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Optimization of the Average-Dispersion Range for
Long-Haul Dispersion-Managed Soliton Systems

T. I. Lakoba and G. P. Agrawal, Fellow, IEEE

Abstract—We consider limitations on unfiltered transmission
of dispersion-managed solitons, arising from the Gordon–Haus
jitter, adjacent pulse interaction, and signal-to-noise degradation.
We maximize the range of allowed values of average dispersion,
thereby providing the first step in optimization of dispersion
maps for wavelength-division-multiplexed lightwave systems. As
specific examples, we consider dispersion maps made of several
different types of optical fiber and study their performance for
transmission of 10–40 Gb/s channels over distances in the range
from 3000 km to 10 000 km.

Index Terms—Broad-band optical fiber communications,
dispersion management, optical noise, optical solitons.

I. INTRODUCTION

T HE GOAL OF this study is to compare the performance of
various types of dispersion maps for long-haul soliton data

transmission. Our basic idea is to find the maximum allowed
range of values for the average dispersion, so that the maximum
number of wavelength-division multiplexed (WDM) channels
can be transmitted at a given bit rate per channel. Here we take
into account the fact that the average dispersion,, as seen by
different channels, is different due to the third-order dispersion.

Clearly, the scope of the problem we have outlined above is
too broad, and too complex, to be satisfactorily treated within
one study. Therefore, we had to make a number of simplifying
assumptions. First and foremost, we considered only those im-
pairments that occur for single-channel transmission. That is,
no limitations due to pulse collisions or gain fluctuations in
different wavelength channels, were considered. It is clear that
maximizing the range of , while accounting only for single-
channel impairments is the necessary first step in the design of
any WDM system. This study aims at providing the guidelines
in taking that first step by examining what types of dispersion
maps can potentially yield high transmission capacity.

Our second important assumption is that the dispersion-man-
aged (DM) system under consideration has no in-line control el-
ements, such as narrow-band filters or synchronous modulators.
Both filters and modulators are known to be able to improve the
quality of transmission; however, there also exist practical is-
sues which make the use of these elements in a real long-haul
system difficult.
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The lower limit for the average dispersion is known to be
set by degradation of the signal-to-noise ratio (SNR) resulting
from accumulation of spontaneous-emission noise from ampli-
fiers [1]. The two principal impairments setting the upper bound
for are the Gordon–Haus (GH) timing jitter and the interac-
tion of adjacent pulses. Strictly speaking, the latter two effects
are to be considered simultaneously, as the GH jitter affects the
pulse center separation, which is a critical parameter for soliton
interaction [2], [29], [30]. However, at present, there is no theory
that correctly describes the interaction of DM solitons even ne-
glecting the GH jitter (at least in the range of parameters that is
of interest for this study). Therefore we have to adopt the fol-
lowing procedure. First, we calculate the upper bound for
as given by the GH jitter alone [3], [31]. Then we numerically
simulate the full nonlinear Schrödinger (NLS) equation,without
the noise sourceand with the determined at the previous
stage, and find how much the pulse separation would decrease
due to the interaction alone. Finally, we adjust the value of
in a certain way (cf. Section II).

It is well known that in a DM system with a given ,
the GH jitter is suppressed, in comparison with the jitter in a
uniform-dispersion fiber with the same dispersion by a
so-called energy enhancement factor (EEF) [4]. The latter is
known to depend strongly on the location of the amplifier(s) in-
side the dispersion map [5]–[8]. Furthermore, the strength of
pulse interactions and the EEF follow roughly the same de-
pendence on details of the dispersion map [8], [9]. That is, a
larger EEF results in more effective jitter suppression but also
in stronger pulse interaction. Thus, the location of the ampli-
fier(s) inside the map must be a critical parameter in any DM
optimization. However, since we do not have a formula for de-
termining the effect of pulse interaction and thus have to resort
to full numerical simulations, it is very important to reduce the
number of free parameters in the problem. Therefore, we vary
the amplifier location only within the shorter (compensating)
section of fiber and only for one of the map configurations (cf.
Section III). It is likely that not (fully) optimizing the location of
the amplifier could change our results by a factor of order two
or so. However, such accuracy is adequate for the main goal of
this study, which is to revealtrendsthat can lead to design opti-
mization rather than to obtain quantitatively correct results.

