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Propagation-induced polarization changes in
partially coherent optical beams
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Propagation of a partially coherent optical beam inside a linear, nondispersive, dielectric medium is studied,
taking into account the vector nature of the electromagnetic field. Propagation-induced polarization changes
are studied by using the Gaussian–Schell model for the cross-spectral-density tensor. The degree of polar-
ization changes with propagation and also becomes nonuniform across the beam cross section. The extent of
these changes depends on the coherence radius associated with the cross-correlation function. For optical
beams with symmetric spectra, the bandwidth of the source spectra is found to play a relatively minor role.
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1. INTRODUCTION
It is well known1–3 that the coherence properties of an op-
tical field can change during the field’s propagation in free
space. An example is provided by the van Cittert–
Zernike theorem (see Ref. 3; Sec. 10.4.2), which predicts
quantitatively how a field generated by a spatially inco-
herent source becomes partially coherent on propagation
in free space. Closely related to such changes is the fact
that that the spectrum of a partially coherent field can
change as the field propagates, even in free space.4,5 One
might expect that the polarization of a partially polarized
beam will also change with propagation since the degree
of polarization of an optical field is a measure of the cor-
relation between two orthogonally polarized components
of the beam. Indeed, this was shown to be the case as
early as 1973.6 Except for this early work, propagation-
induced polarization changes in optical beams were con-
sidered mostly after 1993.7–14 James reexamined the po-
larization of light radiated by blackbody sources using
vector diffraction theory8 and found that light remains
unpolarized in all directions of the far zone, contrary to
the prediction based on a quasi-scalar theory.6 Several
authors have used modified versions of the Gaussian–
Schell model to study propagation-induced polarization
changes of optical fields.7,10

In this paper we study the propagation of a partially co-
herent optical beam in a linear, homogeneous, isotropic,
dielectric medium with a constant refractive index n. In
Section 2 we develop the general formalism, and in Sec-
tion 3 we apply it to the propagation of Gaussian beams
by using a vectorial extension of the Schell source
model.15 In Section 4 we show that the polarization of an
optical beam becomes spatially nonuniform even if the de-
gree of polarization is initially constant across the entire
Gaussian beam. The degree of polarization is also found
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to depend on the source spectrum. In the far zone, the
degree of polarization is shown not only to become nearly
uniform but also to be independent of the spectral band-
width of the source.

2. GENERAL FORMALISM
Polarization properties of a partially coherent optical
beam may be characterized by the coherence matrices
with matrix elements1

G ij~r1 , r2 , t! 5 ^Ei* ~r1 , t !Ej* ~r2 , t 1 t!&, (1)

where i, j 5 x, y, z label the Cartesian components of
the electric field. For a beam the component of the elec-
tric field along the axis of the beam (say, the z direction) is
often small enough to be neglected. Polarization proper-
ties of a beam are then governed by a 2 3 2 coherence
matrix [i, j 5 x, y in Eq. (1)].

The polarization aspects are deduced from the coher-
ence matrix by setting r1 5 r2 5 r and t 5 0 in Eq. (1).
The resulting matrix is often called the polarization ma-
trix J; its elements are given by

Jij~r! 5 G ij~r, r, 0 !, ~i, j 5 x, y !. (2)

The degree of polarization at a point r is then given by the
expression (Ref. 1, p. 353)

P~r! 5 S 1 2
4 det J

~tr J!2 D 1/2

, (3)

where det J and tr J are, respectively, the determinant
and the trace of the polarization matrix J. Propagation-
induced changes in the degree of polarization can be stud-
ied by determining the polarization matrix J after the
beam has propagated a certain distance from the input
plane z 5 0.
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Propagation of coherence functions has been studied
extensively (for a comprehensive account see Refs. 1–3).
It is often convenient to introduce the cross-spectral-
density matrix whose components are the temporal Fou-
rier transform of G ij :

Wij~r1 , r2 , v! 5 E
2`

`

G ij~r1 , r2 , t!exp~ivt!dt. (4)

Its propagation in a nondispersive dielectric medium with
constant refractive index n is governed by the formula

Wij~r1 , r2 , v! 5 EEK* ~r1 , r1 , v!K~r2 , r2 , v!

