L)u3 1 sin(2grL)u4#21.

To obtain the average power within the SOA, we inte-
grate solutions (13) and (14) over the device length L to
yield
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Substituting average powers (15) and (16) into gain rate
equation (8) adiabatically eliminates the internal optical
powers; the resulting ordinary differential equation has
only a single dependent variable, ^ g&, and is relatively
simple to solve numerically (we have used a variable-
order technique for the simulations shown here). Once
the average gain ^g& is calculated for all time, the solution
can be used to obtain the bistable output power.

Analytic expressions for the bistable transmitted power
T(t) 5 PA(z 5 L/2, t) and reflected power R(t) 5 PB(z
5 2L/2, t) can be found by using Eqs. (13) and (14), re-
spectively:

T 5 P0z2~gr
2 1 g i

2!, (17)

R 5 P0zuku2@cosh~2g iL ! 2 cos~2grL !#. (18)

The transmitted-power expression (17) was used to
generate Fig. 1, where kL 5 3, a 5 5, g0L 5 1.19815
('95% lasing threshold), and Psat510 mW, common val-
ues used throughout this paper. The internal loss a int
commonly ranges from 10 to 50 cm21, depending on the
amplifier design. However, the particular choice of a int
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does not affect the physical process of hysteresis control;
we choose a intL 5 0 to simplify the following discussion.
To trace out the hysteresis curve, we used a sinusoidal in-
put power P0(t) 5 p$1 2 cos@2pt/Tm#%, where p
5 0.6 mW is the input amplitude, and Tm 5 106t is the
modulation period. When the input–output transfer
function (P0 versus T) is plotted, explicit time dependence
does not exist; arrowheads have been added to Fig. 1 to
indicate the direction of power change in time. Because
the purpose of the figure is to show the two stable states
corresponding to a single input power PH , we selected a
long modulation period Tm that produces a familiar-
looking shape of the hysteresis curve. The correspond-
ingly large integration step size Dt 5 100t skips over
transient behavior at the switching thresholds. Such be-
havior is not central to our discussions regarding the
stable output states [Figs. 1, 3, 4, and 7(b)], but it is in-
cluded in the context of flip-flop operation (Figs. 2, 5, and
9 below).

For the bistable system to be used as a flip-flop, the in-
put power P0 is initially located between the switching
thresholds, like PH in Fig. 1. Optical set can be per-
formed by increasing the input power beyond the upward
switching threshold8,9 and can be understood as follows.
An increase in optical power within the SOA stimulates
recombination of electron-hole pairs (i.e., gain satura-
tion), which increases the refractive index; the signal
thereby increases its own wave number and optical
phase. This self-phase modulation (SPM) shifts the pho-
tonic bandgap and Bragg resonances to longer wave-
lengths. As a Bragg resonance moves onto the signal
wavelength, the internal optical power increases even
more. Bistable upward switching occurs when a positive
feedback loop (among the internal optical power, nonlin-
ear refractive index, and Bragg resonance) causes the
Bragg resonance to shift through the signal wavelength,
providing resonant amplification for the signal.3 Set op-
eration is shown in Fig. 2, where the input power is given
by P0 5 PH@1 1 0.5f(t 2 t1) 2 0.5f(t 2 t2)#, PH
5 0.02 mW is the mean input power, f(t 2 tx)
5 exp$2@(t 2 tx)/Wf#

2Q%, t1 5 23 ns, t2 5 63 ns, Wf
5 1 ns, t 5 0.2 ns (a common value used throughout),
Q 5 4 is the order of the super-Gaussian-shaped pertur-
bation in the holding power, and Dt 5 2 ps.

The signal’s output power remains at a high level Pon
(corresponding to the upper hysteresis branch) even after
its input power returns to the initial state PH , as shown
in Fig. 2. Although the bistable signal provides the same
input power, the larger output is achieved because the
new Bragg-resonance location provides resonant amplifi-
cation. The larger optical power within the SOA, in turn,
maintains the amount of carrier-density depletion re-
quired to lock the Bragg resonance in place.