We do not consider contributions to the timing jitter coming
from the acoustic effect and the polarization mode dispersion
(PMD) [10]. The reason for not considering the acoustic effect
is that it only contributes a slow-time component to the jitter,
which can be eliminated by a proper adjustment of the receiver
[11], [32]. The jitter coming from the combined effect of the
PMD and spontaneous-emission noise of amplifiers [12] can
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be estimated to be much less than the GH jitter for the types
of fiber considered here and for ps/nm/km,
which we always find to be the case in this study. Also, we
do not include effects of third-order dispersion and stimulated
Raman scattering on single channel transmission, since these
effects have been shown [13], [14] to be small for the combina-
tions of bit rates and distances considered here.

The remainder of this paper is organized as follows. In
Section II, we present the theory from which the upper and
lower bounds for are found. Section III describes our
optimization procedure. Section IV contains the main results
of this study: it shows the estimates for the maximum number
of WDM channels that various types of dispersion maps can
transmit, assuming only the single-channel impairments. Main
results are summarized in Section V.

II. THEORY

A. Unperturbed DM Soliton

Our model is based on the standard NLS equation that gov-
erns propagation of optical pulses in fibers

(1)

Here , is the dispersion coefficient,
is the operating wavelength (assumed to be 1550 nm),is the
speed of light, and is the nonlinearity coefficient. The effect
of fiber loss and its periodic compensation are included through
the parameters and , respectively. Changing their form,
we can study various cases of lumped amplification, as well as
the case of distributed amplification. In a DM system, is
a piecewise-constant, periodic function with valuesand
in the two sections of the dispersion map. The lengths of these
two sections are and , respectively, and ,
where is the period of the map.

It is common to introduce normalized variables and write (1)
in a nondimensional form. We introduce new variables as

(2)

where is a time-scaling parameter chosen such that

(3)

The parameter is a reference power used for normalization
and equals the peak power in an idealized lossless fiber. Its rela-
tion to the average pulse power in a fiber with periodically com-
pensated loss is specified after (11). In terms of the normalized
variables , , and , we obtain the following nondimensional
form of the NLS equation:

(4)

where the periodic coefficient
accounts

for weakening of the nonlinear effects due to the fiber loss, and
the nondimensional parameteris given by

(5)

This parameter measures the size of the nonlinearity compared
to that of the local dispersion. In (4), the nondimensional dis-
persion coefficient is explicitly written as a sum of the constant
average part

(6)

and the periodic part

(7)

whose average vanishes: .
In the regime of strong DM, local dispersion is much greater

than both the average dispersion and nonlinearity; hence
in (4). The high local dispersion determines the functional

form of the DM soliton in terms of chirped Hermite–Gaussian
functions [15], [33], of which the largest is a chirped Gaussian

(8)

where

(9)

and the form of the phase is not relevant to this study. The
parameter is proportional to the chirp. The pulse width reaches
its minimum, , at the points in the map where . In Ref.
[16] it was shown that higher-order Hermite–Gaussian functions
may contribute to the evolution of a perturbed DM soliton by
no more than 5–6% (this does not pertain to the interaction of
adjacent DM solitons). Thus in what follows we do not consider
those higher order terms.

With the Gaussian approximation for the pulse shape, and for
a sufficiently small , the balance between the average disper-
sion and nonlinearity sets the following two conditions for the
stationary propagation of a DM soliton

(10)

where the coefficient is obtained from

(11)

The first condition in (10) determines the pulse initial chirp,
and the second condition determines the relation among the
pulse amplitude, width, and the average dispersion parameter

. These equations generalize those derived in [6], [17],
[15], and [33] via including the next-order terms in. The
factor 1/Re is proportional to the energy enhancement factor
mentioned in Section I. The form of and is specified
in the Appendix. The details of the periodic amplification
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are included via the function in the integrals . This
provides a uniform framework for dealing with both lumped
and distributed amplification cases. Furthermore, the soliton
amplitude, , can always be normalized to unity by a proper
choice of the reference power , and we use this normalization
in what follows. In such a case, the average DM soliton power
equals , where is defined by (11). Alternatively, the
DM soliton energy immediately after an amplifier equals

, where is the value of at
the amplifier’s location.