3 Wij
s ~r1 , r2 , v!dr1dr2 , (5)

where Wij
s denotes the cross-spectral density at the source

plane z 5 0. The propagation kernel in Eq. (5) is given
by

K~r, r, v! 5
k2

4p2 EE
2`

`

exp$ik@ p~x 2 j! 1 q~ y 2 h!

1 mz#%dpdq, (6)

where r 5 (j, h) is a vector in the input plane z 5 0 and
m is defined by the formulas

m 5 H ~1 2 p2 2 q2!1/2 if p2 1 q2 < 1

i~ p2 1 q2 2 1 !1/2 otherwise
. (7)

The parameter k 5 nv/c is the wave number inside the
dielectric medium assumed to have a constant refractive
index n. The medium is assumed to occupy the half-
space z . 0. For free-space propagation, n 5 1. In Eq.
(5) the integration extends over the entire plane z 5 0.

Equation (5) can be used to study polarization changes
in optical beams on propagation. However, its direct use
may not always be useful because of the multiple integra-
tions involved. It may be preferable to solve the propa-
gation problem approximately by making some simplify-
ing assumptions. We make two such assumptions.
First, since the integration region p2 1 q2 . 1 corre-
sponds to the contribution of evanescent waves, we can ig-
nore them at distances z @ l, where l 5 2pc/(nv) is the
wavelength in the medium and c is the speed of light in
vacuum. Second, we make the paraxial approximation,
which is usually adequate for beams. The integrals over
p and q in Eq. (6) can then be evaluated analytically, and
one finds that (Ref. 1, Sec. 3.2)

k~r, r, v! '
k exp~ikz !

2piz
expH ik

2z
@~x 2 j!2 1 ~ y 2 h!2#J .

(8)

3. VECTOR GAUSSIAN–SCHELL MODEL
We assume that the coherence properties of the optical
beam are known at the plane z 5 0, which we will refer to
as the plane of a secondary planar source, and we model
the source as a vector generalization of the scalar
Gaussian–Schell-model source (Ref. 1, p. 242). Instead
of the usual scalar form of the cross-spectral density, we
now have a matrix whose elements are
Wxx
s ~r1 , r2 , v! 5 S~v!@Ix~r1!Ix~r2!#1/2ga~r1 2 r2!,

(9)

Wyy
s ~r1 , r2 , v! 5 S~v!@Iy~r1!Iy~r2!#1/2ga~r1 2 r2!,

(10)

Wxy
s ~r1 , r2 , v! 5 S~v!@Ix~r1!Iy~r2!#1/2gc~r1 2 r2!.

(11)

The off-diagonal elements satisfy the relation Wyx
5 Wxy* . Here S(v) is the spectrum of the beam, as-
sumed to be normalized so that *2`

` S(v)dv 5 1, and Ix
and Iy are the spatial intensity profiles of the two polar-
ization components. The autocorrelation and cross-
correlations functions of the Cartesian components of the
optical field, ga and gc , depend only on the difference r
5 r1 2 r2 , as appropriate for a Schell-model source.
For simplicity, the two diagonal components are assumed
to have the same degree of spatial coherence. Since the
off-diagonal components represent cross correlation be-
tween the polarization components, gc differs, in general,
from ga . In particular, gc(0) is not necessarily unity
and has zero value when the two components are uncor-
related, as is the case when the beam is unpolarized.7

One can easily verify, by setting r1 5 r2 in Eqs. (9)–(11)
and using Eq. (3), that when the two components have the
same intensity profiles, the degree of polarization of the
optical field at the source plane z 5 0 is given by P0
5 ugc(0)u.

We assume that the input beam incident at the plane
z 5 0 has a Gaussian intensity profile for both polariza-
tion components but that the peak intensity may be dif-
ferent:

Ix~r! 5 I1 expS 2
uru2

2sI
2D , Iy~r! 5 I2 expS 2

uru2

2sI
2D .

