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We study spatiotemporal instabilities in a bulk medium with Kerr-type nonlinearity and a volume Bragg grat-
ing along the direction of wave propagation. The continuous-wave beam propagation is unstable in such a
periodic structure because of an interplay among grating-induced dispersion, diffraction, and nonlinear phase
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1. INTRODUCTION
Modulational instability (MI) has been extensively inves-
tigated in several branches of physics.1–7 It refers to a
phenomenon that reveals itself as the exponential growth
of weak perturbations when an intense pump beam
propagates inside a nonlinear medium. For example, in
plasma physics, MI of high-intensity laser beams results
in the formation of hot spots in the transverse intensity
profile of the beam.3,4 In the case of optical fibers, MI
manifests itself as breakup of the continuous-wave (cw) or
quasi-cw radiation into a train of short optical pulses.2

Generally, MI’s can be classified as temporal (longitu-
dinal) or spatial (transverse), depending on whether a cw
beam disperses or diffracts inside the nonlinear medium.
These instabilities can occur when a single intense beam
propagates through the medium as well as when several
laser beams propagate at once. Temporal MI of a single
wave in optical fibers has been observed in the
anomalous-dispersion regime.5 It was shown that tem-
poral and spatial instabilities can, in fact, occur simulta-
neously in a bulk nonlinear medium when diffraction and
dispersion take place simultaneously.8 In this case, MI
can occur in both anomalous- and normal-dispersion re-
gimes. In parallel to these investigations, several au-
thors have considered the propagation of two waves in
nonlinear media. It has been shown that even when
single-wave propagation is stable, MI can develop in the
presence of another, copropagating or counterpropagat-
ing, wave.3,9 These studies addressed the spatial MI of
0740-3224/2001/010045-10$15.00 ©
two collinear waves in a three-dimensional dispersionless
nonlinear medium3 as well as the temporal MI of two
waves in a one-dimensional dispersive nonlinear
medium.9,10 More recently, MI for counterpropagating
waves was observed experimentally in Bragg
gratings.11–14 In this case forward- and backward-
propagating waves are coupled both linearly (as a result
of periodicity) and nonlinearly (as a result of the Kerr
effect).15 It is well known that a periodic structure intro-
duces strong dispersion at frequencies close to the edges
of the photonic bandgap.16,17 Theoretical investigation of
MI in one-dimensional periodic structures6 revealed sev-
eral new features of MI in the anomalous-dispersion re-
gime at high powers. In particular, it was found that
even in the normal-dispersion regime the cw field may be-
come unstable.

Most of the research on MI in periodic structures has
been confined to temporal instabilities. Spatial instabili-
ties were considered in Refs. 18 and 19. However, in
those investigations either instabilities in a finite periodic
structure under bidirectional illumination19 or stability of
nonlinear Bloch waves in a semi-infinite periodic
medium18 were considered. Our aim in this study is to
present a detailed investigation of spatiotemporal insta-
bilities of two counterpropagating waves in an infinite ge-
ometry, as shown in Fig. 1. This paper is organized as
follows: In Section 2, after reviewing coupled-mode
theory describing the propagation of light in nonlinear pe-
riodic structures, we develop the linear stability analysis
2001 Optical Society of America
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to study spatiotemporal instabilities in such structures.
In Sections 3–6 we analyze various regimes of the spa-
tiotemporal MI’s, and in Section 7 we identify their physi-
cal origins. In Section 8 we discuss the experimental
conditions and materials that one can use to observe spa-
tiotemporal MI in periodic structures. Finally, we
present a summary of our results in Section 9.

2. THEORY
A. Propagation Equations
Wave propagation in Bragg gratings can be described by
use of the nonlinear coupled-mode equations. These
equations are valid only for shallow gratings and for
wavelengths close to the Bragg wavelength. The nonlin-
ear coupled-mode equations can be derived by substitu-
tion of the following form for electric field E:

E 5 @E1 exp~1ikBz ! 1 E2 exp~2ikBz !#exp~2ivBt ! (1)

into the wave equation. Here E1 and E2 are the slowly
varying amplitudes of forward- and backward-
propagating waves, respectively, and kB 5 p/L is the
wave number at the Bragg frequency vB 5 pc/(nL).
The resultant nonlinear coupled-mode equations for E6

can be written as
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where V 5 c/n is the velocity of light in the absence of a
grating, k 5 pDn/lB is the coupling coefficient, Dn is the
index-modulation depth, and lB 5 2nL is the Bragg
wavelength. The nonlinear parameter G is defined as G
5 2pn2 /lB , where n2 is the nonlinear refractive index.
In this study we use chalcogenide glass as an example of
a nonlinear medium. The nonlinear refractive index of
chalcogenide glass is ;100 times larger than that in silica
glasses.20,21 Also, it has been shown that chalcogenide
glass when it is exposed to visible light exhibits a change
in linear refractive index that can be as high as 0.01.20

Indeed, As2S3-based fiber Bragg gratings were recently
reported.20 Various types of chalcogenide glass have
been investigated, and high-quality, single-mode
chalcogenide-glass waveguides operating near 1.55-mm
have been demonstrated.21

Fig. 1. Schematic illustration of a bulk nonlinear periodic struc-
ture.
In the case of counterpropagating cw plane waves of
constant intensity, Eqs. (2) and (3) can be solved analyti-
cally, as we assume that E6 are then independent of x
and y. The solution can be written as6
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where a and f are two real parameters and
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Parameter a is related to the total power in the grating
through a2 5 uE1u2 1 uE2u2, whereas parameter f
determines the position on the dispersion curve in the
V –Q plane and is related to the group velocity:
vg 5 V(dV/dQ) 5 V(1 2 f 2)/(1 1 f 2). Physically, pa-
rameter f represents the ratio of forward- and backward-
propagating waves; i.e., f 5 E2 /E1 .

Let us first describe the dispersive characteristics of
the periodic structure in the low-power limit a ! 1 by set-
ting G 5 0. Figure 2 shows the dispersion relation V(Q)
in the limit a → 0 for both a uniform medium (dashed
lines) and a periodic medium (solid curves). For V in the
range 2k < V < k, that defines the photonic bandgap,
no propagating wave solutions are allowed and most of
the light is reflected. Outside this region, light can
propagate inside the periodic structure. In the absence
of the grating, light propagates at the speed of light in the

Fig. 2. Dispersion curves for an infinite linear periodic struc-
ture.
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uniform medium. The grating introduces a curvature in
the dispersion curve, as shown in Fig. 2, that leads to dis-
persion at frequencies close to the edges of the photonic
bandgap. On the upper branch of the dispersion curve,
corresponding to f , 0, the group-velocity dispersion of
the grating is negative (anomalous GVD). On the lower
branch, corresponding to f . 0, the qroup-velocity disper-
sion is positive (normal GVD). At frequencies close to the
edge of the photonic bandgap, the grating also exhibits
significant higher-order dispersion.16,17,22 The special
cases f 5 61 correspond to the two edges of the photonic
bandgap; in particular, f 5 21 coincides with the top of
the bandgap and f 5 1 with the bottom of the bandgap.
In the low-power limit, the top and the bottom of the pho-
tonic bandgap correspond to V 5 k and V 5 2k, respec-
tively, where V 5 V21(v0 2 vB), v0 is the frequency of
the light [s21], and vB is the Bragg frequency [s21]. Also,
u f u , 1 corresponds to forward propagation and u f u . 1
to backward propagation.

B. Linear Stability Analysis
In this section we return to the nonlinear case. In gen-
eral, Eqs. (2) and (3) should be solved numerically. How-
ever, the stability of the cw solution can be studied ana-
lytically with standard linear stability analysis. The
basic idea of this analysis consists of perturbing the cw
solution slightly and studying whether this small pertur-
bation grows or decays with propagation. Of course,
such an analysis can provide only the initial growth of
perturbation. When the perturbation amplitude grows
enough to become comparable with that of the incident
beam, a numerical analysis becomes necessary.