When the nonlinearity and the average dispersion are small
(i.e., ), (9)–(11) indicate that the single parameter that de-
termines properties of an unperturbed DM soliton is the normal-
ized pulse width . Here is the minimum width
of the Gaussian pulse, related to the full width at half maximum
(FWHM) as . For easy comparison with
previous work, we use a related nondimensional parameter,
called the map strength and defined as follows:

(12)

where . To support stationary
propagation of a DM soliton at zero average dispersion, one re-
quires a specific value where the quantity Re van-
ishes [cf. the second of (10)]. Accordingly, the average disper-
sion should be “normal” for . For both lossless and pe-
riodically amplified cases, the value of was found [6] to be
approximately equal 4.7. When one takes into account the
terms in (10) (which should be done when the pulse power is
sufficiently high), one finds that for , the DM soliton
can exist for either sign of average dispersion [18], [34], [35].

B. Upper and Lower Bounds for

Since the soliton power is approximately proportional to
the average dispersion [cf. (5) and (6)], the lower bound
for is imposed by the requirement that the SNR after.

amplifiers be greater than a threshold
necessary to maintain a given bit error rate (BER). Hereis
thedimensionaltotal propagation distance. From [19], we find
that

(13)

where
spontaneous emission factor (we assume );
energy of one photon;
total gain within one amplification stage.

The parameter is identified with the number of independent
degrees of freedom in one polarization of the signal (cf. [20],
[21]). The factor two in front of is included because the re-
ceiver is assumed to be sensitive to both polarizations. Equa-
tion (13) is written for the case of lumped amplification. For
distributed amplification, the factor is replaced
with , the average loss coefficient. The relation between the
SNR and the BER is established via the parameter, using the

Gaussian approximation for the probability density of the de-
tected signal [21]

(14)

(15)

The values 10 and 10 of BER, which we use later in this
study, correspond to and , respectively. As-
suming , (14) yields SNR 17.2 and SNR 9.0, re-
spectively. Using (5), (6), (13), and the main-order terms in (10),
one obtains the following inequality for the average dispersion

:

(16)

In the case of distributed amplification, this equation is modi-
fied using . The nonlinearity coefficient
corresponds to either section of the dispersion map; the specific
choice affects via , so that the product in the numerator
of (16) is not affected. Since this lower bound for was found
to yield rather small values of , the terms in (10) could
be safely neglected.

The most restrictive upper bound for , is set by the GH
timing jitter and pulse interaction. The variance of the GH jitter
is [3], [31]

(17)

(18)

where
normalized distance;
integer part of ;
value of evaluated at the amplifier.

Equation (17) is written for the case of one amplifier per map
period; generalization to other cases is straightforward [3], [31].
The same equation can also be derived using the variational
method [22] with a Gaussian ansatz.

The leading-order term on the right-hand side of (18) equals
, i.e., its value for the conventional soliton in a uni-

form-dispersion fiber. In all cases considered, we found that
the upper bound for corresponds to . With

, corresponding to a trans-oceanic distance, the size
of the term is estimated to be on the order of 10% of the
leading term, and the term is even smaller. Thus, when
writing down the analytical expression for the upper bound (see
(19), shown at the bottom of the next page), we retain only the

term in order to make that expression more transparent.
However, in the numerical calculations, whose results are pre-
sented in Section IV, we use the full expression (18) for the vari-
ance of the GH jitter.
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Further, we assume, as done in most studies, that the proba-
bility density of the deviation of the pulse from the center
of the bit slot, is Gaussian with the variance . Then the prob-
ability of the pulse center to be found outside of the bit slot

equals . For . this proba-
bility is approximated quite well by twice the right-hand side
of (15), where is replaced with . Com-
bining (17) and (18) with (5) and (10), we arrive at the following
upper bound for the average dispersion, imposed by the GH
jitter alone, as shown in (19), where is the bit rate.
Since , appearing in the denominator, is proportional to ,
(19) provides animplicit upper bound for . Our numerical
code implements an iterative procedure to solve for the value of
that upper bound, while taking into account all terms in (10) and
(18).