(12)

Here sI is the root-mean-square beam width. The auto-
correlation and cross-correlations coefficients, ga and gc ,
respectively, are also assumed to have Gaussian forms:

ga~r1 2 r2! 5 expS 2
ur1 2 r2u2

2sa
2 D , (13)

gc~r1 2 r2! 5 g0 expS 2
ur1 2 r2u2

2sc
2 D . (14)

Here sa and sc are the coherence radii, which can take
any physically allowed values,14 and g0 [ gc(0) repre-
sents the normalized cross correlation between the two
polarization components at the same spatial point. The
absolute value of g0 can vary in the range 0 < ug0u < 1.
The values 0 and 1 correspond to the extreme cases of to-
tally uncorrelated and completely correlated field compo-
nents, respectively. For such a Gaussian input beam,
the degree of polarization is constant across the entire
beam (uniform polarization) at the plane z 5 0; using Eq.
(3), one can show that it has the value

P0 5 S 1 2 ~1 2 ug0u2!
4I1I2

~I1 1 I2!2D 1/2

. (15)

As expected, P0 5 1 when ug0u 5 1. However, P0 has a
finite value uI1 2 I2u/(I1 1 I2) even when g0 5 0.
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4. PROPAGATION-INDUCED
POLARIZATION CHANGES
In this section we determine the components of the polar-
ization matrix after the Gaussian beam of Section 3 has
propagated a distance z from the source plane z 5 0 in-
side the homogeneous dielectric medium. The spatial in-
tegrals appearing in Eq. (5) can be evaluated
analytically.16 Using Eqs. (2) and (4), one finds that

Jxx~r! 5 E
2`

` I1

1 1 da
2 expS 2

x2 1 y2

2sI
2~1 1 da

2!
D S~v!dv, (16)

Jxy~r! 5 E
2`

` g0~I1I2!1/2

1 1 dc
2 expS 2

x2 1 y2

2sI
2~1 1 dc

2!
D S~v!dv,

(17)

where da and dc depend on frequency and are defined by
the expressions

dm~v! 5
cz

2nvsI
2 S 1 1

4sI
2

sm
2 D 1/2

~m 5 a, c !. (18)

Jyy is obtained by replacing I1 by I2 in the expression (16)
for Jxx .

The frequency integral in Eq. (16) and the dependence
of da and dc on the frequency v make it clear that, in gen-
eral, polarization properties of the optical beam will de-
pend on the spectrum of the beam. In some cases (e.g.,
for a quasi-monochromatic beam), the spectrum may be
so narrow that da and dc remain nearly constant over the
source spectrum. We first consider this case, which can
be treated analytically.

A. Quasi-Monochromatic Gaussian Beams
If we take in Eq. (16) S(v) 5 d (v 2 v0), where d is the
Dirac delta function and v0 is the frequency at which the
spectral line is centered, we obtain relatively simple ana-
lytic expressions for the components of the polarization
matrix. Using them, we can calculate the degree of po-
larization P(r) at any point in the transverse plane z
5 z0 . 0, z0 being a constant. The most important
qualitative change that is found is that the beam polar-
ization is not uniform across the beam cross section, even
though it was so at the source plane z 5 0. Figure 1
shows, for a selected set of parameters, how P varies with
sc /sI for three values of the normalized transverse dis-
tance R 5 (x2 1 y2)1/2/sI after the field has propagated
over a distance z equal to one diffraction length Ld
5 2(nv0 /c)sI

2 (also known as the Rayleigh range).
Among several features seen in Fig. 1, one is of particular
interest. For a given value of sc , the degree of polariza-
tion is different for different values of R and generally be-
comes larger off axis compared with its on-axis value.
For a given value of R, the degree of polarization in-
creases with increasing sc . The minimum value of P oc-
curs when sc 5 0. The off-diagonal components of the
polarization matrix, Jxy and Jyx , then vanish, as seen
from Eq. (17).