The flip-flop is reset by decreasing the input power of
the holding beam beyond the downward switching thresh-
old of the hysteresis curve. The resulting decrease in the
internal optical power allows the carrier density to re-
cover, thereby decreasing the refractive index. SPM
shifts the Bragg resonance to shorter wavelengths and
back toward the holding-beam wavelength. As the reso-
nance peak passes the signal wavelength, a positive feed-
back loop (acting in the opposite manner as for upward
switching) shifts the Bragg resonance to even shorter
wavelengths and lowers the output power to Poff .3 In
terms of the input power P0 , reset is achieved by the ap-
plication of a ‘‘negative’’ optical pulse,8 as shown in Fig. 2.

3. CONTROL SIGNALS
For the flip-flop operation described in Section 2, the hold-
ing beam provides the power used to latch the flip-flop
and initiates set and reset by means of SPM. These con-
trol functions, however, can be delegated to auxiliary sig-
nals; holding-beam SPM is then replaced by control-
signal XPM.

The set signal, like the holding beam, falls within the
SOA gain spectrum and hence stimulates recombination
of electron-hole pairs. Recombination causes gain satu-
ration and increases the refractive index even at the
holding-beam wavelength. Thus, the set signal modu-
lates the wave number and phase of the holding beam;
this kind of XPM has been used in other geometries and
applications, including data-wavelength conversion in
SOA-integrated Mach–Zehnder interferometers,15 and
clock recovery and clock division in nonlinear optical-loop
mirrors.7

For our application, the increase in refractive index
pushes the photonic bandgap and Bragg resonances to
longer wavelengths. Upward switching occurs when the
Bragg resonance has been shifted sufficiently to seed the
positive feedback loop discussed in Section 2. In terms of
the hysteresis curve, using XPM to shift the Bragg reso-
nance toward the holding-beam wavelength corresponds
to pushing the switching thresholds to lower powers.

Fig. 2. Flip-flop operation based on the holding beam: (a) The
holding-beam input power P0 is varied beyond the switching
thresholds to (b) set and reset its bistable transmission T.
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Switching, as depicted in Fig. 3, occurs once the upward-
switching threshold has been brought to the holding-
beam input power PH .

After the set pulse passes through the SOA, the hyster-
esis curve returns to its initial shape, but now the output
power falls on the higher branch at Pon , as depicted in
Fig. 3. The postswitching location of the Bragg reso-
nance provides resonant amplification of the holding
beam, resulting in larger output power and sufficient in-
ternal power to lock the resonance in place, as described
in Section 2.

The flip-flop is reset by pushing the hysteresis curve to
higher powers, allowing the downward-switching thresh-
old to reach the holding-beam input power, as depicted in
Fig. 4. The hysteresis curve can be shifted in this way by
signals that are absorbed by the SOA, giving their energy
to electrons that are then excited into the semiconductor
conduction band. This gain pumping is accompanied by
a decrease in the refractive index and optical phase at the
holding-beam wavelength. Thus, the sign of XPM for the
reset signals is opposite that of the set signals. As the
refractive index decreases, the Bragg resonance shifts to
shorter wavelengths; reset occurs when the Bragg reso-
nance shifts enough to cause the positive feedback loop
described in Section 2.

XPM-based reset is qualitatively different from SPM-
based reset; the former increases the carrier density di-
rectly by the application of optical power (i.e., a ‘‘positive’’
optical pulse). For SPM-based reset, in contrast, the car-
rier density increases through the natural recovery of the

Fig. 3. XPM-based set: (a) the transmitted power (indicated by
the circle) is initially low for a fixed input power PH . (b) XPM
(1Df) caused by a set signal pushes the hysteresis curve to
smaller powers, thereby switching the transmission to a higher
power. (c) After the set signal passes, the hysteresis curve re-
laxes to its initial shape, with the transmitted-power state on the
higher hysteresis branch.
SOA gain as the internal power is reduced. The internal
holding-beam power can be reduced either by using a
negative optical pulse (as shown in Fig. 2)8 or by interfer-
ing the holding beam with a closely tuned auxiliary
signal.9 The interfering-signal technique shifts the
bistable switching thresholds to higher powers while the
holding-beam input power remains constant and can be
achieved at relatively low reset-beam powers, but it re-
quires the holding and reset wavelengths to match closely
(;0.008 nm). In contrast, the XPM-based reset tech-
nique can be achieved over a wide wavelength range
(.160 nm), but it requires higher powers (.0.7 mW).10

Our goal in modeling the XPM set–reset techniques is
to show hysteresis control and flip-flop operation by incor-
porating the control signals in a simple, phenomenologi-
cal manner. The set ES and reset ER fields pass through
the DFB SOA without interacting with the index grating,
and they can be expressed as

ES~x, y, z, t !

