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Abstrac t. We investigate the dynamics of two weakly coupled Bose con-
densates in long cigar-shaped traps. T he Bose condensates are characterized by
attractive mean-® eld interaction and consequently can be studied in terms of
bright solitons. We exploit the analogy with directional ® bre couplers in
nonlinear ® bre optics to uncover interesting dynamical regimes like switching
of condensates from one trap to another and self-trapping of condensates. We
also discuss the analogy between two weakly coupled Bose condensates and the
Josephson junction in super¯ uids and superconductors.

1. In trod uc tion
The phenomenon of Bose± Einstein condensation was observed a few years ago

in a weakly interacting gas of laser-cooled alkali atoms con® ned to a magnetic trap
[1]. Since this discovery, there has been an intensive theoretical and experimental
study of diverse aspects of Bose± Einstein condensates (BECs). An important facet
of the physics governing BECs is the issue of macroscopic phase coherence. The
early demonstration that spatial phase coherence did indeed exist came through the
observation of interference fringes in two overlapping condensates [2]. A related
experiment measured the phase di� erence and its long-term stability between two
condensates in di� erent hyper® ne spin states [3].

It has, therefore, been compelling to look upon a weakly-coupled system of two
BECs as a Josephson junction linking two super¯ uids. Several issues have already
been addressed theoretically in the limit of non- interacting atoms [4]. Dynamics
involving small-amplitude Josephson oscillations [5, 6] has also been investigated.
Semi-classical mean- ® eld dynamics has been studied using the Gross± Pitaevskii
equation (GPE) and interesting phenomena like macroscopic quantum self-trap-
ping [7± 9] and the existence of p-states (dynamical states wherein the time-
averaged quantum phase di� erence across the junction equals p) [8, 9] have
been predicted in weakly coupled double BECs forming a boson Josephson
junction. Similar studies have been conducted to investigate driven two-com-
ponent BECs [10]. Finite-temperature e� ects describing damping have also been
studied [6, 11]. Quantum corrections have been studied to describe collapse and
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revival sequences [7, 12], di� erent dynamical transitions and p-states [13], phase
decoherence [14], phase squeezing [15], and phase di� usion and renormalization of
oscillation frequencies [12].

The GPE describing the semiclassical BEC dynamics is a nonlinear SchroÈ -
dinger equation which appears in many ® elds (such as nonlinear ® bre optics ,
plasma physics and condensed matter physics) and can be solved exactly in some
circumstances by using the inverse scattering method [16, 17]. It is well known
that the GPE support solitonic solutions [17± 25]. Bright solitons have been shown
to exist in coherent atomic waves [18, 19] and in condensates with attractive inter-
atom interaction [20, 21]. In the case of condensates with repulsive interaction,
there has been work considering dark solitons [22± 25] and bright gap solitons [25].
T he closest analogy to a weakly coupled double BEC in nonlinear ® bre optics [26]
is provided by a directional ® bre coupler [27, 28]. The energy transfer in such a
device is governed by two coupled nonlinear SchroÈ dinger equations and involves
switching of solitons from one ® bre core to another. It is thus useful to transf er
some of the techniques and insights from this ® eld to the ® eld of BEC dynamics.
Speci® cally, we consider in this paper the problem of switching dynamics of BEC
solitons between two adjacent long asymmetric cigar-shaped traps.

2. Couple d Gross Pitae v ski i e qu ation s
The basic equation governing the dynamics of a single BEC in a con® ning

potential is given by the GPE,
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r2C…r; t† ‡ V …r†C…r;t† ‡ g0jC…r;t†j2C…r;t†; …1†

where C…r;t† is the condensate wavefunction and g0 ˆ 4p -h2a=m is the interatom
interaction strength characterized by the s-wave scattering length a. V …r† is the
con® ning potential given, in the case of harmonic traps, by

V …r† ˆ 1
2 m!