Using a standard procedure, we assume that solutions
(4) and (5) are perturbed slightly such that

E6 5 @a6 1 «6~x, y, z, t !#exp@i~Qz 2 VVt !#, (8)

with the perturbation u«6u ! a6 . Substituting Eq. (8)
into Eqs. (2) and (3) and linearizing in «6 , we obtain the
following two linear equations:
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where G 5 Ga2/(1 1 f 2). Also, for the following discus-
sion it is convenient to define a parameter P 5 Ga2 that
is proportional to the total beam power and is inversely
related to the nonlinear length @LNL 5 1/G(a2)#.2

We assume plane-wave solutions for «6 of the form

«6~x, y, z, t ! 5 b6 exp@i~K • r 2 vVt !#

1 c6 exp@2i~K • r 2 vVt !#, (11)

where b1 and c1 correspond to forward sidebands and b2

and c2 correspond to backward sidebands.
Substituting Eq. (11) into Eqs. (9) and (10), we obtain
four linear coupled equations for b6 and c6 :
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where kt 5 Kt /A2kB, Kt 5 6AKx
2 1 Ky

2 is the trans-
verse component, and k i 5 Kz is the longitudinal compo-
nent of K. Equations (12) have a nontrivial solution only
if the determinant of the coefficient matrix vanishes.
The determinant establishes the dispersion relation v(K)
that the perturbation must satisfy.

We present our results in the next four sections: In
Sections 3 and 4 we consider two special cases ( f 5 61)
for which the cw beam is exactly tuned to the top and the
bottom of the photonic bandgap. In Sections 5 and 6 we
discuss the effects of detuning from the bandgap edges.
The dispersion relation obtained from Eqs. (12) is a quar-
tic polynomial in v whose roots require, in general, nu-
merical evaluation for arbitrary values of f.

3. TOP OF THE PHOTONIC BANDGAP
The case f 5 21 corresponds to tuning the cw beam to
the top of the photonic bandgap. Inasmuch as the disper-
sion is anomalous on the upper branch of the dispersion
relation, we expect temporal MI because of the mutual ef-
fect of the dispersion and Kerr nonlinearity in this re-
gime. At the same time we also expect spatial MI that
results from an interplay between transverse effects and
the nonlinearity.

In this case the determinant of the coefficient matrix of
Eqs. (12) is simplified significantly and the roots can
therefore be found analytically. Solving Eqs. (12) when
f 5 21, we find that
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The instability is associated with the imaginary part of
v 5 vr 1 iv i because the perturbation then grows expo-
nentially with time, as one can see from Eq. (11). We can
find the boundaries of the unstable region in the param-
eter space (k i , kt) by finding values of k i for which v2

5 0.
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It can be shown that the right-hand side of Eq. (13)
vanishes when

k i
~1 ! 5 6~12Gk 2 6Gkt

2 2 2kkt
2 1 kt

4!1/2 (14)

or when

k i
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2 2 2kkt
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4!1/2. (15)

Note also that, when

Fig. 3. (a) Instability domains in K space and (b) the corre-
sponding gain for the top of the photonic bandgap (k
5 10 cm21, P 5 8 cm21).
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A. Bulk Kerr Medium Without a Grating
For a bulk Kerr medium without a grating, Eqs. (2) and
(3) reduce to those studied in Ref. 23 in the context of

Fig. 4. Instability gain under conditions identical to those of
Fig. 3, except that k 5 0 (no grating, no dispersion).
the argument of the square root in Eq. (13) vanishes.
When the argument becomes negative, v is complex, and
therefore instabilities also occur for these values of k i .

Instability regions given by Eqs. (14)–(16) are shown in
Fig. 3(a), where the solid curves correspond to k i

(1), the
long-dashed curves to k i

(2), and the short-dashed curve to
k i

(3). Figure 3(b) shows MI gain g 5 Im(v) as a function
of Kz and Kt . In the one-dimensional case [in the ab-
sence of transverse terms in Eqs. (2) and (3)], MI gain re-
duces to that found in Ref. 6 for a fiber Bragg grating if we
set Kt 5 0. However, in the presence of transverse ef-
fects induced by diffraction, the instability that is due to
spatial modulation accompanies temporal instability. As
can be seen from Fig. 3(b), the maximum gain occurs at a
nonzero value of Kt ; in fact, maximum gain corresponds
to Kz 5 0. This means that the MI is a pure spatial ef-
fect and would lead to a ring pattern on the transverse in-
tensity profile of the cw beam because of cylindrical sym-
metry. However, if the perturbation is seeded at other
values of Kz and Kt , both temporal and spatial instabili-
ties can develop simultaneously. This situation can be
visualized as a transverse ring pattern oscillating in time.

