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Abstract

Ž .We investigate the possibility of forming spatiotemporal solitons optical bullets in inhomogeneous, dispersive nonlinear
media using a graded-index Kerr medium as an example. We use a variational approach to solve the multidimensional,
inhomogeneous, nonlinear Schrodinger equation and show that spatiotemporal solitons can be stabilized under certain¨
conditions. We verify their existence by means of a full numerical analysis and show that such solitons should be observable
experimentally. q 2000 Published by Elsevier Science B.V. All rights reserved.

PACS: 42.65.-k; 42.65.Jx; 42.65.S; 42.65.Tg; 42.82.Dp

Optical solitons have been shown to form and
w xpropagate inside a nonlinear Kerr medium 1–3 .

They are called temporal or spatial solitons depend-
ing on whether their shape remains intact in time or
in one space dimension. Mathematically, wave prop-
agation in a Kerr medium is governed by the nonlin-

Ž .ear Schrodinger equation NLSE , which can be¨
Ž .solved exactly in 1q1 -dimensions by using the

w xinverse scattering method 1–3 . Whether an optical
soliton can be confined simultaneously in space and
time is a question that has attracted considerable

w xattention in recent years 4–15 , and the term optical
bullet has been coined for such a soliton. Among
other applications, optical bullets are useful for all-

w xoptical digital logic 9 . Most of previous work has
focused on solitons formed in a self-focusing medium
exhibiting anomalous dispersion. In this paper, we
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consider pulse propagation in a general nonlinear,
dispersive medium with special emphasis on a self-
defocusing medium with normal dispersion. An ex-
ample of such a medium occurs for visible or near-
infrared light propagating inside a semiconductor. To
counteract the beam spreading due to self-defocus-
ing, we assume that the refractive index is spatially
nonuniform as in a graded-index medium. An exam-
ple of such a nonlinear medium is provided by the
semiconductor-doped graded-index silica fiber.

We analyze the possibility of formation of stable
spatiotemporal solitons in an inhomogeneous Kerr
medium, for which the refractive index is of the form

2 2 < < 2n r ,v sn v qn x qy qn E , 1Ž . Ž . Ž .Ž .0 1 2

Ž .where the homogeneous part n v takes into ac-0

count chromatic dispersion, n is the nonlinear pa-2

rameter responsible for self-focusing or self-defocus-
ing, and n governs the change in refractive index in1
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the transverse dimensions x and y. Light is assumed
to propagate along the z axis. The medium can be

Ž . Ž .anti-guiding n )0 or guiding n -0 . We con-1 1

sider both cases in this work to examine the interplay
Ž .between self- de focusing of light and guidingranti-

guiding and dispersive effects of the medium.
Our analysis begins with Maxwell’s equations,

Ž .supplemented by Eq. 1 . We introduce the envelope
Ž .A r,t of the electric field oscillating at the fre-

quency v as0

1E r ,t s eA r ,t exp i b zyv t qc.c. 2Ž . Ž . Ž . Ž .ˆ 0 02

Using a standard procedure and making the paraxial
and the slowly varying envelope approximations
w x Ž .1,2 , we obtain the following equation for A r,t :

E A E A b E 2A 1 E 2A E 2A2
i qb y q q1 2 2 2ž / ž /E z E t 2 2bE t E x E y0

n1 22 2 < <q x qy Aqk n A As0 , 3Ž .Ž . 0 2k0

Ž . Ž .where b sn v k , b s dbrdv , and b0 0 0 0 1 vsv 20

Ž 2 2 . Ž .s d brdv , with bsn v vrc and k svsv 0 00

v rc. We consider both positive and negative b0 2

and n to consider self-focusing and self-defocusing2

Kerr media with normal and anomalous group-veloc-
Ž .ity dispersion GVD . Our goal is to investigate the

interplay between dispersion, diffraction, index inho-
mogeneity and Kerr nonlinearity so that stable opti-
cal bullets may form.