2
0… «

2 ‡ ¸
2
z z2†; …2†

where «
2 ˆ x2 ‡ y2 and it has been assumed, as is the case for many current

experimental situations, that the trap is cylindrically symmetric with the harmonic
frequency in the radial direction, i.e. !0 . If we assume further that the trap
geometry is cigar-shaped, we can take ¸z ½ 1. Since a BEC bright soliton is
formed only in the case of attractive interaction …g0 < 0†; we focus on this case in
this paper. For completeness, the case of repulsive interaction …g0 > 0† is discussed
later. We note here, however, that because the sign of the inter-atomic interaction
can be changed by the use of external magnetic ® elds, as shown by the experiments
of the MIT group [29], our analysis has fairly wide applicability. Further, some of
the considerations of [25] resulting in bright gap solitons from repulsive con-
densates may apply here. We introduce normalized variables such that

t 0 ˆ !0t ; «
0 ˆ «=a0 ; z 0 ˆ z=a0 ; …3†

where a0 ˆ … -h=m!0†1=2 is the characteristic trap length in the radial direction. We
further de® ne U ˆ 2pa=a0 and rescale the wavefunction as Y 0…r;t† ˆ
Y …«;z ;t†…a3

0†1=2. For simplicity of notation, we drop the primes on rescaled
variables and rewrite equation (1) as
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We now consider two identical cigar-shaped traps separated from each other by
a distance d. Following the work of PeÂ rez-GarcõÂ a et al. [21], we note that if the
transverse con® nement is much stronger than the con® nement along the z
direction and the transverse shape of the wavefunction does not change much in
each trap, we can write the solution of equation (4) as

C…«;z ;t† ˆ R1…« ‡ d=2†Á1…z ;t† ‡ R2…« ¡ d=2†Á2…z ;t†; …5†

where « ˆ 0 occurs in the middle of the two traps. Noticing that R1…«† and R2…«†
satisfy the eigenvalue problem of the two-dimensional isotropic harmonic oscilla-
tor, we can use the ground-state solution R0…«† ¹ exp …¡«

2
=2† for both of them.

T his procedure results in the following coupled one-dimensional equations:
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where E0 is the ground- state energy and K is the linear coupling coe� cient arising
out of overlaps of the transverse parts of the wavefunctions. The E0 term can be
eliminated by using the transformation Áj ! Áj exp …¡iE0t† …j ˆ 1 ;2†.

If we assume, like in [21], that the con® nement in the z direction is weak
compared to the condensate’ s self-interaction, the condensate is stabilized in the
longitudinal direction solely as a result of competition between the kinetic energy
(dispersion) and the nonlinear attraction. By neglecting the trap term, the coupled
BEC system can be described by the following two coupled nonlinear SchroÈ dinger
equations:
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T his set of equations is quite similar to the one encountered in the study of soliton
dynamics of directional ® bre couplers [26± 28]. We follow here, in particular, the
work of Kivshar [28]. In the absence of inter-trap coupling …K ˆ 0†, the two traps
behave independently with the well-known groundstate solution in the form of a
bright soliton:

Áj…z ;t† ˆ Nj

2
U1=2sech

NjUz
2

… † exp …i¿j† …j ˆ 1 ;2†; …10†

where Nj ˆ
„

jÁj…z ;t†j2dz is the number of atoms in trap j and ¿j…t† ˆ …NjU=2†2t.
S ince only phase of the wavefunction changes with time, Nj is time-dependent and
all atoms remain con® ned to the trap inde® nitely. As we shall see below, this
situation changes when the two traps are close enough that the tails of the
wavefunctions begin to overlap and K 6ˆ 0. We use the standard Lagrangian
formulation [28] to solve equations (8) and (9) approximately.
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3. Lagrangian form u lation
It is well known [28] that the coupled GPEs, (8) and (9) , can be derived from

the Lagrangian

L …t ;z† ˆ
X2

jˆ1

i
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‰Á¤
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j Š ¡ 1
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1Á2 ‡ Á1Á

¤
2†: …11†

Our strategy is to assume that in the presence of relatively weak coupling between
the two traps, the wavefunctions Áj…t† retain the `sech’ shape given by equation
(10) but the parameters Nj ;¿j become functions of z ;t. We assume further, that the
spatial dependence is weak compared to the temporal dependence. We thus de® ne
the e� ective Lagrangian as

L…t† ˆ
…

L …t ;z†dz ˆ ¡‰ _¿1…t†N1…t† ‡ _¿2…t†N2…t†Š

‡ U2

24
‰N1…t†3 ‡ N2…t†3Š ¡ 4K

NT
N1…t†N2…t†I…p† cos ‰¿1…t† ¡ ¿2…t†Š ; …12†

where NT ˆ N1 ‡ N2 is the total number atoms in both traps (a conserved
quantity) , p…t† ˆ …N2…t† ¡ N1…t††=NT the normalized population di� erence be-
tween the two traps, and