One may ask whether the gain peak always occurs at
Kt Þ 0 when diffractive effects are included. We can an-
swer this question qualitatively by expanding the gain
g (Kz , Kt) in the neighborhood of (Kz

max, 0), where Kz
max

is the location of the gain peak in the one-dimensional
case,6 and study whether this point remains a local gain
maximum in the three-dimensional case. We find that
the gain peak always shifts to Kt Þ 0 when k . G. In
fact, point (Kz

max, 0) is a saddle point in this case. In the
limit G . k, the local maximum still occurs at point
(Kz

max, 0) although the global maximum is found to occur
numerically at Kt Þ 0. Although such was not proved
rigorously, we find that a global maximum (when f
5 21) always occurs at Kz 5 0. Substituting Kz 5 0
into Eq. (13), we find that the gain peak occurs at Kt

max

5 A6GkB and is equal to g 5 3G. Comparing this
value with the value of gain at point (Kz

max, 0) which is
equal to g 5 3G @k/(k 1 2G)#1/2, we conclude that the
gain is always higher at Kt Þ 0.

Another noteworthy feature, shown in Fig. 3(b), is that
the instabilities can occur for arbitrarily large values of
Kt . In the single-wave case, in both one-dimensional2

and three-dimensional8 geometries the instability region
for anomalous dispersion is always bounded. However,
the MI region is always unbounded for two counterpropa-
gating waves in dispersionless three-dimensional media23

and, in fact, looks similar to what we observe for large Kz
and Kt in Fig. 3. These qualitative observations suggest
that we should consider two limiting cases: (1) a bulk
nonlinear medium without a grating (k → 0) and (2) a
one-dimensional periodic structure (no transverse ef-
fects). Let us consider each of them in more detail.
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plasma physics and describe the dispersionless evolution
of two counterpropagating waves coupled only through
the nonlinearity. Therefore the results of the analysis of
Ref. 23 can be directly applied here. We find the follow-
ing relation among v, k i , and kt :

v2 5 k i
2 2 2Gkt

2 1 kt
4

6 2~4G2kt
2 2 2G2k i

2kt
2 1 k i

2kt
4!1/2. (17)

Figure 4 shows the MI gain given by Eq. (17). Figures
deed, the instability regions are unbounded in both cases,
Following the analysis in Section 3, we find the bound-
aries of the regions in parameter space (k i , kt) where in-
stabilities occur. The right-hand side of Eq. (19) van-
ishes when
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Again, when the argument becomes negative, v is com-
plex, and therefore instabilities occur also for these values
of k i .

We plot the instability regions given by Eqs. (20)–(22)
in Fig. 5(a) and the MI gain in Fig. 5(b). Note that in this
example we have used a higher input power P than in the
previous case because, as was shown in Ref. 6, there is a
finite threshold for grating-induced instabilities in nor-
mal dispersion. Consider again the two limiting cases.
When k → 0, Eqs. (2) and (3) become dispersionless, and
therefore we would expect the MI gain to be identical for
both signs of parameter f. To investigate how the grating
modifies the gain, we compare Fig. 5(b) with Fig. 4 and
find that at large Kz and Kt the figures are quite similar
(note that the input powers used in these figures are dif-
ferent, so the comparison is only qualitative). Therefore
the grating affects the gain only for small wave numbers.

Fig. 5. (a) Instability domains and (b) the corresponding gain
for the bottom of the photonic bandgap (k 5 10 cm21, P
5 20 cm21).
and the absolute maximum occurs at Kz 5 0. Therefore,
at large Kz and Kt , a grating seems irrelevant. At small
Kz and Kt , grating-induced dispersion in combination
with Kerr nonlinearity (and transverse effects) modifies
MI gain such that a doughnutlike gain shape appears in
Fig. 3(b). This behavior is similar to that of the single
wave propagating in the volume dispersive nonlinear me-
dium studied in Ref. 8.

B. One-Dimensional Periodic Structure
When Kt 5 0, Eq. (13) becomes identical to the dispersion
relation found in Ref. 6. Therefore, in this case our re-
sults reduce to those obtained for a one-dimensional peri-
odic structure such as a fiber Bragg grating. Indeed,
from Eqs. (14)–(16), the borders of instability are given by

k i
~4 ! 5 6A12Gk, (18)

an equation that is identical to that obtained in Ref. 6.
We thus find that the wave numbers that correspond to
the largest gain are identical to those in Ref. 6. As we
showed above, those wave numbers do not correspond to a
global maximum of the gain in a full three-dimensional
problem (see Fig. 3).