To account for pulse interaction, we use the following simple
trick. We numerically solve (4) with the parameter found
from (6) and (19). For a given propagation distancewe find
the change, , in the pulse separation, that is due only to
the interaction. We set the condition to indicate
pulse collision, when the interaction prohibits system operation
that otherwise would have been allowed by the GH jitter alone.
For smaller relative values of , we simply use inequality
(19), but with an adjusted bit slot, . Thus,
as the upper bound for imposed by both the GH jitter and
pulse interaction, we use an estimate

(20)

In the absence of a theory that would have simultaneously ac-
counted for both the GH jitter and pulse interactions, we have
to resort to such a crude estimate to avoid time-prohibiting nu-
merical simulations.

The last restriction that sets an independent upper bound for
is the following. It follows from (6) and (10) that de-

pends on two independent parameters,and (or, equivalently,
the map strength). The parameteris related to the character-
istic nonlinear length, , where is the av-
erage pulse power, by

(21)

As we have mentioned earlier, stationary propagation of a DM
soliton is supported by a balance between the nonlinearity and
the average dispersion, the stronger local dispersion providing
only the functional form of the pulse. This means that the char-
acteristic length associated with nonlinearity and average dis-
persion should be much larger than the local dispersion length,
in order to ensure stable pulse propagation. This results in the
condition , or . In our numerical simulations
we observe that pulses remain stable when , and

sometimes even when , with only a few percent
of their energy being shed into radiation. However, already for

we never found a stable DM soliton. Thus, in
most cases, the condition

(22)

plays the role of an additional upper bound on . Using rela-
tions (21), (10), and (6), this can be rewritten as

(23)

which is solved iteratively using (6). Since this upper bound on
is not as rigorously set as the one imposed by the GH jitter

and pulse interaction, we use it as a guidance only. That is, we
always verify whether the DM soliton is stable when (23) is not
satisfied.

III. OPTIMIZATION PROCEDURE ANDFIBER PARAMETERS

One map configuration that we consider has .
There, we have two adjustable parameters. One is the location
of the amplifier inside the compensating section of fiber. The
other is the ratio , which we vary between 0.12 and
0.28 with an increment 0.01. We observe that the GH jitter and
the SNR yield the optimal when the amplifier is located
at either end of the compensating section of fiber, whereas pulse
interaction is the least restrictive when the amplifier is close to
the middle of that section. However, due to the strong depen-
dence of the map strength (12) on the pulse width, the latter is
found to affect the system performance significantly more than
the amplifier location does.

Another map configuration has , where is
an integer. There, each of the first amplifiers exactly com-
pensates the loss in the preceding segment of length of
the fiber with dispersion , and the ( )st amplifier com-
pensates the loss in the shorther fiber section. The location of
the amplifiers in this case is fixed, and the only adjustable pa-
rameter is the pulse width. For the third map configuration, with

, we fix the amplifier location to be at the be-
ginning of every th map period. There, as well as for the map
with distributed amplification, the pulse width is also the only
adjustable parameter.

We use (16) to determine the lower bound for , and the
more restrictive of expressions (20) and (23) to determine the
upper bound. For fixed values of the bit rate, propagation dis-
tance, and BER, our main result is the dependence of the op-
timal range of on the map period , where optimiza-
tion is done with respect to the adjustable parameter(s). By the
optimal, we mean such a range , for which the quantity

, proportional to the allowed number of WDM
channels, , is the maximum. Indeed, if we assume that

(19)
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TABLE I
FIBER PARAMETERS

the wavelength separation between channels is a fixed mul-
tiple of the single-channel spectral width, then .
The maximum allowed number of channels is

(24)

where is the average dispersion slope. Two obvious
ways to increase are to either increase (or