I…p† ˆ
…1

0

dz 0

cosh2 z 0 ‡ sinh2 …z 0p† : …13†

T he equations of motions for N1…t†; N2…t†; ¿1…t†, and ¿2…t† are obtained from the
e� ective Lagrangian using

d
dt

@L
@ _Nj

ˆ @L
@Nj

;
d
dt

@L
@ _¿j

ˆ @L
@¿j

…j ˆ 1 ;2†: …14†

Introducing the sum and di� erence variables and noting that NT is a constant of
motion while the total phase ¿T ˆ ¿1…t† ‡ ¿2…t† does not play a signi® cant role in
the trap dynamics, we obtain the following two important equations for the
fractional population di� erence p…t† and the phase di� erence ¿…t† ² ¿2…t† ¡ ¿1…t†:

dp
dt

ˆ …1 ¡ p2†I…p† sin ¿; …15†

d¿
dt

ˆ ¡Lp ‡ cos ¿
d
dp

‰…1 ¡ p2†I…p†Š; …16†

where we have rescaled the time to 2Kt, and introduced our main dynamical
parameter using

L ˆ …UNT †2
=…16K†: …17†

Physically this parameter represents the relative strength of nonlinear interatom
interaction in each trap with respect to the linear inter-trap coupling resulting
from the proximity of two traps.

Equations (14) are integrable, as pointed out by Kivshar [28]. In fact, they can
be derived from the conserved Hamiltonian

H ˆ 1
2Lp2 ¡ …1 ¡ p2†I…p† cos ¿: …18†
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Note that the equations of motion as well as the conserved Hamiltonian have
appeared in the context of directional ® bre couplers [28]. Further, these equations
are remarkably similar to those appearing in the context of nonlinear general-
izations of Josephson- junction dynamics [7± 9, 11]. The key di� erence between the
system studied here and that of [7± 9, 11] lies in the di� erent ansatz used for the
wavefunctions. Since nonlinear self-interaction dominates over the con® ning
potential in the case studied here, our trial wavefunction has a `sech’ form. On
the other hand, the system considered in [7± 9, 11] was one where the trapping
potential played a key role and the trial wavefunction, and hence the N and ¿
dependence, were di� erent.

4. Station ary state s
The set of equations (15) and (16) cannot be integrated analytically. The source

of di� culty stems from I…p† whose functional dependence on p is through an
integral. We have evaluated this integral numerically and ® tted a sixth-degree
polynomial to it. Only even powers of p occur in the polynomial since I…p† is an
even function of p. Surprisingly, we have found that I…p† is well approximated
(relative error < 1%) by a parabola of the form I…p† º 1 ¡ ¬p2 , where ¬ ˆ 0:21,
over the entire range ¡1 < p < 1. This feature allows us to replace I…p† by 1 ¡ ¬p2

and obtain the following simpli® ed set of two equations:

dp
dt

ˆ …1 ¡ p2†…1 ¡ ¬p2† sin ¿ ² F…p ;¿†; …19†

d¿
dt

ˆ ¡Lp ¡ 2p cos ¿‰…1 ‡ ¬† ¡ 2¬p2Š ² G…p ;¿†: …20†

The stationary states are obtained by setting the time derivatives in equations
(19) and (20) to zero. We ® nd three stationary solutions of the form

¿0 ˆ 0 ;p0 ˆ 0 ; …21†

¿0 ˆ p ; p2
0 ˆ 1

2¬
1 ‡ ¬ ¡ L

2
… †; …22†

¿0 ˆ cos¡1 ¡L
2…1 ¡ ¬† ;p2

0
ˆ 1: …23†

We refer to the ® rst two states as the in-phase and out-of -phase solutions
depending on whether the phase di� erence ¿ ˆ 0 or p. If one were to prepare
two identical in-phase condensates such that ¿0 ˆ 0 and p0 ˆ 0, there will be no
net population transf er and no dynamics provided the in-phase solution is
dynamically stable. If the condensates are not identical in the sense that they
have di� erent atoms …p0 6ˆ 0†, the in-phase solution does not exist. Moreover, the
out-of -phase stationary state exists only if 2…1 ¡ ¬† < L < 2…1 ‡ ¬†, i.e. L should
lie between 1.58 and 2.42. T he third solution clearly exists only for
2…¬ ¡ 1† < L < 2…1 ¡ ¬†.