4. BOTTOM OF THE PHOTONIC BANDGAP
Let us now consider the case when f 5 1, which corre-
sponds to tuning the cw beam to the bottom of the photo-
nic bandgap. In Ref. 6 it was shown that, despite the
normal dispersion on the lower branch of the dispersion
curve, temporal MI can occur. In our case, we also expect
spatial MI to occur, as a result of the mutual effect of
transverse effects and nonlinearity.

The determinant in Eq. (12) can be simplified in this
case, and we obtain the following analytic expression for
the dispersion relation:

v2 5 2k2 1 2Gk 1 k i
2 1 2kt

2k 2 2Gkt
2 1 kt
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1 2Gk3 1 G2k2 1 k i
2k2 2 2Gkk i
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2kt

2 2 2Gk i
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4 1 k i

2kt
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This result is not unexpected, as grating effects are not
significant away from the Bragg resonance. In particu-
lar, the grating provides the gain at Kt 5 0, which is zero
without the grating. This case was discussed in detail in
Ref. 6. Here we only stress that our results reduce to
those in Ref. 6 in the appropriate limit.

5. ANOMALOUS-DISPERSION REGIME
( f Ë 0)
So far we have studied the instabilities only at the two
edges of the photonic bandgap. This is where forward-
and backward-propagating waves are strongly coupled
because of the presence of the grating. In the general
case of arbitrary f, Eqs. (12) can be written as

~v 2 v1!~v 2 v2!~v 2 v3!~v 2 v4!

2 12 fG2kt
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where the linear roots (v1 , v2 , v3 , v4) are given by

v1,2 5
k

2
~ f 21 1 f ! 6 @k i

2 2 k i~ f 21 2 f !

1 1/4 ~ f 21 1 f !2#1/2 1 kt
2, (24)
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2 1 k i~ f 21 2 f !

1 1/4 ~ f 21 1 f !2#1/2 2 kt
2. (25)
Equations (24) and (25) are almost identical to the linear
roots found in Ref. 6, the only difference, is that the last
term, because of the transverse effects, introduces a shift
of these roots.

Let us consider the case when the initial cw wave is de-
tuned from the edge of the photonic bandgap into the
anomalous-dispersion regime ( f , 0). We have studied
a large number of cases for various incident intensities
and detunings from the edge of the photonic bandgap.
Some representative examples are shown in Fig. 6. At
low intensities the gain curve resembles that for the
single-wave case, as discussed by Liou et al.8; i.e., it has a
doughnutlike shape with equal maximum gain for fre-
quencies equidistant from the center [Fig. 6(a)]. At
higher intensities an absolute maximum occurs at Kz
5 0 (but Kt Þ 0), which means that the spatial effects
dominate temporal ones, as shown in Fig. 6(b). Figures
6(c) and 6(d) show that, if the frequency of the incident
beam lies far from the edge of the photonic bandgap,
nearly the same gain occurs for a range of frequencies;
i.e., there is no well-isolated absolute peak at the gain
surface. This result implies that if the instability devel-
ops from the noise several different frequencies will have
equal chances to grow. In general in this regime both
spatial and temporal instabilities exist for any incident
intensity.

6. NORMAL-DISPERSION REGIME ( f Ì 0)
In this section we consider the case when the frequency of
the initial cw wave lies upon the lower branch of the dis-
persion relation where dispersion is normal. Several
representative examples of the gain curves are shown in
Fig. 7.

In Ref. 6 it was shown that there is a finite threshold
below which the cw wave is stable. This threshold is
given by Gf . k/(2 f 2) for f . 1 and by Gf . kf 2/2 for
Fig. 6. MI gain in the K space for values of f and P as shown. In all cases k 5 10 cm21.
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Fig. 7. MI gain in K space for values of f and P as shown.
f , 1. The parameters used in Fig. 7(a) correspond to
the below-threshold case. However, instability still oc-
curs because of the spatial effects. However, for incident
intensities that exceed the threshold [Figs. 7(b)–7(d)]
both spatial and temporal instabilities can develop. If we
compare Figs. 7(b)–7(d) with Fig. 4 we notice again that
grating modifies the gain curves primarily for small
transverse wave numbers, that is, it permits growth that
does not exist in the absence of the grating.