) or decrease by carefully designing
the compensating fiber. In this study we focus on maximizing
the former parameter. Now, dispersion management is most
effective when the average dispersion is much less than the
local dispersion in the map. Consequently, we expect that to
achieve large , we need the map to be composed of
fiber sections with high dispersion coefficients. (Note that
using high-dispersion fiber is also beneficial for suppression of
WDM-induced impairments.) Table I lists relevant parameters
of the existing types of fiber, that we consider in this study.
The acronyms in the left-most column stand for the standard
single-mode (SSMF), dispersion-shifted (DSF), and disper-
sion-compensating (DCF) fibers.

As we said in Section II-B, we do not have an analytic for-
mula for the effect of pulse interaction and thus have to evaluate
it numerically for the maximum value of allowed by the
CH jitter. Whenever we find , we declare that
the interaction prohibits the transmission. Since the interaction
strength is proportional to the average dispersion [23], transmis-
sion would still be possible for some lower value of . How-
ever, without an analytic expression for the effect of pulse inter-
action, we are unable to efficiently determine the corresponding
upper bound.

IV. RESULTS

A. Transpacific Distance

Here we consider propagation over 10 000 km and require
that the BER at the output be at most 10. We consider the
bit rate of 10 Gb/s per channel and the map configuration with

.
The GH jitter suppression is most efficient in strong maps,

since then the EEF, which mainly determines the suppression
factor in comparison with the uniform-dispersion case, is large.
On the other hand, pulse interaction rapidly increases as the
map strength exceeds a certain value, which in the lossless
case was found to be about 1.6 [24]. Moreover, the condition
(23) is violated for too large values of the EEF (recall that EEF

). Thus, one needs to use a map within the range
between 1–2. (Let us note that the theory of DM soliton interac-
tion, found in [8], [23], is applicable for larger values of the map

(a)

(b)

Fig. 1. SSMF + DCF, Z = 10 000 km, B = 10 Gb/s/channel,
L = L . (a) Range ofD (solid) andN (dashed); (b)
Ratios of the optimal pulse width (solid, left axis) and the decrease in pulse
separation (dashed, left axis) to the bit slot, and the optimal map strength (right
axis).

strength ( ) than we consider here.) As follows from (12)
and Table I, the only combination of fibers for which this range
of is possible, when the soliton width is about 1/5th of the
bit slot and is about 30–40 km, is the SSMFDCF. The
corresponding range of allowed values of is plotted in Fig.
1(a). The reasons limiting this range can be understood from the
behavior of the optimal pulse width parameter, , the
associated optimal map strength,, and the pulse interaction
parameter, [Fig. 1(b)]. For all values of consid-
ered here, the optimal map strength is noticeably larger than 1.6,
around which we expect pulse interactions to be the weakest.
This rather large appears to be necessary to suppress the GH
jitter, which increases with due to the exponen-
tial increase of the amplifier gain, ; cf. (17).
On the other hand, the increase of the parameter ,
seen in Fig. 1(b), clearly indicates that, to limit pulse interac-
tion, has to be reduced. However, this increase of the pulse
width can limit the interaction via the reduction ofonly up to
a certain point, because for too large a width, the pulses begin
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Fig. 2. Same as in Fig. 1(a), butB = 5 Gb/s/channel. Squares (diamonds):
configuration withL = 2L (L = 3L ).

to overlap too much, causing the interaction to increase. The
increase of the interaction parameter is clear from Fig. 1(b).
In fact, the interactions render the system unusable soon after

exceeds 40 km.
The dashed line in Fig. 1(a) shows an estimate for the max-

imum number of channels, calculated using (24) and
0.8 nm for the interchannel separation. This corresponds
to roughly five spectral widths of a single channel. For a rather
small range of , e.g., ps/nm/km at 35
km, the number of channels is still very large ( )
due to the very small average dispersion slope of the configu-
ration SSMF DCF. It is, therefore, quite likely that the limits
for the total transmission capacity in this case are set not by the
GH jitter and pulse interactions, but rather by the WDM impair-
ments and the availability of amplifiers with a flat gain over the
bandwidth of 96 nm ( nm) and a high output power.
The same remark also pertains to the results shown in Fig. 2
below.