Before proceeding, we discuss the stability issue by performing a standard
linear stability analysis for the stationary states. Introducing small ¯ uctuations
around the stationary solution, p 0…t† ˆ p…t† ¡ p0 and ¿

0…t† ˆ ¿…t† ¡ ¿0 , and linear-
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izing equations (19) and (20) in terms of them, we obtain a set of two linear
equations

dp 0

dt
ˆ Fp…p0 ;¿0†p 0 ‡ F¿…p0 ;¿0†¿ 0

; …24†

d¿
0

dt
ˆ G p…p0 ;¿0†p 0 ‡ G¿…p0 ;¿0†¿ 0

; …25†

where a subscript denotes a derivative with respect to that variable. Assuming a
solution of the form p 0…t† ˆ exp …gt†, non-trivial solutions exist for values of g given
by

2g ˆ …Fp ‡ G¿† § ‰Fp ¡ G¿†2 ‡ 4G pF¿Š1=2
: …26†

We ® nd that for all values of p0 ;¿0 , Fp ‡ G¿
ˆ 0. Further, for the in-phase

solution, we ® nd Fp ˆ G¿
ˆ 0 ; F¿

ˆ 1 and Gp ˆ ¡… L ‡ 2 ‡ 2¬†. S ince, g is purely
imaginary, and Re …g† ˆ 0 for all values of L, the in-phase solution is marginally
stable. In the case of out-of -phase solution , we ® nd

Fp ˆ 0 ; F¿
ˆ ¡…1 ¡ p2

0†…1 ¡ ¬p2
0†; …27†

G p ˆ ¡L ‡ 2…1 ‡ ¬ ¡ 6¬p2
0†; G¿

ˆ 0: …28†

T he eigenvalue g can then have a positive real part if G pF¿ > 0 or L > 2…1 ¡ ¬†.
S ince this solution exists only when L > 2…1 ¡ ¬†, we conclude that the out-of -
phase solution is an unstable state and can be destroyed by small perturbations.

We now turn to the third solution. Here Fp ˆ ¡G¿
ˆ ¡2p0…1 ¡ ¬† sin ¿0 ,

F¿
ˆ 0, and G p ˆ ¡L ¡ 2…1 ¡ 5¬† cos ¿0. T he term under the square root in

equation (26) thus becomes 16…1 ¡ ¬†2 sin2
¿0 and consequently the eigenvalue g

can have a positive real part. Thus this solution is also unstable with respect to
small perturbations.

5. Sw itc h ing dynam ics
Much of the dynamical behaviour of the system of equations (19) and (20) can

be understood without actually having to write down the analytic solutions
explicitly. Analytic solutions, however, can be obtained only in the limit of
¬ ˆ 0 in equations (19) and (20) (see Appendix) and provide a qualitative under-
standing of the numerical results discussed below. We examine the dynamics of
equations (19) and (20) for two initial conditions on the phase di� erence for which
steady- state solutions exist: (a) ¿…0† ˆ ¿0 ˆ 0 and (b) ¿…0† ˆ ¿0 ˆ p. We plot in
® gure 1, changes in the fractional population di� erence p…t† with time by using the
initial conditions p0 ˆ 0:6 ; ¿0 ˆ 0. In ® gure 1 (a) , the dotted and solid lines
correspond to L ˆ 0 and L ˆ 8, respectively. In both cases, complete population
transfer occurs between the two BECs in a periodic manner as p oscillates between
¡0:6 and 0.6. However, the period and shape of oscillations depend on L. For
L ˆ 0 (strong inter-trap coupling case) , oscillations are sinusoidal. As one in-
creases the value of L, oscillations become highly non-sinusoidal.

A major qualitative change occurs when L hits a critical value Lc. This case is
shown in ® gure 1 (b) as a dashed line. Physically, the period of oscillations becomes
in® nite and p(t) settles down to zero asymptotically. As L is increased beyond this
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value, p…t† begins to oscillate in a periodic manner once again with one major
qualitative di� erence. As seen clearly in ® gure 1 (b) , p…t† oscillates asymmetrically
and always remains positive, i.e. the time-averaged value of p…t†…² hp…t†i† is non-
zero. This feature implies `macroscopic self-trapping’ of the condensate with
initially larger population. T he BEC with initially larger population inhibits
complete tunnelling when nonlinear coupling within that trap is much larger
than the inter-trap coupling due to wavefunction overlap. This behaviour is very
similar to the macroscopic quantum self-trapping discussed by Milburn et al. [7]
and Smerzi and co-workers [8, 9] in the context of BECs and by Kenkre and co-
workers in the context of polarons [30]. As explained in the next section, the
threshold value Lc , can be calculated analytically as a function of the initial values
p0 and ¿0.