5 Re$êF~x, y !S~z, t !exp~ibSz !exp~2ivSt !%, (19)

ER~x, y, z, t !

5 Re$êF~x, y !R~z, t !exp~ibRz !exp~2ivRt !%. (20)

The polarization vector ê and transverse field F(x, y) are
assumed to be the same as those of the holding beam, S
and R are the slowly varying field envelopes, and bS and
bR are the wave numbers. The set-signal optical fre-
quency vS falls within the SOA gain curve, and the reset-
signal frequency vR falls outside the gain curve, on the
higher-frequency side.

Fig. 4. XPM-based reset: (a) high initial transmitted power
(indicated by the circle). (b) XPM (2Df) caused by a reset signal
pushes the hysteresis curve to larger powers, and the transmit-
ted power drops to a lower hysteresis curve branch. (c) Hyster-
esis curve relaxes to its initial shape, and transmission remains
at the lower power.
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The control signals affect the bistable output power of
the holding beam by changing the SOA carrier density;
we include these signals into the model by expanding rate
equation (5) as
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The first three terms on the right-hand side are found in
rate equation (5) of Section 2. The penultimate term ac-
counts for stimulated recombination of electron-hole pairs
by the set signal having an intensity IS . The final term
accounts for the reset signal, having an intensity IR , and
h characterizes its absorption by the valence-band elec-
trons.

The set-signal term within rate equation (21) is similar
to the holding-beam term, in that both deplete the carrier
density. In general, the amount of gain experienced by
these signals will depend on their detuning from the SOA
gain peak, the spectral location of which shifts with
changes in the carrier density. We ignore these gain-
curve-dependent effects for this simple model.

Interference terms involving the set signal were also
dropped. Nonlinear frequency mixing is negligible from
the submilliwatt input powers used in experiments. In
addition, we have avoided the close detuning (0.008 nm)
between the set and holding beam in our experiments
that can reset the flip-flop (as discussed in Section 2).
Spatial interference was neglected because carrier diffu-
sion is assumed to smooth out the longitudinal spatial
holes.

To account for carrier generation by the reset signal,
we consider the SOA to be an ideal four-level system.
The reset-signal photons are absorbed by electrons occu-
pying the first level (bottom of the valence band). These
electrons jump to the fourth level (top of the conduction
band), where they quickly relax (,1 ps) to the third level
(bottom of conduction band) and become part of the car-
rier density N. Thus, the absorbed photon flux hI/(\vR)
in Eq. (21) represents a transfer of energy from the reset
signal to the carrier density. To simplify our study, we
assume that this energy-transfer process has perfect effi-
ciency, and we ignore the depletion of the ground-state
electrons (i.e., h is constant). The increase in gain that is
due to the reset-signal term in the gain rate equation re-
sembles J/ed, which accounts for the electrical injection
of carriers.

We simplify Eq. (21) in the same manner as discussed
in Section 2 for Eq. (5). Averaging over the transverse
dimensions of the active region introduces the optical con-
finement factor G and the mode cross section s; because
the transverse model distribution F(x, y) is assumed to
be the same for holding beam and the control fields, the
confinement factor G and mode cross section s are also
identical. We also assume that the average optical power
is sufficient to calculate the carrier density, and we in-
voke the mean-field approximation. Using gain expres-
sion (4), we find that the resulting gain rate equation is
t
d^ g&

dt
5 g0 1 h

^PR&

PRsat
2 F1 1

^PA& 1 ^PB&

Psat
1

^PS&

PSsat
G

3 ^ g&, (22)

where PS 5 uSu2s, PR 5 uRu2s, PSsat 5 \vSWd/(taG),
and PRsat 5 \vRWd/(taG).

The control signal powers PS and PR can be obtained
from the following propagation equations,
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where vS and vR are the group velocities for the set and
reset signals, respectively. As in Section 2, we assume
that the SOA responds to the average signal power, which
allows the modal gain g to be replaced by its average
value ^g&. This is a more severe approximation for the
control signals than for the holding beam because the
former do not scatter off of the grating and therefore have
an exponential variation in z. Nonetheless, eliminating
the z dependence of such traveling-wave signals is a com-
mon simplification used in the study of nonlinear phe-
nomena in SOA’s,7 and it is especially suited for a quali-
tative analysis and for a relatively small gain–length
product.