Ž .To normalize Eq. 3 , we introduce a transverse
Ž < < .y1r4length scale w s 2k n b and scale the0 0 1 0

Ž . Ž .transverse coordinates as X,Y s x, y rw . Simi-0

larly, we introduce a longitudinal length scale using
the diffraction length, L sb w2, and scale the lon-d 0 0

gitudinal coordinate as ZszrL . We also introduced
Ž .a scaled local time ts tyb z rT where T1 0 0

< <s b L . In terms of these normalized variables,( 2 d
Ž .Eq. 3 takes the form

EU 1 E 2U E 2U d E 2U
i q q q2 2 2ž /EZ 2 2E X E Y Et

s
22 2 < <q X qY Uqn U Us0 , 4Ž . Ž .

2

Ž . Ž .where U X,Y,Z,t s k n L A x, y, z,t , and the( 0 2 d
Ž . Ž .parameters dssign b s"1, sssign n s"1,2 1

Ž .and nssign n s"1, according as whether the2

medium has anomalous or normal GVD, is anti-guid-
ing or guiding, and is self-focusing or self-defocus-
ing respectively.

Ž .Eq. 4 is similar to the standard multidimensional
w xNLSE 4 . The only difference is the term resulting

from the inhomogeneous nature of the nonlinear
Ž .medium. We also note that Eq. 4 is similar to the

Gross–Pitaevskii equation that describes the dynam-
ics of confined atomic Bose–Einstein condensates
w x16 . The crucial difference is that whereas the trap-
ping potential is present in all three space dimen-
sions for the condensate case, the trapping produced
by the graded index is two-dimensional. Note also
the sign associated with the t-derivative: To confine
the optical pulse temporally, GVD can be normal or
anomalous.

One usually resorts to time-consuming numerical
Ž .computations to obtain solutions of Eq. 4 . Here we

first use the variational method to obtain physical
insight in terms of a few relevant parameters and
then present numerical simulations that confirm the
analytic predictions qualitatively. The variational
method has been used successfully to address a

w xvariety of nonlinear problems 1–3 . It is easy to
Ž .show that the NLSE 4 can be cast as a variational

problem using the Lagrangian density

2 2)i EU EU 1 EU EU
)LLs U yU q qž /2 EZ EZ 2 E X E Y

2
d EU s n

2 42 2 < < < <q y X qY U y U .Ž .
2 Et 2 2

5Ž .

The choice of the trial function is crucial in the
success of a variational method. We first observe

Ž .from Eq. 4 that in the temporal dimension, the
combination of normal GVD and self-defocusing can
result in a ‘sech’-type bright soliton in the temporal
dimension. Furthermore, in the transverse spatial
dimensions X and Y, graded-index wave-guiding
leads to Hermite–Gauss modes such that the funda-
mental mode is Gaussian in shape. In the absence of
such confinement, the time and space dimensions
should be treated symmetrically. However, since we
believe that the transverse confinement is strong, we
take our trial function to be the product of a chirped
‘sech’ pulse and a chirped Gaussian beam such that
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U X ,Y ,Z,tŽ .
´h

s sech htŽ .( 22p a

= 2 2 2exp y X qY r 2 aŽ . Ž .

= 2 2 2exp i ut qa X qY qf , 6Ž . Ž .Ž .
< < 2where U is normalized such that H U d XdYdts´

represents the constant pulse energy. The parameters
h, a, u , a , and f, are allowed to vary with Z and
represent, respectively, the temporal width, spatial
width, temporal chirp, spatial chirp, and phase asso-
ciated with the pulse.

We adopt the standard procedure and obtain the
Ž ) .effective Lagrangian LsHd XdYdt LL U,U by

integrating over X,Y, and t . The result is given by

2 2 2 2df p du da dh du p
2Ls´ q qa q q2 2dZ dZ dZ 612h 6h

21 n´h a
2q 1y q 4a ys . 7Ž . Ž .2 ž /6p 22 a

We then use the Euler–Lagrange equations and ob-
tain the following set of equations:

df h 2 7´h
2 2s q4a a y , 8aŽ .2dZ 3 24p a

dh
sy2dhu'F h ,u ,a,a , 8bŽ . Ž .

dZ

du 2dh 4 n´h 3
2s y2du y 'G h ,u ,a,a ,Ž .2 3 2dZ p 2p a

8cŽ .
da

s2 aa' I h ,u ,a,a , 8dŽ . Ž .
dZ

da 1 n´h s
2s y2a y q 'J h ,u ,a,a .Ž .4 4dZ 22 a 12p a

8eŽ .