We now discuss the out-of-phase initial condition, ¿0 ˆ p. Figure 2 shows the
evolution of p…t† with time using the same values of all other parameters. In
particular, p0 ˆ 0:6 in all cases. The dotted line shows the L ˆ 0 case (strong inter-
trap coupling) in which the condensate populations execute complete sinusoidal
oscillations. When L is increased up to a critical value Ls , the system is placed in
the out-of -phase stationary state discussed in section 4. No population transf er
takes place when p0 and Ls satisfy the relation given in equation (22). Upon
increase of L beyond this value, the population in the denser condensate becomes
self-trapped. Notice that this self-trapping di� ers from the in-phase case because
now the condensate populations oscillate such that hp…t†i > p0: the initially more
populated trap draws in condensate atoms from the lesser populated trap. This
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phenonemon is very similar to the amplitude transition discussed in the context of
polarons by Tsironis and Kenkre [31] and in the context of BECs by Raghavan et
al. [9].

We would like to point out here that L could be changed most easily either (i)
by changing the total number of atoms in the condensate, NT , or (ii) by changing
the spacing between the two traps (which controls the parameter K). Furthermore,
since L is proportional to N2

T , (17) , the behaviour of the system would be more
sensitive to change in NT than discussed in earlier studies of tunnelling and self-
trapping in coupled BECs [7± 9, 11], where the dependence between L and NT was
linear.

6. Pote n tial-® e ld an alogy
As has been stressed in the contexts of soliton dynamics of ® bre couplers by

PareÂ and FlorjanÂ czyk [32], polaron dynamics in condensed matter physics by
Kenkre and collaborators [33, 34], and tunnelling dynamics in BEC by Raghaven
et al. [9], it is instructive to view the dynamical variable p…t† as if it were a
coordinate of a classical particle moving in a potential ® eld. T o do this, we start
from the set of equations (19) and (20) , eliminate the phase variable ¿ using the
conserved Hamiltonian, and obtain the following equation of motion for p…t† alone:

dp
dt

ˆ ‰V 0 ¡ V …p†Š1=2
; …29†
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where the p-potential is given by

V …p† ˆ L2

4
p4 ¡ LH0p2 ¡ ‰…1 ¡ p2†…1 ¡ ¬p2†Š2 ; …30†

V 0 ˆ V …p0† ‡ ‰…1 ¡ p2
0†…1 ¡ ¬p2

0† sin ¿0Š2 ; …31†

H0 ˆ L
2

p2
0 ¡ …1 ¡ p2

0†…1 ¡ ¬p2
0†…1 ¡ ¬p2

0† cos ¿0 ; …32†
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where V 0 is a the total (conserved) energy computed at the initial values p ˆ p0 ;
¿ ˆ ¿0. It is straightforward to plot the function V …p† ¡ V 0 and look for allowed
regions of oscillations in the p-space. Figure 3 (a) shows this for the parameter
values used in ® gure 1. For L ˆ 0 (dotted line) , V …p† has a single minimum located
at p ˆ 0 and p oscillates about this average value in the range ¡0:6 < p < 0:6. For
L ˆ 8 (dot-dashed line) , the potential changes qualitatively in such a way that V …p†
has two minima located symmetrically on each side of the value p ˆ 0 where a local
maximum occurs. However, since the peak located at p ˆ 0 is below V 0 , the p-
particle has enough energy to cross over the peak. As a result complete oscillations
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in the range ¡0:6 < p < 0:6 can occur except that their shape will be highly non-
sinusoidal because of the potential peak occurring at p ˆ 0 for L ˆ 8.

The situation changes qualitatively when the peak located at p ˆ 0 becomes
high enough that V …p† > V 0. Now the p-particle does not have enough energy to
cross over the peak and is con® ned to the valley in which it is initially located. The
transition occurs at L ˆ Lc (dashed line) , and can be calculated from equations
(30) by setting V …p ˆ 0† ˆ V 0 and is found to occur when

Lc ˆ 2
p2

0

‰1 ‡ …1 ¡ p2
0†…1 ¡ ¬p2

0† cos ¿0 Š; …33†

provided cos ¿0 > 0. For the in-phase case shown in ® gure 1, Lc ˆ 8:63 using
p0 ˆ 0:6 and ¿0 ˆ 0. Beyond this value of L, as shown by the solid line of ® gure
3 (a) , the p-particle is con® ned to the valley in which it is initially located, i.e.
hp…t†i 6ˆ 0. T his situation corresponds to self-trapping of the denser BEC.