7. PHYSICAL INTERPRETATION
To understand the origin of various features of the gain
curves shown in Figs. 3–7 it is advantageous to consider
in detail the interaction among the four sidebands that
are hidden in the dispersion equation. Let us consider
various kinds of two-sideband process. These include
forward four-wave mixing (FFWM), which involves either
forward pump wave a1 and its two sidebands b1 and c1

or backward pump wave a2 and its corresponding side-
bands b2 and c2 . One should also consider backward
four-wave mixing processes (BFWM) that involve interac-
tions between one forward and one backward sideband
(b1 , c2) or (c1 , b2). The third possibility is the interac-
tion between pair of sidebands (b1 , b2) and pair of side-
bands (c1 , c2); however, we have not found any instabili-
ties that result from this process.

A. Forward Four-Wave Mixing
First let us consider the interaction of the sidebands as-
sociated with the forward pump wave, namely, b1 and
c1 , and ignore all other interactions. Then from Eqs.
(12) we obtain

Fv 2 k i 2 kf 1 G 2 kt
2 G

G 2v 1 k i 2 kf 1 G 2 kt
2G

5 0, (26)
which gives

v 5 k i 6 Akf 1 kt
2Akf 2 2G 1 kt

2. (27)

Let us first analyze the case of f , 0. Instabilities occur
only when

2ku f u 1 kt
2 . 0, 2ku f u 2 2G 1 kt

2 , 0. (28)

Then the instability gain is given by

g 5 A2ku f u 1 kt
2Aku f u 1 2G 2 kt

2. (29)

Maximizing the right-hand side of the Eq. (29), we find
the wave number that corresponds to the largest gain:

kt 5 6AG 1 ku f u. (30)

The maximum gain is then given by

gmax 5 G. (31)

Figure 8(a) shows the FFWM-induced gain for f 5 21.
Comparing Figs. 8(a) and 3(b), we can easily identify
FFWM-induced branches in Fig. 3(b). Inasmuch as one
of the main goals of this study is understanding the effect
of the grating on the MI gain, in Fig. 8(b) we plot the
FFWM gain for case k 5 0. Then, comparing Figs. 8(a)
and 8(b), we conclude that in the anomalous-dispersion
regime the grating shifts the FFWM-induced branches of
the gain along Kt . Note that here we consider a forward-
propagating pump and its sidebands. A similar analysis
can be made for a backward-propagating pump, the only
difference coming from the ratio between the forward-
and backward-propagating wave amplitudes given by pa-
rameter f.

Now we consider the case f . 0. Instabilities occur
only when kf 2 2G 1 kt

2 , 0. The instability gain is
then given by

g 5 Akf 1 kt
2A2G 2 kf 2 kt

2. (32)

We can find the wave number that corresponds to the
largest gain by maximizing the right-hand side of Eq.
(32), which leads to
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kt 5 0 kf . G . kf/2,

or

kt 5 6AG 2 kf G . kf, (33)

and the maximum gain is then given by

gmax 5 AkfA2G 2 kf,

gmax 5 G, (34)

respectively.
In Fig. 8(c) we plot the FFWM-induced gain for f 5 1

for the parameters used in Fig. 5(b). As in the previous
case, in Fig. 8(d) we plot the FFWM-induced gain for k
5 0 [note that it should be similar to that for Fig. 8(b),
except that different input powers have been used (see
the figure captions)]. Comparing Figs. 8(c) and 8(d), we
conclude that the grating significantly modifies the
FFWM-induced instability gain near Kt 5 0; in particu-
lar, it provides a nonzero gain at Kt 5 0.