Propagation equations (23) and (24) can be simplified
further by assuming that the control signals respond in-
stantaneously to changes in the carrier density. As for
the holding signal, this adiabatic approximation is valid
when the transit time through the amplifier (L/vx
' 0.003 ns) is much shorter than both the carrier life-
time (t ' 0.2–1 ns) and the rise and fall of the input-field
envelopes. The control-signal equations become

dPS

dz
5 ^ g&PS , (25)

dPR

dz
5 2hPR . (26)

Applying the boundary conditions PS(z 5 2L/2, t)
5 PS0(t) and PR(z 5 2L/2, t) 5 PR0(t), we find that
the solutions to Eqs. (25) and (26) give the control-signal
distributions along the amplifier:

PS 5 PS0 expFgS z 1
L

2 D G , (27)

PR 5 PR0 expF2hS z 1
L

2 D G . (28)

Integrating Eqs. (27) and (28) over the length of the am-
plifier, we obtain

^PS& 5 PS0

exp~ gL ! 2 1

gL
, (29)

^PR& 5 PR0

1 2 exp~2hL !

hL
. (30)
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A short control pulse (e.g., ;8 ps) can abruptly change
the carrier density on a scale much smaller than t (e.g.,
a few picoseconds7), thus invalidating the adiabatic elimi-
nation of the optical signals over this time interval. Af-
ter such an abrupt change, however, the carrier density
recovers at a rate governed by the carrier lifetime t, the
time scale used for the adiabatic approximation, and our
model regains its validity. The validity of the adiabatic
approximation can also be threatened by a slowly varying
set signal and even by the continuous-wave (CW) holding
beam itself. By operating these signals at high powers,
the carrier density responds to an effective carrier life-
time teff 5 t /(1 1 PI /Psat),

7 which can approach the sig-
nal transit time ('3 ps). The internal power PI in our
simulations, however, does not exceed the saturation
power, so our model remains valid for the cases consid-
ered here.

Our model is now complete. The control-signal powers
(27) and (28) are used within modified gain rate equation
(22). Once the gain is calculated for all time, the solution
vector is used to find the holding-beam output powers us-
ing Eqs. (17) and (18), derived in Section 2.

We used this model to show how the hysteresis curve
shifts in Fig. 3 and 4 under the application of CW set and
reset signals, respectively. The initial and final hyster-
eses [parts (a) and (c)] are identical to the hysteresis
curve of Fig. 1, and they do not include control signals.
The same parameter values are used in Fig. 3(b), except
for a CW set signal with PS0 5 84 mW and PSsat
5 10 mW. For Fig. 4(b), this set signal was replaced by
a reset signal defined by PR0 5 1.2 mW, PRsat
5 11.8 mW, with hL 5 2.3.

The model correctly simulates the behavior of the all-
optical flip-flop; namely, the set signal switches the hold-

Fig. 5. Flip-flop operation using XPM: (a) set and reset signals
control (b) the bistable transmission T by varying the hysteresis
curve according to Figs. 3 and 4.
ing beam to a higher output-power state, which is main-
tained longer than the set-pulse width, and the holding-
beam power returns to its lower state upon the
application of the reset pulse. As an example, we use in-
put control pulses of the form

PS0~t ! 5 Si exp$2@~t 2 tS!/WS#2M%, (31)

PR0~t ! 5 Ri exp$2@~t 2 tR!/WR#2N%, (32)

where Si and Ri are the input amplitudes, tS and tR de-
fine the center of the pulses, WS and WR are proportional
to the pulse widths, and M and N are the orders of the
super-Gaussian pulses. Flip-flop operation is shown in
Fig. 5, where the control signals are defined by Si
5 0.1 mW, Ri 5 1.02 mW, tS 5 23 ns, tR 5 63 ns, WS
5 1 ns, WR 5 1 ns, M 5 N 5 4, hL 5 2.3, PSsat
5 10 mW, PRsat 5 11.8 mW, and integration step size
Dt 5 2 ps. In addition, P0 5 0.02 mW; the holding-
beam input is constant for flip-flop simulations, and
therefore the adiabatic-approximation condition that h(t)
vary slowly is always satisfied. Simulations agree quali-
tatively with experimental data,10 and therefore they re-
inforce the understanding of the physical processes de-
scribed earlier this section. The model can also be
applied to understand the response of the flip-flop under a
variety of operation conditions, as done in Section 4.