Note that whereas the phase f is driven by the
parameters h,a, and a , the evolution of h,u ,a, and

Ž .a does not depend on f. Therefore, Eq. 8a is not
considered further.

We first investigate the existence and stability of
Ž .stationary states of the system described by Eqs. 8 .

The stationary states are found by setting the Z-de-

rivatives to zero. There are two meaningful solu-
Ž .tions, both of which are chirp-free u s0, a s0 .st st

Ž .One of the solutions h s0, a s1 corresponds tost st

a CW beam. The other solution corresponds to spa-
tiotemporal solitons and is characterized by the fol-
lowing relations between the temporal and spatial
widths

2 2n´ 1 n ´
h s , ssy 1y . 9Ž .st 2 4 2 24dp a a 24p d ast st st

The temporal width of solitons is determined by the
real positive solutions of the cubic polynomial

´h 3 y6ph 2 y3s´ 2r 8p s0 , 10Ž . Ž .st st

Ž .and the spatial width is given by Eq. 9 . We can
thus see that for a stable solution, n and d must be
of the same sign. This is nothing but a restatement of
the well-known fact that stable soliton-type pulses
exist only in media characterized by self-focusing
nonlinearity with anomalous GVD or self-defocusing
nonlinearity with normal GVD. Furthermore, we note
that it is not possible to stabilize spatio-temporal
solitons with anti-guiding index gradient in a self-de-
focusing medium since nothing confines the beam
spatially.

For clarity of presentation, we focus hereafter
only on self-defocusing media with normal GVD and
guiding graded index. For this type of medium, we
have nsy1, dsy1, ssy1. For relatively small

Ž .values of pulse energies ´<1 , we can approxi-
Ž Ž ..mate the stationary state values Eq. 10 as h fst

Ž .´r 4p and a f1. Thus, to lowest order, the tem-st
y1 Žporal width h scales inversely with the energy orst

.peak power of the optical pulse, while the spatial
width remains constant. Fig. 1 shows the normalized

Ž . Žtemporal width solid line and spatial width dashed
.line of the optical bullet as a function of the normal-

wized energy ´'EE rEE where EE is the energyp 0 0
2 Ž .xscale defined as w T r k L n . Whereas the tem-0 0 0 d 2

poral width changes dramatically with input energy,
the spatial width changes relatively little.

To examine whether the spatiotemporal soliton is
stable, we need to perform a linear stability analysis

˜around the fixed point. Writing usu qu , asast st

qa , hsh qh, and asa qa, and linearizing in˜ ˜ ˜st st

terms of small perturbations from the fixed point, we
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Ž .Fig. 1. Normalized temporal solid line-right axis and spatial
Ž .widths dashed line-left axis of the spatiotemporal soliton at the

fixed point as a function of the normalized energy ´ ' EE r EE .p 0

obtain a set of four equations that can be written in a
matrix form as

F F F Fh u a ah h˜ ˜
G G G Gd h u a a˜ ˜u us , 11Ž .
I I I IdZ a ah u a a˜ ˜� 0 � 0� 0

a a˜ ˜J J J Jh u a a

where the subscripts on F, G, I, and J denote
partial derivatives with respect to that variable, eval-
uated at the stationary state values. The four eigen-
values of the 4=4 stability matrix are given by

ls" a J qh G "st a st hž
1r2

2 4´ hst2Ž .= a J qh J y 4a h J G q .st a st a st st a h( 4 6ž / /3p ast

12Ž .