B. Backward Four-Wave Mixing
In this subsection we study the interaction of two side-
bands propagating in opposite directions. The process is
known as BFWM. First let us consider the interaction of
the sideband associated with forward pump wave, b1 ,
and the sideband associated with backward pump wave,
c2 . In this case the dispersion relation [Eqs. (12)] re-
duces to

Fv 2 k i 2 kf 1 G 2 kt
2 2 fG

2 fG 2v 2 k i 2 kf 21 1 f 2G 2 kt
2G

5 0, (35)

which leads to

v 5 0.5f 21$2fG 1 f 3G 2 k 1 kf 2 6 @~ fG 2 f 3G 1 k

2 kf 2!2 2 4f~3f 3G2 1 Gk 1 kGf 4 2 fk2 1 fGk i

1 f 3Gk i 2 kk i 2 kf 2k i 2 fk i
2 1 fGkt

2 1 f 3Gkt
2

2 kkt
2 2 kf 2kt

2 2 2 fk ikt
2 2 fkt

4!#1/2%. (36)

Fig. 8. FFWM-induced gain in K space: (a) P 5 8 cm21, f
5 21, k 5 10 cm21; (b) P 5 8 cm21, f 5 21, k 5 0; (c) P
5 20 cm21, f 5 1, k 5 10 cm21; (d) P 5 20 cm21, f 5 1, k 5 0.
Let us consider two examples for f 5 61. Then Eq. (36)
reduces to

v2 5 23G2 1 2G~k 2 k i 2 kt
2! 1 ~2k 1 k i 1 kt

2!2

f 5 21, (37)

v2 5 23G2 2 2G~k 1 k i 1 kt
2! 1 ~k 1 k i 1 kt

2!2

f 5 1. (38)

Instability gain that is due to BFWM is shown in Figs.
9(a) for f 5 21 and 9(c) for f 5 1. Comparing these fig-
ures with Figs. 3(b) and 5(b), respectively, one can easily
identify BFWM-induced features in Figs. 3(b) and 5(b) at
large values of Kt and Kz . At small wave numbers the
gain shown in Figs. 3–5 is produced by four-sideband in-
teraction with the forward- and backward-propagating
pump waves.

From Eqs. (37) and (38) the largest gain is given by

gmax 5 2G, (39)

with the corresponding wave numbers

kt
2 5 G 1 k 2 k i f 5 21, (40)

kt
2 5 G 2 k 2 k i f 5 1. (41)

Figures 9(b) and 9(d) show instability gain for k 5 0 for
two different input powers. Again we conclude that the
presence of the grating results in shifting of the BFWM
curves but, in this case, along the Kz axis, consistently
with Eqs. (40) and (41).

In summary, we have found that some of the features
that one can see in Figs. 3–5 originate from two-sideband
interaction rather than from interaction among all four
sidebands. The grating affects the gain induced by both
FFWM and BFWM, shifting them in Kt or in Kz , respec-
tively.

8. EXPERIMENTAL CONSIDERATIONS
Obviously, a linear stability analysis is valid as long as
the perturbation amplitude remains small compared with

Fig. 9. BFWM-induced gain in K space: (a) P 5 8 cm21, f
5 21, k 5 10 cm21; (b) P 5 8 cm21, f 5 21, k 5 0; (c) P
5 20 cm21, f 5 1, k 5 10 cm21; (d) P 5 20 cm21, f 5 1, k 5 0.
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the cw beam amplitude. When this condition ceases to
be satisfied, a numerical analysis should be used. How-
ever, we expect the conclusions drawn here to remain
qualitatively valid. Our results predict new regions of
instability in which self-pulsations occur in both time and
space. Such an effect could be observed, for example, in
nonlinear waveguides or bulk samples with a grating.

Because grating-induced group-velocity dispersion out-
side the photonic bandgap depends strongly on the detun-
ing V from the edge of the photonic bandgap, we expect
the results of our analysis to vary with V. Indeed, it was
recently demonstrated by Eggleton et al.13 that the period
of the pulse train generated through temporal MI in a fi-
ber Bragg grating varies with V. In Fig. 10 we plot the
periods of spatial modulation, Ls 5 2p/Kt (solid curves),
and of temporal modulation, T 5 2p/(KzV) (dashed
curves), that correspond to maximum MI gain in the two
cases of [Fig. 10(a)] anomalous and [Fig. 10(b)] normal
GVD. Here we plot them as functions of V calculated
with Eq. (6) rather as than parameter f because V can be
controlled in laboratory experiment.

Using Fig. 10, we can estimate the size of a sample nec-
essary for experimental observation of MI. Because the
typical size of the spatial modulation is ;40 mm, observ-
ing the predicted MI in bulk samples requires a spot size
that should exceed roughly 200 mm, resulting in an effec-
tive area of ;105 mm2. In planar waveguides (two-
dimensional geometry), the effective area can be reduced
to ;103 mm2 but is still relatively large compared with
that of optical fiber. As a result, power levels required
for observation of spatiotemporal MI are higher than
those needed in fiber gratings.