The degree of polarization also changes with the propa-
gation distance. This feature is shown in Fig. 2 where P
is plotted as a function of z/Ld for R 5 0 (dotted line) and
R 5 1 (solid curve). We chose sc /sI 5 0.5 for these
curves. Other parameters are the same as those pertain-
ing to Fig. 1. The main conclusion that is evident from
these results is that light becomes depolarized with
propagation and becomes nonuniform across the cross
section of the beam. However, polarization is found to
become uniform for propagation distances much larger
than the diffraction length.

Several special cases are of interest and provide further
physical insight. Consider the case in which two polar-
ization components have identical intensities, i.e., when
I1 5 I2 5 I0 . In this particular case the degree of polar-
ization P(x, y) is found to be given by the expression

P~x, y ! 5 ug0uS 1 1 da
2

1 1 dc
2D expF ~x2 1 y2!~dc

2 2 da
2!

2sI
2~1 1 da

2!~1 1 dc
2!

G ,

(19)

Fig. 1. Degree of polarization P plotted as a function of the ratio
sc /sI for three values of R 5 (x2 1 y2)1/2/sI at z 5 Ld , for a
partially coherent Gaussian beam. R 5 0 (solid curve) corre-
sponds to the beam center. Values of other parameters are
ug0u 5 0.9, I2 /I1 5 0.8, and sa /sI 5 2.

Fig. 2. Degree of polarization P plotted as a function of propa-
gation distance for two values of R 5 0 and R 5 1 with the
choice sc /sI 5 0.5. R 5 0 (dotted curve) corresponds to beam
center. Values of other parameters are same as in Fig. 1.
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where da and dc are defined as in Eq. (18) but with v re-
placed by v0 . The degree of polarization at the source
plane is obtained by setting z 5 0 and has the value P0
5 ug0u. As noted earlier, polarization is uniform across
the beam initially since P0 is independent of x and y.

It is evident from Eq. (19) that beam polarization be-
comes nonuniform across the beam after propagation.
The degree of polarization depends not only on the propa-
gation distance but also on the two coherence radii sa and
sc . An interesting situation occurs when ug0u 5 1. The
input Gaussian beam is then completely and uniformly
polarized (P0 5 1). However, as seen from Eq. (19), the
Gaussian beam becomes partially polarized on propaga-
tion, and the polarization is spatially nonuniform across
the beam. Figure 3 shows the extent of depolarization

Fig. 3. Same as in Fig. 1 except that ug0u 5 1, I2 /I1 5 1. The
Gaussian input beam is completely polarized initially under
these conditions. Not only does it become partially polarized
when sc , s0 , but the degree of polarization also becomes non-
uniform across the beam.

Fig. 4. Effect of the spectral width of the source on beam polar-
ization. Solid curves show the degree of polarization P plotted
as a function of z/Ld for two values of R 5 0 and R 5 1, with the
choice sc /sI 5 0.5, sa /sI 5 2, ug0u 5 0.9, I2 /I1 5 1, and d
5 0.2. The case d 5 0 (dotted curve) corresponding to a van-
ishingly narrow spectrum is included for comparison.
occurring at z/Ld 5 1 when sa /sI 5 2 for several values
of the ratio sc /sI . As in Fig. 1, the degree of polariza-
tion is seen to depend on sc and can become zero if sc
5 0. On the other hand, if sc 5 sa , i.e., if the cross-
correlation and the autocorrelation functions have the
same spatial domain, the beam remains completely and
uniformly polarized on propagation. For other values of
sc , light is only partially polarized, with a nonuniform
degree of polarization across the beam. This result may
appear somewhat surprising for the following reason. It
is well known that a scalar field that is completely coher-
ent (spatially) in the source plane remains so after propa-
gation (Ref. 3, Sec. 10.4). Here we find that a completely
polarized, but partially coherent, optical field maintains
its degree of polarization only if sc 5 sa so that dc
5 da . Note, however, that if the optical field is fully
spatially coherent (sc → `, sa → `), its degree of polar-
ization does not change on propagation.

