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We use the variational method to find the optimum launch conditions that can sustain path-averaged solitons
in a periodically amplified, constant-dispersion, optical communication system even when amplifier spacing is
comparable to or larger than the dispersion length. We determine the amount of prechirping and the initial
peak power required and show that both the pulse width and the chirp recover their initial values at each

amplifier.

The prechirped solitons are different from the standard solitons in constant dispersion since their
width and chirp are allowed to vary over each amplifier section.

This feature results in an interesting regime

in which amplifier spacing can exceed the dispersion length. Numerical solutions of the nonlinear Schro-
dinger equation show that the use of prechirped solitons improves stability in comparison with guiding-center
solitons in constant-dispersion fiber links. © 2000 Optical Society of America [S0740-3224(00)00904-8]
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1. INTRODUCTION

Soliton communication systems are leading candidates
for long-haul lightwave transmission links because they
offer the possibility of a dynamic balance between group-
velocity dispersion and self-phase modulation, the two ef-
fects that severely limit the performance of nonsoliton
systems.»? Most system experiments employ the tech-
nique of lumped amplification and place fiber amplifiers
periodically along the transmission line for compensating
the fiber loss. The principal concept that has emerged in
the context of lumped amplification is the path-average or
guiding-center soliton.>® Its use allows propagation of
solitons through lossy fibers provided that the amplifier
spacing L, is short compared with the dispersion length
Lp. The soliton is launched with enough energy that the
path-averaged peak power over one amplifier spacing is
equal to the peak power needed in the lossless case.
However, the limitation that L, < Lp results in unrea-
sonably short amplifier spacings (<10 km) at high bit
rates. This limitation comes from the fact that the sys-
tem is not perfectly periodic when L, becomes compa-
rable to or exceeds L. As a result, large perturbations
generate spectral side bands and dispersive radiation
that degrade the system performance.>® Several tech-
niques have been proposed to design soliton communica-
tion systems that can operate beyond the average-soliton
regime.?1® However, their use often requires optical el-
ements such as a fast saturable absorber.
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A question one may ask is whether the periodicity of
solitons can be restored in constant-dispersion fiber links,
even when L, > Lp, by modifying the system design in
an appropriate way. For example, the guiding-center
soliton is launched with a unique peak power obtained by
averaging the soliton energy over one amplifier spacing.
However, the soliton is assumed to remain unchirped.?
With the advent of dispersion management, the impor-
tance of prechirping of solitons has been realized.*™!° In
this paper we use the prechirping concept for constant-
dispersion fibers and allow both the width and the chirp
of the soliton to vary in each fiber section between two
amplifiers. We use variational analysis to determine the
optimal launch conditions for the path-averaged soliton.
We require the pulse width and chirp to be periodic and
determine the exact prechirp and peak power needed to
maintain periodicity of the soliton in constant-dispersion
fiber links. The use of prechirping provides an interest-
ing operating regime for systems in which L4 can be com-
parable to and even exceed L. This regime is especially
useful at high bit rates (B > 10 Gb/s) for which the dis-
persion length becomes comparable to or shorter than 10
km.

2. VARIATIONAL ANALYSIS

The propagation of soliton pulses in each fiber section be-
tween two consecutive amplifiers is described by the non-
linear Schrodinger equation,® (NSE)
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where A is the amplitude of the electric field, B, is the
group velocity dispersion parameter, y, is the nonlinear
parameter responsible for self-phase modulation, and «
accounts for the fiber loss. The loss term can be elimi-
nated with the following change of variables,

A = Bexp(—az/2), (2)
resulting in the following form for the NSE:
B 1 "B
i TP T ¥(2)|B|?B = 0, 3)

where y(z) = ygexp(—az). The effects of fiber loss are
now included through the z dependence of y.

The variational analysis based on the Lagrangian pro-
vides approximate analytical results for features such as
pulse compression, maximal pulse amplitude, and in-
duced frequency chirp.2’ Since this method is well
known and details are available in books,? we only outline
the procedure briefly. We choose the following ansatz for
the soliton amplitude, shape, and phase:
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where a is the amplitude, ¢ is the phase, C is the chirp,
and 7 is the pulse width. Note that a similar ansatz is
made for dispersion-managed solitons, but the pulse
shape is often taken to be Gaussian. For constant-
dispersion fibers, “sech” pulse shape is assumed and the
possibility of chirping is allowed. All of the soliton pa-
rameters (except ¢) remain constant for a lossless fiber
but vary along z when solitons are amplified periodically
to compensate for fiber losses. With the standard
procedure,” a set of four ordinary differential equations
governing variations of soliton parameters along the fiber
link is obtained through the variational analysis:

d
£(a27)=0, (5)
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These ordinary differential equations are equivalent to
solving the NSE within the variational approximation.
Note, however, that this approach is only approximate
and does not account for characteristics such as energy
loss to continuum radiation,?! damping of the amplitude
oscillations, and changing of soliton shape.?® It should
be stressed that Egs. (5)—(8) can also be applied for
dispersion-managed solitons if B, is made explicitly z de-
pendent. In this paper we consider the case of constant-
dispersion fibers only.
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3. PRECHIRP AND PEAK POWER