We performed similar calculations for the same combina-
tion SSMF DCF, with distributed amplification, which we
assumed to exactly compensate for the fiber loss. For map pe-
riods of 25 and 30 km, the average dispersion range is about
40% larger than in the system with lumped amplification. This
is due to the larger upper bound for allowed by the GH
jitter (because the amplifier noise is reduced by a factor

. However, already for 35 km, that upper
bound becomes so high that pulse interaction prohibits the trans-
mission.

From this example, we make the following observations as to
how the performance of the SSMFDCF configuration could
be further improved. 1) If, instead of the SSMF with 17
ps/nm/km, one could use a fiber with a lower value of disper-
sion, one would effectively decrease, and thus would be able
to use pulses with smaller widths. Then pulse interaction would
limit the transmission less severely. 2) One could use the idea of
“dense” DM, proposed in [26], where the map period is an in-
teger fraction of the amplification distance: .
With small enough , narrower pulses (for the same bit rate)
could be used. This gives one the freedom to operate at values of

the map strength that are high enough to yield significant jitter
suppression. At the same time, even though pulse spreading is
larger in those stronger maps, pulse interaction can still be not
too strong owing to an increased pulse separation relative to the
pulse width. We defer detailed examination of this venue of per-
formance improvement until the next section.

In the remainder of this section, we examine another way of
increasing the total transmission capacity, which is evident from
(19) and (23). 3) For a fixed map strength, the upper bound for

set by the GH jitter is inversely proportional to thecube
of the bit rate (since ). If the al-
lowed range were set by the GH jitter alone, the total
transmission capacity ( (single-channel bit rate))
would increase by eight times if one uses 5-Gb/s channels in-
stead of 10-Gb/s ones. Similarly, the other upper bound given
by (23) would yield a four-time increase in that case. The lower
bound would also decrease by a factor of two [cf.(16)], but this
would not affect as much as the increase of the two upper
bounds [cf. Fig. 1(a)]. Thus, the total capacity can, at least in
principle, increase by four to eight times, if one decreases the
bit rate per channel by a factor of two.

To verify this, we modified our map so as to keep the map
strength approximately the same as. in the case of 10
Gb/s/channel, which meant we had to use the map period about
three to four times larger than that in the latter case. The most
appropriate configuration is then the one with ,
where is the length of the first fiber section in the map. We
performed calculations for the cases when and ,
and set 0.4 nm. The results for and are
presented in Fig. 2, from which we see that using 5-Gb channels
increases the total capacity by a factor of about five compared
with the case of 10-Gb channels.

B. Transatlantic Distance

For the single-channel bit rate of 20 Gb/s, one cannot use
a dispersion map composed of the combination of the SSMF

DCF fibers and having , simply because the
corresponding map strength is too high (7) for all realistic
values of the amplifier spacings. To reduce the map strength,
one option is to use the combinations DSFSSMF, in which
the longer section of fiber has significantly lower dispersion
than the SSMF. However, even in that case, it is difficult to
find values of adjustable parameters in our optimization scheme
which would yield a positive range . This occurs because
the upper bound for , set by the GH jitter, is proportional
to and thus is dramatically decreased for 20 Gb/s com-
pared with the case of 10 Gb/s. In order to increase that upper
bound to a level where it would again make sense to consider
optimization of the system, we need to reduce the propagation
distance by about the same factor by which we increased the
bit rate [cf. (19)]. In this ection, we consider 6000 km,
which is a typical transatlantic distance. In addition, we set the
allowed BER to a lower value of 10 , assuming that forward
error correction can bring it down to an acceptable level. Expect-
edly, we then find that for the DSF+SSMF combination
is as large as that for the map considered in Section IV-A [com-
pare Fig. 1(a) with the first line in Table II]. Note, however, that
the number of WDM channels for the DSFSSMF combina-
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TABLE II
AVERAGE DISPERSIONRANGE FORVARIOUS MAPS

tion must be very small (about 2), due mostly to the much larger
average dispersion slope of this fiber combination.