The spatiotemporal soliton will be stable if no
value of l has a positive real part. It is easy to see

Ž .from Eq. 12 that l will be purely imaginary if
Ž . Ž .a J qh G -0. Using Eqs. 8 and 10 , we findst a st h

2w 2 2 Ž .that a J qh G s y2h 6p r´ q4h pr 3´st a st h st st

2 2 xqh rp is indeed negative, and the spatiotempo-st

ral soliton is stable. Since the real part of l is zero
rather than being negative, the fixed point is neu-
trally stable in the sense that, in the neighborhood of
the fixed point, the soliton parameters will oscillate
around the steady-state values. To lowest order in ´ ,
the four eigenvalues are given by

1r22´
ls"i 4q '"i s ,12ž /2p

´ 2

ls"i '"i s . 13Ž .23'4 2 p

Thus, perturbations around the steady state oscillate
at two spatial frequencies s and s . These frequen-1 2

cies are quite different for ´ as large as 2p . Exami-
nation of the eigenvectors shows that the spatial

Ž .variables a and a oscillate at the higher frequency
Ž .s while the temporal variables h and u oscillate at1

the lower frequency s .2

To go beyond the linear stability analysis, we
Ž .have solved the set 8 of dynamical equations nu-

merically. We plot in Fig. 2 the phase-space trajecto-
ries of the dynamical variables. Fig. 2a shows the
phase-space trajectories in the h–u plane while Fig.
2b shows them in the a–a plane. The fixed points
are marked by crosses. For small perturbations around

Ž .the soliton fixed point upper cross in Fig. 2a ,
trajectories are nearly circular but become distorted
for larger perturbations. The outermost trajectory
shows how the system evolves asymptotically to-

Ž .wards the CW fixed point lower cross for suffi-
ciently large perturbations. However, the spatial
width is always bounded because of graded-index

Ž .waveguiding Fig. 2b .
The results presented so far are based on the

variational method, and one could question the valid-
ity of the initial ansatz and the results that are based
on it. It is thus necessary to compare the results with
a full numerical analysis. To capture the essential
physics with manageable computing time, we have
suppressed one transverse dimension by setting Ys0

Ž .in Eq. 4 . The results are, strictly speaking, applica-
ble to planar waveguides but should hold qualita-
tively even for bulk media. Numerical results show
that the spatial and temporal profiles of the soliton
do not change when input parameters are close to the
fixed point. We have observed such a spatiotemporal
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soliton propagating over tens of dispersion lengths
which is indicative of the stable nature of the soliton.
When input parameters deviate from the fixed point,
both spatial and temporal widths oscillate. Fig. 3

Ž .shows the root-mean-square RMS widths as a func-
tion of the propagation distance Z. Although the
exact location of the fixed point and the oscillation
frequencies are different from those predicted by the
variational analysis, the fact that the numerical anal-
ysis shows the existence of a stable spatiotemporal
soliton is extremely significant. Furthermore, just as
the variational methods predicts, the temporal width
oscillates on much larger length scales compared
with the spatial width. The qualitative agreement
between the numerical results and the variational
analysis is a strong indication that spatiotemporal
solitons exist in a graded-index, self-defocusing,
nonlinear medium.

For experimental verification of such solitons, one
may use a graded-index fiber whose core is doped

Ž .Fig. 2. Phase-space trajectories in the h – u plane a and the a– a

Ž .plane b . The fixed points are marked by crosses. In all cases,
´ s1.

Ž . Ž .Fig. 3. Normalized temporal solid line and spatial dashed line
Ž .widths RMS values as a function of propagation distance Z

obtained numerically. Values of pulse parameters used are ´ s1,
Ž . Ž . Ž . Ž .h 0 s0.1, a 0 s0.9, u 0 s0, a 0 s0.

with semiconductor nanoparticles. CdS-doped, step-
index fibers have been made and their nonlinear

w xproperties have been studied 17 . Doping of CdS
nanoparticles in a graded-index fiber will provide the
ideal material for observing spatiotemporal solitons
studied in this paper. To estimate soliton parameters
for such fibers, we assume an operating wavelength
near 550 nm where b f60 ps2rkm and n for2 2

CdS-doped fibers is negative with a value of about
y16 2 w xy10 m rW 18 . The parameter n sets the1

beam-size scale w and can be varied over a wide0

range. As an example, choose w s100 mm and0

n s1.45. Then T f0.1 ps and L f20 cm. The0 0 d
2 Ž .energy scale EE sw T r k L n turns out to be 50 0 0 0 d 2

pJ. Such pulses are readily available from modern
femtosecond lasers.
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