We now investigate the out-of-phase case in which cos ¿0 < 0. We show in
® gure 3 (b) , the potential plots for parameters used in ® gure 2 …p0 ˆ 0:6, ¿0 ˆ p† for
values of L in the range of 0 to 3. For L ˆ 0 (dotted line) , the potential is parabolic
and the particle can oscillate freely. However, when L ˆ Ls (dashed line) , the
system is put into a stationary state. It is clear that since this point is a local
maximum, this stationary state is unstable and any small perturbation will destroy
this state. T his is in contrast to the stationary states discussed by Tsironis and
Kenkre [31] and Raghavan et al. [9] wherein all stationary states are stable. Further
increase of L (solid line) breaks the p-symmetry and the p-particle is self-trapped.
Note also that the particle can only move towards increasing values of p since the
minimum of the p-potential occurs for p > p0 as shown by the solid curve, i.e.
hp…t†i > p0 . S ince the transition occcurs not when V …p ˆ 0† ˆ V 0 but the local
maximum of V …p† equal to V 0 , the value of the transition, Ls is di� erent from Lc ,
and is given by

Ls ˆ 2‰…1 ‡ ¬† ¡ 2¬p2
0Š ; …34†

and is the same value given in equation (22). For the in-phase case shown in ® gure
2, Lc º 2:12 using p0 ˆ 0:6 and ¿0 ˆ p.

7. Ph ase -spac e de sc ription
To understand the self-trapping behaviour as well as the dynamics of the phase

di� erence ¿…t† as simply as possible, we show in ® gure 4 the trajectories in the
phase space formed by the two conjugate variables p and ¿. Each trajectory or
contour is constructed with a ® xed value of L, p0 , ¿0 and thus for a constant
energy. However, the energy varies from one contour to another. The light solid
lines correspond to the initial condition p0 ˆ 0:6 and ¿0 ˆ 0 while L takes on
values 0, 8, Lc ˆ 8:8423 and 9 (trajectories marked as a, b, c and d, respectively) .
T he dark solid lines correspond to the initial condition p0 ˆ 0:6 and ¿0 ˆ p while L
takes on values 0, 2 and 2.2 (trajectories marked as A, B and C, respectively. The
light solid lines show that as long as L < Lc (trajectories a and b) , the average
values of p and ¿ are locked to zero. At the transition point, Lc (trajectory c) , a
separatrix forms and beyond that (trajectory d) , ¿ runs without bound while the
average value of p becomes non-zero. This marks the onset of self-trapping. Notice
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that increase of L is always marked by an increase of the volume enclosed in the
phase plane.

Now we come to the out-of -phase case and focus on the trajectories marked A,
B and C. We see that as L increases (curves A and B), the volume enclosed by the
trajectory shrinks. At the transition point L ˆ Ls ˆ 2:1167, the trajectory becomes
a point in phase space (not shown) , indicating that formation of a stationary state
(equation (22)) . However, it is clear that this stationary state is unstable because
any slight perturbation sends the system into drastically di� erent trajectories. T he
trajectory C results when one increases L beyond Ls . In this case, ¿ runs without
beyond and hpi…t† 6ˆ 0 like the trajectory d. Note also that hpi…t† > p0 for trajectory
C, and the population of the denser BEC can only increase.

8. Disc u ssion and c on c lu sion
We wish to add a few remarks here about switching dynamics of condensates

with repulsive inter-atom interaction. We ® rst note that in such a system the trap
provides the con® nement, and the condensate does not form a soliton. T he
condensate wave-function is, in fact, closer to that of a modi® ed Gaussian as
pointed out in earlier work [35]. Our preliminary investigations have shown that
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Figure 4. Phase-plane portrait formed by p versus ¿=p. T he light and dark solid lines
correspond to in-phase …¿0 ˆ 0† and out-of-phase coupling …¿0 ˆ p† between the
two condensates. In all cases p0 ˆ 0:6. For ¿0 ˆ 0, L takes values: (a) 0, (b) 8, (c)
L c ˆ 8:8423, and (d) 9. For ¿o ˆ p, L takes the values: (A ) 0, (B ) 2, and (C) 3.



although the dynamics is extremely rich and perhaps possesses some chaotic
aspects, the solutions are not solitonic in any sense.