One might be tempted to consider the same trick as that used
in Section IV-A, i.e., to use 10 Gb/s instead of 20 Gb/s per
channel, to boost the total transmission capacity of the system.
However, this does not work for the DSF+SSMF combination,
simply because cannot be increased much without violating
the condition . To get around this problem, one
needs to use the combination SSMFDCF, where the local
dispersion is much higher. In order to keep the map strength not
too high, one has to choose the map period to be smaller than the
amplification spacing. Thus we are naturally led to considering
the “dense DM” [26] configuration with ,
where, for 10 Gb/s/channel, should be about 10 km
in order to have the map strength not too high.

The maximum allowed ranges of for the combination
SSMF DCF and for the bit rates 20 and 10 Gb/s, are reported
in Table II (lines 2 and 3). For 20 Gb/s, we set 5
km and vary accordingly. For 10 Gb/s, we set 3
for 30 and 35 km, 4 for 40 and 45 km,
and 5 for 50 and 55 km, so that is always
between 10–12 km. For the 20 Gb/s case, the optimum pulse
width is set mostly by a compromise between the GH jitter and
pulse interaction, with being close to 20% of the bit
slot. As in Section IV-A, we note a significant increase of the
total transmission capacity when using the single-channel bit
rate 10 Gb/s instead of 20 Gb/s. For the 10-Gb/s case, we find
that the low-power condition (22) severely decreases the upper
bound for that is otherwise allowed by the GH jitter. The
optimum value of is found to be between 0.15–0.16
for all values of ; for smaller pulse widths (which imply
smaller ), the DM solitons are not stable. Thus, if smaller
values of were used in this case, the allowed range
would have been larger.

C. Terrestrial Distance

If we want to increase the single-channel bit rate to 40 Gb/s,
we need to consider shorter propagation distances, as explained
in the preceding section. As a challenging terrestrial scale, we
take 3000 km, and the amplifier spacing is the standard
80 km. To have values of the map strength in the range between
1–2, we are required to consider dense DM configuration even
for the combination DSF SSMF. For this combination, we can
take to be anywhere between 10–16 km to transmit two
or three 40-Gb channels spaced 1.6 nm apart (cf. Table II). Sim-
ilarly to the results of the preceding subsections, using 20-Gb
instead of 40-Gb channels significantly increases the total trans-

mission capacity. Note that the condition is not
violated in this case.

Finally, we report on an interesting observation, which we
made when trying to increase the transmission capacity by
using the combination SSMF DCF for the dispersion map.
Transmission of 40-Gb channels in such a map would require
extremely short map periods of less than 1.5 km. For this
reason, we concentrate on 20-Gb channels. Recall that we
have already demonstrated viability of 20-Gb/s transmission
in SSMF DCF maps in the previous section. Surprisingly,
now, for twice as short a distance, we could not find a range
of parameters where transmission would be possible near or
at the upper bound for set by the GH jitter. The reason
behind this is the following. The amplifier spacing of 80 km,
used for terrestrial systems, is about twice of that considered in
Section IV-B. The pulse power at the amplifier, that is needed
to guarantee a given average power, increases exponentially
with and leads to a corresponding increase in pulse
interaction, which appears to be the main limiting factor in
this case. We expect that the use of distributed amplification
would lead to a decrease of the pulse peak power and thus make
transmission possible. In fact, we expect that, it would provide
a greater range of than we found in Section IV-B for the
same map configuration.

V. CONCLUSION

This study addresses optimization of parameters of long-haul
DM soliton systems while considering the impairments set only
by the amplifier noise and pulse interaction. From the results
presented in Section IV we draw the following four main con-
clusions.

First, in order to have the upper bound for sufficiently
large, the smaller of the dispersion coefficients of the two fiber
sections has to be much larger than , so as to ensure the con-
dition . If the latter condition is not satisfied, the
dispersion map cannot be expected to significantly improve the
system performance over that in the uniform-dispersion case.
Thus, the SSMF DCF combination is expected to provide a
lager than a combination involving some type of a DSF.
In addition, WDM impairments are suppressed by high local
dispersion.