4. SET-SIGNAL EFFECTS
We recently demonstrated an all-optical flip-flop that uses
XPM-based control techniques, and we discussed the
wavelength range, power requirement, polarization sensi-
tivity, and switching speed of the flip-flop.10 Because set
signals have a wide wavelength range (.35 nm) and op-
erate at powers as low as 22 mW, we envision that the
flip-flop can be set by data signals taken directly from a
wavelength-division multiplexed optical network. We
are therefore interested in the response of the flip-flop to
different set-pulse conditions. In this section, we inves-
tigate how the flip-flop depends on the set-pulse power
and how it responds to back-to-back set signals, and we
compare the relative strength of the set and reset pro-
cesses.

A. Experimental System
Set-pulse effects were explored by using the system
shown in Fig. 6. Within the flip-flop (central box), we
used a commercial DFB laser driven near 97% lasing
threshold as the resonant-type SOA. The photonic band-
gap occurred ;20 nm shorter than the gain-peak wave-
length of 1567 nm, and the dominant Bragg resonance
(determined by the grating phase at device facets) of the
device occurred near the center of the photonic bandgap.

The holding beam was fixed at a constant input power
into the SOA, its polarization was aligned with the
transverse-electric mode of the SOA gain region, and its
wavelength was tuned to 1547.73 nm. The Bragg reso-
nance, which shifts to either side of the holding-beam
wavelength during flip-flop operation, was initially tuned
0.124 nm to the short-wavelength side of the holding
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beam. The flip-flop functioned properly over a holding-
beam wavelength range of 0.004 nm (for a constant input
power); we expect that this range can be improved by us-
ing a chirped-grating DFB SOA.3

Set and reset pulse trains were created by using the
same pulse generator, and they were separated in time by
traversing different path lengths. Directly modulated
1.31-mm reset pulses were passed through the dominant
port of a 97/3 pulse-modulated (PM) fiber coupler. Then,
1537-nm set signals were externally modulated with a
lithium niobate (LN) modulator and were passed through
the 3% port and thus required an erbium-doped fiber am-
plifier (EDFA) to boost their power. The output power
from the flip-flop was amplified by an EDFA and filtered
to remove the set pulses and wideband amplified sponta-
neous emission. All signals were measured with detec-
tors having bandwidths exceeding 20 GHz and a 500-MHz
real-time oscilloscope.

Fig. 6. Experimental setup. Dashed box indicates the flip-flop
circuit. LN, lithium niobate.
B. Set-Pulse Power
Because small powers (,0.1 mW) are sufficient to set the
flip-flop, data signals from an optical network can easily
exceed the minimum required set power. Using the sys-
tem described above, we explored how the shape of the
holding-beam output power is effected by a varied set-
pulse power.

Although flip-flop operation still occurs between two
flat output states Pon and Poff , an intermediate state Px
can appear during the duration of the set signal. With
the use of rectangular set pulses (width ' 4 ns), this in-
termediate state takes the form of a flat ledge, as seen in
Fig. 7(a) for a set power of 0.28 mW and a holding-beam
input power of 0.04 mW. We analyze the set-pulse ledge
by first noting that the flat level of the ledge indicates
that the system has achieved a steady state during the
application of the set pulse. Thus, we can study this be-
havior by observing the bistable hysteresis curve using a
CW set signal, as was used in Figs. 3 and 4 during the
discussion on set and reset operation.

Using simulations, we find that a relatively large set-
signal power (PS0 5 0.28 mW) pushes the upward-
switching threshold well beyond the holding-beam input
power PH , as seen in Fig. 7(b), where we have overlapped
the bistable hystereses with and without the set signal.
(All other parameters values are the same as in Fig. 3.)
The higher branch of the hysteresis drops accordingly,
and therefore the output power switches from Poff to Px ;
the intermediate state Px is significantly lower than the
final state Pon , which is obtained after the set pulse
passes through the device.

Fig. 7. Set-pulse ledge: (a) ledge feature Px can occur during
the application of the set pulse. (b) Severe hysteresis shift is the
origin of the ledge. (c) Ledge height Px 2 Poff decreases with set
power.