B. Broadband Gaussian Beams
We now consider briefly the effect of the spectrum of the
source on the degree of polarization of a Gaussian beam.
The integrals appearing in Eqs. (16) and (17) cannot be
evaluated analytically, in general. We evaluated them
numerically for the case when the source spectrum has a
Gaussian form:

S~v! 5
1

A2pDv0

expF2
~v 2 v0!2

2Dv0
2 G . (20)

In this formula v0 is the central frequency and Dv0 is the
root-mean-square width of the source spectrum. Let d
5 Dv0 /v0 be normalized bandwidth. Figure 4 shows
the effect of source spectrum on the degree of polarization
by displaying P(r) as a function of propagation distance
z/Ld for the on-axis (R 5 0) and off-axis (R 5 1) cases in
the range 0 < d < 0.2. Dotted and solid curves in each
case correspond to a narrow spectrum (d 5 0) and a
broad spectrum (d 5 0.2), respectively. The degree of
polarization is larger for a broad source spectrum, but the
increase is relatively small (a few percent), even for a
spectrum whose full width at half-maximum is almost
50% of the central frequency.

To understand why the degree of polarization is rela-
tively unaffected by the spectral bandwidth, we consider
the components of the polarization matrix in an analytic
form by evaluating the integrals appearing in Eqs. (16)
and (17) approximately for points on the z axis located in
the far zone. By setting x 5 y 5 0 in Eq. (16) and as-
suming that da @ 1, we find that

Jxx~0, 0, z ! '
I1

da
2~v0!

1

A2p
E

2`

`

~1 1 df !2 exp~2f2/2!df,

(21)

where we set v 5 v0(1 1 df ) and da(v0) is obtained
from Eq. (18) on setting v 5 v0 . The integration over f
can be performed analytically, and one finds that

Jxx~0, 0, z ! ' ~1 1 d 2!I1

Ld
2

z2 S 1 1
4sI

2

sa
2 D . (22)
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A similar calculation provides expressions for the remain-
ing three components of the polarization matrix. Using
them in Eq. (3), we obtain the following approximate ex-
pression for the degree of polarization:

P~0, 0, z !

' H 1 2
4I1I2

~I1 1 I2!
F1 2 ug0u2

~1 1 4sI
2/sa

2!2

~1 1 4sI
2/sc

2!2 G J 1/2

.

(23)

Relation (23) shows that degree of polarization along the
axis in the far zone is independent of both z and d. The
individual components of the polarization matrix are en-
hanced by a factor 1 1 d 2, but the enhancement factor is
relatively small; there is an enhancement of 4% for d
5 0.2. In the region z ; Ld , the degree of polarization
P depends both on z and d, as seen in Fig. 4, but it
changes by only a few percent for d 5 0.2. Larger
changes can occur when the source spectrum is asymmet-
ric.

5. CONCLUSIONS
In this paper we have studied propagation of a partially
coherent optical beam inside a linear, homogeneous, non-
dispersive, dielectric medium, taking into account the
vector nature of electromagnetic fields. We have consid-
ered the propagation-induced polarization changes by us-
ing a generalization of the well-known Gaussian–Schell
scalar model for the cross-spectral density of the source.
In this model, the diagonal and off-diagonal components
of the cross-spectral density tensor have, in general, dif-
ferent coherence radii. The use of the model makes it
possible to obtain expressions for the four components of
the polarization matrix as an integral involving the
source spectrum.

In general, propagation-induced polarization changes
depend on the source spectrum. We consider separately
the cases of narrow-band as well as broadband spectra.
In both cases, the degree of polarization changes with the
propagation distance, and it also becomes nonuniform
across the cross section of the beam. The extent of varia-
tions depends on the coherence radius associated with the
cross-correlation function. When the spectrum is sym-
metric, the bandwidth of the source spectrum plays a
relatively minor role.
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