Second, in order to avoid large pulse spreading (which leads
to increased pulse interaction) when operating at more than 10
Gb/s in a SSMF, one needs to use “dense DM” configuration
where the map period is chosen to be a fraction of the amplifi-
cation spacing. This allows one the freedom of using sufficiently
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narrow pulses. The latter leads to more efficient jitter suppres-
sion via the increased EEF, and at the same time, pulse interac-
tion is reduced because of an increased pulse separation relative
to their width. Let us note, however, that using dense DM does
not always help to reduce pulse interaction. Even though the
condition may be satisfied for very short maps,
the nonlinear length can still be hundreds of times shorter than
the transmission distance. Then pulse interaction, whose effect
is accumulated over that many nonlinear lengths, may become
strong enough to prohibit the transmission. Thus a compromise
value for , based on the above considerations, should be
chosen.

Third, using distributed amplification can increase the
allowed range , because the GH jitter in a dis-
tributedly-amplified system is reduced by a factor of
( ) compared with that in a system
with amplification spacing . However, this increase of

is less than the maximum possible increase, given by
the above exponential factor, because the upper bound for

may be set by pulse interaction rather than by the GH
jitter alone. On the other hand, as we noted in Section IV-C,
maximum pulse power in a distributedly amplified system is
less than that in a system with lumped amplification, which
may help to reduce pulse interaction.

Fourth, using a lower bit rate per channel can significantly
increase the total transmission capacity. This occurs because
the maximum allowed range of increases dramatically with
the decrease of the bit rate. Moreover, WDM impairments are
also ameliorated in systems using lower bit rates per channel.
Specifically, tolerance to the timing jitter induced by collisions
of DM solitons in different channels is inversely proportional
to the bit rate [27]. For the nonreturn-to-zero (NRZ) transmis-
sion format, the impairments due to four-wave mixing and inter-
channel Raman cross-talk were shown to also be less severe
for a WDM system based on a lower bit rate per channel [28].
Since these types of impairments are similar in character for
the soliton and NRZ systems (compare, e.g., [13] and [28]), we
believe that the conclusion stated in the beginning of this para-
graph will hold true when all types of transmission impairments
are taken into account. We note that this conclusion is not spe-
cific to DM systems; it certainly was made earlier in regards to
both the soliton- and NRZ-based transmissions in uniform-dis-
persion systems. A new twist which is specific to DM systems
is that the value of the bit rate per channel must be carefully
chosen so as to ensure the main condition, (cf.
Section IV-B).

Finally, we note that the results presented in Section IV for
the SSMF DCF map and indicating the possibility of having
a total transmission capacity of several terabit per second should
be interpreted with caution. Consider, for example, Fig. 2. It
is not realistic that transmission of thousands of 5-Gb/s chan-
nels spaced at 0.4 nm would ever be possible in a single-mode
fiber, because of the limitations imposed by the requirements on
the amplifier gain uniformity and output power. Instead, Fig. 2
shows that single-channel impairments do not impose signifi-
cant restrictions on transmission in that particular case. Thus,
further optimization of the dispersion maps should focus on
minimizing the WDM impairments.

APPENDIX

Here we present the explicit form of the terms and
in (10). They are calculated by extending the method of [16]
through the second order inand taking into account only the
zeroth- and second-order Hermite–Gaussian functions. The
same results could also be obtained by extending the equations
of the variational method for the DM soliton through the same
order.

We only write the form of and that is valid for map
configurations with , , and the dis-
tributedly-amplified case. For the “dense DM” configuration,
with , these expressions can be easily general-
ized.

(A1)

(A2)

where functions are defined in (11). We note that for suf-
ficiently high power of a DM soliton (equivalently, suffiently
large ) it is more accurate, and probably even easier, to find the
initial value for the soliton chirp and the relation between
and by directly solving the variational equations, as in [18],
[34], [35]. In this study, however, finding the corrections
to (10) using (A1) and (A2) was quite adequate.
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