Maywar et al. Vol. 18, No. 7 /July 2001 /J. Opt. Soc. Am. B 1011
The large difference between the upper branches of
each hysteresis arises from both dispersive and gain-
related effects; increased XPM pushes the Bragg reso-
nance away from the holding-beam wavelength, and
larger gain saturation diminishes the strength of the
Bragg resonance. These effects grow as the set-pulse
power is increased. Therefore, the height of the ledge
above the lower state Px 2 Poff diminishes as the set
power increases, as shown in Fig. 7(c).

For a small range of set-pulse powers, the ledge height
Px ' Poff , and the ledge is not visible. The ledge also
goes unnoticed for low set powers, where Px ' Pon be-
cause the flip-flop is set without too much variation in the
hysteresis-branch height. Otherwise, set-pulse ledges
will occur. Such ledges significantly warp the flip-flop
output if their width is of the same order as the interval
between set and reset signals. Relatively short set sig-
nals, however, do not significantly distort the holding-
beam output shape.

C. Back-to-Back Set Signals
Because set signals are envisioned to come directly from
the optical system, there may be situations in which mul-
tiple set signals enter the flip-flop before reset occurs.
(All such signals are referred to here as set signals, al-
though only the first one sees the flip-flop in its off state.)
The stability and response of the flip-flop output power to
back-to-back signals is therefore important to consider.

A pulse sequence of two set signals followed by a reset
signal is used in experiments, as shown in Fig. 8(a),
where the holding-beam power PH 5 0.068 mW; the re-
sponse of the flip-flop is shown in Fig. 8(b). The first and
last pulses of this sequence perform set and reset, as ex-
pected. A ledge was produced for a set power of 0.59
mW, as described above.

While the holding beam is in the high-output state Pon ,
the second set signal enters the SOA. The flip-flop out-
put power is reduced for the duration of the set signal, but
it returns to Pon after the signal dissipates. The notch in
the output power can also be understood from the hyster-
eses in Fig. 7(b) used to describe the set-pulse ledges.
Unlike for the case of the ledges, however, the holding-
beam output power begins in the high state Pon . The
second set signal pushes the hysteresis curve to smaller
switching powers, and the output power drops accord-
ingly to Px . However, because the switching thresholds
do not cross the holding-beam input power, the final out-
put state does not change; after the set pulse dissipates,
the hysteresis curve returns to original shape with the
holding-beam output power at Pon .

Using the theoretical model, we simulated the flip-flop
response to back-to-back set pulses. Both set-pulse
ledges and notches are obtained, as shown in Fig. 9,
where the parameter values are the same as in Fig. 5, ex-
cept Si 5 0.6 mW, Ri 5 2.2 mW, WS 5 0.8 ns, WR
5 0.6 ns, and tR 5 66 ns. The second set signal is de-
fined by Si 5 0.6 mW, WS 5 0.8 ns, and ts 5 42 ns. The
set and reset switching exhibit spikes, as seen for numeri-
cal data shown in Fig. 5. Spiking behavior of this sort is
common in simulations of dispersive bistability,2,8,14 and
it occurs as the holding beam passes through the peak of
the Bragg resonance. Enhancement of spikes in simula-
tions occurs as an artifact from the adiabatic elimination
of the bistable signal from the system dynamics.8 Fur-
thermore, suppression of spikes in experimental measure-
ments has been attributed to the slow response of the de-

Fig. 8. Back-to-back set signals: (a) control signals; an addi-
tional set pulse enters the DFB SOA between set and reset sig-
nals. (b) In response, the holding-beam transmission remains
stable and only experiences a transient dip.

Fig. 9. Simulated response of the flip-flop to back-to-back set
signals: (a) control signals; (b) holding-beam transmitted
power, showing a ledge and a notch.
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tection scheme14; our 500-MHz oscilloscope may have
diminished the measured spikes.

Figure 9 also reveals a notch during reset operation;
this momentary decrease in power occurs as the reset
pulse shifts the Bragg resonance away from the holding-
beam wavelength. The reset notch, however, is not ob-
served in the experimental data of Fig. 8; we believe that
the notch is masked by the excess spontaneous emission
contributed by the Bragg resonance, which is strength-
ened during the application of the reset pulse. This noise
feature is beyond the scope of our simple model.