The powers can be significantly reduced by the use of
materials with large nonlinear index n2 . One possibility
is to use chalcogenide glass, such as As2S3 with n2 ' 2
3 10214 cm2/W at 1.55 mm,20,21 which is approximately
100 larger than in silica fibers. Another candidate mate-
rial is an AlGaAs-integrated Bragg waveguide.14 When
the operating wavelength lies below the half-bandgap of
AlGaAs (i.e., near 1.55 mm), the detrimental effects of
two-photon absorption can be ignored, and the nonlinear
index is n2 ' 1.5 3 10213 cm2/W. If we estimate
incident-beam intensity from the parameters of Fig. 10
we find that I ' 9.8 GW/cm2 for As2S3 glass and I
' 1.3 GW/cm2 for an AlGaAs waveguide. Even in these
materials, observation of three-dimensional spatiotempo-
ral MI does not appear to be feasible because power levels
in excess of 1 MW would be necessary. Note that the in-
crease in optical nonlinearity is often associated with a
decrease in the damage threshold. However, in the two-
dimensional waveguide geometry with an effective area
;103 mm2, required peak powers become ;10 kW for the
AlGaAs waveguide. The corresponding peak power for
As2S3 glass is ;100 kW. Recently, chalcogenide fibers
with an n2 that is 500 times larger than that in silica fi-
bers were reported.24 The use of such fibers with larger
n2 will reduce the required peak power to ;10 kW.
These are typical power levels used in recent experiments
with nonlinear propagation effects in fiber Bragg
gratings.25 We should also mention that the longitudinal
period of MI is approximately 0.6 cm, which corresponds
to a modulation period in time of ;50 ps. Thus pulse
widths of ;1 ns would be large enough for the effects pre-
dicted here to be observed.

9. CONCLUSIONS
In this paper we have studied spatiotemporal instabilities
in periodic bulk Kerr media that occur through an inter-
play among grating-induced dispersion, diffraction, and
nonlinear phase modulation. This problem combines two
geometries studied previously: coupled-wave propaga-
tion in a one-dimensional periodic structure studied in
the context of fiber Bragg gratings6 and the stability of
two counterpropagating waves in a three-dimensional
dispersionless Kerr medium considered in the context of
plasma physics.23 As a result, the nonlinear system con-
sidered in this study has more degrees of freedom than ei-
ther of the constituent systems.

It was found that MI in a one-dimensional periodic
structure can exist in the normal-dispersion regime (un-
like in a uniform medium), though it has a certain thresh-
old below which the system is stable.6 We have shown
that a volume periodic structure may develop instabilities
even when the one-dimensional structure is stable. In
this case the instability is purely spatial. When the in-
coming beam intensity reaches a certain threshold level,
both spatial and temporal instabilities develop. This re-
sult can be visualized as a transverse ring pattern oscil-
lating in time. In general, both spatial and temporal in-
stabilities exist for any incident intensity. At low
intensities, the gain curve resembles that for the single-

Fig. 10. Spatial period Ls (solid curves) and temporal period T
(dashed curves) corresponding to maximum MI gain as functions
of uVu for (a) anomalous dispersion and (b) normal dispersion with
P 5 8 cm21.
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wave case; i.e., it has a doughnutlike shape with nearly
equal gain for frequencies equidistant from the center.
At higher intensities, an absolute maximum occurs at
Kz 5 0, which means that the spatial effects again domi-
nate the temporal ones.

An obvious limitation of this and previous analyses6,8,23

is that the perturbation amplitude is assumed to be small
compared with the incident beam’s amplitude. When the
two amplitudes become comparable, the linear stability
analysis is no longer applicable, and a numerical analysis
should be used. However, we expect the conclusions
drawn here to remain qualitatively valid. We intend to
present the results of numerical simulations in future
publications.

Whereas our results reduce to known cases in the ap-
propriate limits, we also find parameters for which novel
self-pulsations in both time and space occur. Such ef-
fects could be observed, for example, in nonlinear planar
waveguides or bulk samples with a grating.
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