To summarize, we have primarily discussed the switching and self-trapping
dynamics of two BECs charcterized by attractive inter-atom interaction, in long
cigar-shaped asymmetric traps that are weakly coupled in the radial direction.
Because the BEC wavefunction takes the form of a bright soliton when the mean-
® eld interaction among condensate atoms is attractive, the system is analogous in
many respects to directional ® bre couplers in nonlinear ® bre optics. We make use
of this analogy to study di� erent aspects of the dynamical regimes and show that
they are quite di� erent from that found in earlier studies of tunnelling and self-
trapping of Bose condensates. We have shown that among three possible steady
states, only one is stable , when the two coupled BECs are identical in all respects.
When the number of atoms in the two BECs are not the same, in general ,
population transfer will occur periodically. However, for a critical value of L,
the nature of oscillations changes after a critical slowing down of the dynamics.
T his critical value of L can be realized in experiments by changing either (i) the
total number of atoms, NT , contained in both BECs or (ii) by adjusting the spacing
between the two traps. Further, because of the quadratic dependence of L on NT ,
the behaviour of the system could be very sensitive to change in NT .
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Appe n d ix: Approxim ate an alytic solu tion s
One notes from equations (19) and (20) that because ¬ ˆ 0:21 ; I…p† º 1 for

most values of p in the range ¡p0 < p < p0 over which p varies. T he use of this
approximation leads to the following simpli ® ed coupled equations for p and ¿:

dp
dt

ˆ …1 ¡ p2† sin ¿; …A1†

d¿
dt

ˆ ¡Lp ¡ 2p cos ¿…t†; …A2†

with the conserved energy

H0 ˆ Lp2
0

2
¡ …1 ¡ p2

0† cos ¿0: …A3†

Equations (A1) and (A2) are simple enough that they be integrated analytically
with a closed-form solution in terms of elliptic functions. The in-phase solution for
¿0 ˆ o is given by:

p…t† ˆ p0 sn ‰…2 ‡ L†…4 ¡ p2
0…L ‡ 2††Š1=2…t ¡ t0†=2 ;p0

…2 ¡ L†
4 ¡ p2

0…L ‡ 2†… †1=2
" #

;L < 2 ;

ˆ p0 cn ‰…L ‡ 2†…1 ¡ p2
0†Š1=2t ;

p0

2
…L ¡ 2†
…1 ¡ p2

0†… †1=2
" #

;2 < L < Lc ;
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ˆ p0 dn
p0…1 ¡ p2

0†
2

…L ‡ 2†
…L ¡ 2†… †1=2

t ;
2
p0

…1 ¡ p2
0†

…L ¡ 2†… †1=2
" #

;L > Lc ; …A4†

where

t0 ˆ ¡2

‰…2 ‡ L†…4 ¡ p2
0…L ‡ 2††Š1=2 F p=2 ;p0

…2 ¡ L†
4 ¡ p2

0…L ‡ 2†… †1=2… †
and Lc ˆ 2…2=p2

0 ¡ 1†.
For ¿0 ˆ p (out-of-phase case) the solution takes the form

p…t† ˆ p0 sn ‰…2 ¡ L†…4 ¡ p2
0…2 ¡ L††Š1=2…t ¡ t0†=2 ;p0

…2 ‡ L†
4 ¡ p2

0…2 ¡ L†… †1=2
" #

;L < 2 ;

ˆ p0

dn ‰…L ¡ 2†…4 ‡ p2
0…L ¡ 2††Š1=2t=2 ;

4…1 ¡ p2
0†

…4 ‡ p2
0…L ¡ 2††… †1=2

" # ;L > 2: …A5†

It is important to note that self-trapping always occurs when the p-particle
potential energy V …p† equals the total p-particle energy V 0 at p ˆ 0. T his translates
to the condition that H0 given by equation (A3) exceed unity. This happens when

L > Lc ˆ 2‰1 ‡ …1 ¡ p…0†2† cos ¿…0†Š
p…0†2 : …A6†

For ¿0 ˆ 0, self-trapping occurs for Lc ˆ 2…2=p2
0 ¡ 1†. For ¿0 ˆ p, however,

equation (A6) implies that Lc ˆ 2, independent of the initial population di� erence
p0.
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