In our experiments, which used peak signal powers of
;0.6 mW and widths of ;4 ns, the second set pulse never
caused the holding-beam power to become unstable and
return to the lower level Poff . Moreover, if the output
power from the flip-flop is coupled into an optical net-
work, fiber dispersion will fill in the notches caused by set
pulses that are short compared with the on-state dura-
tion. In this case, back-to-back set signals have no last-
ing effect.

D. Set-Signal Strength
In experiments and simulations, we found that the re-
quired set-signal power is much smaller than that of the
reset signal. The theoretical model presented here pro-
vides insight into the relative strength of these processes.
The phase change Df, experienced by the holding beam as
the gain changes by an amount Dg, is given by the change
in wave number, Df 5 2DgLa/2. Using the steady-
state solution to gain rate equation (22), and isolating the
effects of the optical signals, we find that the phase
change is given by

Df 5
a

Df
Fg0L

2

^PA& 1 ^PB&

Psat
1

g0L

2

^PS&

PSsat
2

hL

2

^PR&

PRsat
G ,

(33)

Df 5 1 1
^PA& 1 ^PB&

Psat
1

^PS&

PSsat
. (34)

The three terms in the bracketed expression of Eq. (33)
represent (from left to right) holding-beam SPM, set-
signal XPM DfSXPM , and reset-signal XPM DfRXPM .
For the parameter values used throughout this paper (a
5 5, g0L ' 1.2, and hL 5 2.3), the prefactors are
ag0L/2 ' p and ahL/2 ' 2p. Thus, the strength of
each signal power (within the SOA) relative to its satura-
tion power determines the number of p phase shifts expe-
rienced by the holding beam.

For the case of small optical powers (relative to the
saturation powers), the quantity Df ' 1. The expres-
sion for set-signal XPM can be estimated by using
average-power equation (29) with the small-signal limit
g 5 g0 and PSsat 5 10 mW:

DfSXPM ' 0.18pPS0 , (35)

DfRXPM ' 20.06pPR0 . (36)

The phase change for the reset signal DfRXPM was ob-
tained by using Eq. (29) for the average power and PRsat
5 11.8 mW.

To obtain the same phase shift, relations (35) and (36)
reveal that the reset signal must provide more power
than the set signal. In addition to having a smaller satu-
ration power, the set signal is amplified by the medium,
as opposed to the absorption of the reset signal. More-
over, the effect of the holding-beam power on XPM (i.e.,
Df . 1) makes the difference in required powers even
greater; whereas the set signal sees a relatively small in-
ternal holding-beam power, the reset signal sees a
resonant-amplified holding beam, further reducing
DfRXPM .

5. CONCLUSION
We describe all-optical techniques for setting and reset-
ting a SOA-based optical flip-flop. Instead of varying the
holding-beam input power (SPM), we vary the bistable
hysteresis curve itself by using auxiliary control signals
(XPM) that shift the photonic bandgap and Bragg reso-
nances.

These set–reset techniques exploit yet another remark-
able aspect of SOA’s—optical signals can be used either to
increase or decrease the refractive index. These XPM
processes occur over a wide wavelength range and at rea-
sonable optical powers, ensured by the strong SOA carrier
nonlinearity. The flip-flop technology also has the ad-
vantage of maturity and potential for photonic-circuit
integration—experiments were performed by using a
commercially available telecommunications diode laser
(driven below lasing threshold).

Accompanying the strong SOA carrier nonlinearity,
however, is a carrier lifetime t ; 0.2–1 ns,16 which limits
the repetition rate of the flip-flop. Electrical and optical
bias techniques have been used to shorten the effective
lifetime of SOA’s down to 10 ps;17 we expect that these
techniques permit flip-flop operation at data rates of 10
Gb/s and faster. In addition, pulses shorter than the car-
rier lifetime can set and reset the flip-flop; this feature
can be exploited for applications such as format conver-
sion from high-speed (.10 Gb/s) return-to-zero to low-
speed nonreturn-to-zero data.18

The theoretical model used to describe flip-flop opera-
tion incorporates the bistable system and control signals.
To arrive at a simple equation, we invoke approximations
that are common to the study of optical bistability and to
nonlinear SOA dynamics; our simulations are in qualita-
tive agreement with experiments that use back-to-back
set signals and a varied set-pulse power. We expect the
present model to be useful for further investigation into
the response of the flip-flop, as well as for applications to
fiber-optic communication systems.

ACKNOWLEDGMENTS
D. Maywar greatly appreciates discussions with D. Aron-
stein, M. Tsurusawa, Y. Katagiri, M. Funabashi, T.
Yamaguchi, K. Shimizu, and T. Yasui. We thank D. In-
oue and M. Kato for their technical assistance. This re-
search was supported by the U.S. National Science Foun-
dation (Grant INT-9809932), the International
Communication Foundation, and the Telecommunica-
tions Advancement Organization of Japan.



Maywar et al. Vol. 18, No. 7 /July 2001 /J. Opt. Soc. Am. B 1013
The authors can be reached at the addresses on the
title page. D. Maywar may be reached by e-mail at
maywar@optics.rochester.edu.

REFERENCES
1. H. G. Winful, J. H. Marburger, and E. Garmire, ‘‘Theory of

bistability in nonlinear distributed feedback structures,’’
Appl. Phys. Lett. 35, 379–381 (1979).

2. M. J. Adams and R. J. Wyatt, ‘‘Optical bistability in distrib-
uted feedback semiconductor laser amplifiers,’’ IEE Proc.
134, 35–40 (1987).

3. D. N. Maywar and G. P. Agrawal, ‘‘Effect of chirped grat-
ings on reflective optical bistability in DFB semiconductor
laser amplifiers,’’ IEEE J. Quantum Electron. 34, 2364–
2370 (1998).

4. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd.
ed. (Van Nostrand Reinhold, New York, 1993).

5. G. P. Agrawal and N. A. Olsson, ‘‘Self-phase modulation
and spectral broadening of optical pulses in semiconductor
laser amplifiers,’’ IEEE J. Quantum Electron. 25, 2297–
2306 (1989).

6. H. Kawaguchi, ‘‘Progress in optical functional devices using
two-section laser diodes/amplifiers,’’ IEE Proc. 140, 3–15
(1993).

7. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow,
‘‘Semiconductor laser amplifiers for ultrafast all-optical sig-
nal processing,’’ J. Opt. Soc. Am. B 14, 3204–3216 (1997).

8. N. Ogasawara and R. Ito, ‘‘Static and dynamic properties of
nonlinear semiconductor lasers amplifiers,’’ Jpn. J. Appl.
Phys. 25, 739–742 (1986).
9. K. Inoue, ‘‘All-optical flip-flop operation in an optical
bistable device using two lights of different frequencies,’’
Opt. Lett. 12, 918–920 (1987).

10. D. N. Maywar, G. P. Agrawal, and Y. Nakano, ‘‘Robust op-
tical control of an optical-amplifier-based flip-flop,’’ Opt. Ex-
press 6, 75–80 (2000).

11. H. Kogelnik and C. V. Shank, ‘‘Coupled-wave theory of dis-
tributed feedback lasers,’’ J. Appl. Phys. 43, 2327–2335
(1972).

12. K. Otsuka and H. Iwamura, ‘‘Analysis of a multistable
semiconductor light amplifier,’’ IEEE J. Quantum Electron.
19, 1184–1186 (1983).

13. P. Meystre, ‘‘On the use of the mean-field theory in optical
bistability,’’ Opt. Commun. 26, 277–280 (1978).

14. W. F. Sharfin and M. Dagenais, ‘‘Dynamics of optically
switched bistable diode laser amplifiers,’’ IEEE J. Quantum
Electron. 23, 303–308 (1987).

15. T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen,
and K. E. Stubkjaer, ‘‘All optical wavelength conversion by
SOA’s in a Mach-Zehnder configuration,’’ IEEE Photonics
Technol. Lett. 6, 53–55 (1994).

16. M. J. Adams, D. A. O. Davies, M. C. Tatham, and M. A.
Fisher, ‘‘Nonlinearities in semiconductor laser amplifiers,’’
Opt. Quantum Electron. 27, 1–13 (1995).

17. R. J. Manning, and D. A. O. Davies, and J. K. Lucek, ‘‘Re-
covery rates in semiconductor laser amplifiers: optical and
electrical bias dependencies,’’ Electron. Lett. 30, 1233–1234
(1994).

18. D. N. Maywar, Govind P. Agrawal, and Y. Nakano, ‘‘Robust
all-optical control of a semiconductor optical amplifier flip-
flop,’’ presented at Optical Amplifiers and Their Applica-
tions, Quebec, Canada, July 9–12, 2000.