Equation (5) shows the conservation of pulse energy E,
= [*_.|B|%d¢ and relates the amplitude @ of the pulse to
its width 7. We can write a? = a37,/7, where a, and 7,
are the initial amplitude and the pulse width, respec-
tively. As a result, ¢ is strictly determined by 7, and the
variational analysis is reduced to solving a pair of coupled
ordinary differential equations for C and 7 only [Egs. (6)
and (7)]. Furthermore, it is useful to introduce the nor-
malized length ¢ = z/L, and the normalized pulse width
W = 7/7q. If we introduce the dispersion length Lp
= 72/|By| and assume that B, < 0 (anomalous group-
velocity dispersion), Egs. (6) and (7) become

dw z,C
—_— = -, (9)
d¢ w

dcC 4z,Pyexp(—T¢) za [ 4

dé¢ W W\ m

where z4 = L,/Ly, T = aL,, and Py = ypaiLp is the
normalized initial peak power. Our objective is to find a
periodic solution of Eqgs. (9) and (10) such that all soliton
parameters (except ¢) recover their initial values after
one amplifier spacing. This periodicity condition can be
met only under certain launch conditions. The optimal
launch conditions are determined by solving Eqgs. (9) and
(10) with the boundary conditions

C(0) = C(1),  W(0)=W(1) = 1. (11)

In general, one should solve Egs. (9)—(11) numerically
by considering different input values for the peak power
P, pulse width 7y, and initial chirp C(0). Because of
the multidimensional nature of the parameter space, an
exhaustive search for periodic solutions is quite time con-
suming. However, we can solve Eqs. (9) and (10) ap-
proximately by using a perturbation method in the re-
gime z4, < 1. The natural parameter for perturbation
expansion is z, since C and W vary little along the fiber
length for z, < 1. Expanding C and W up to second or-
der in z, , we can write

W =W, + Wiz + Wy2i, (12)
C = CO + CIZA + C2Zi (13)

Since Cy = 0 and W, = 1 (the lossless case), we obtain
the following two equations:

dW,
d_§ = —Cy, (14)
dC, 4P, exp(—T'¢) 4

The width parameter W has no first-order corrections.
These equations can be solved by direct integration to ob-
tain C;(£&) and Wy(§).

Applying the boundary condition C;(0) = C(1) gives
the following launch condition for the soliton peak power,

r GInG

P0: s
1 — exp(-T) G-1

(16)
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where G = exp(al,) = exp(I') is the amplifier gain.
Similarly, applying the boundary condition W,(0)
= Wy(1) provides the input chirp

. 2 (4)exp(—F)+F—l
10 ="5-172 T[1 — exp(—I)]
41 (G-1)-GhG
= =z + amn
2|2 InG(G - 1)

These conditions can also be obtained by using the Lie
transform as discussed in Ref. 3 and applied to
dispersion-managed solitons given in Ref. 15. We use
them in the next section to show how initial chirping can
be useful in the regime z, > 1.

4. NUMERICAL RESULTS

In this section we discuss the new operating regime of
chirped solitons in constant-dispersion fibers and com-
pare it with the standard regime in which unchirped soli-
tons are launched at the input end. The perturbation
analysis of Section 3 provides an estimate of the chirp
only for z, < 1. However, we expect, on physical
grounds, chirped solitons to be useful for designing high-
speed periodically amplified fiber links even when z, ex-
ceeds 1. The operating region in which the amplifier
spacing is comparable to or larger than the dispersion
length (z4 > 1) can be studied by solving Eqgs. (9) and
(10) numerically.

We use a root-finding algorithm to satisfy the boundary
conditions imposed by Eq. (11). For definiteness, we
choose L, = 40km and G = 10(I" = 2.3) and find the op-
timum values of Py, and C(0) numerically for z, in the
range 0-2.5. Figure 1(a) compares the peak power P,
needed for launching chirped (solid curve) and unchirped
(dotted curve) solitons as z4 is increased from 0 to 2.5. In
the regime z, < 1 the launch power is virtually the same
for both chirped and unchirped solitons; this result agrees
with our perturbation analysis. As z, increases, chirped
solitons require more power. However, the increase in
peak power is less than 2% even for z4, = 2.5. Figure
1(b) shows the amount of prechirping required as a func-
tion ofz, . The input solitons need to be prechirped more
and more as amplifier spacing increases. The need for
negative prechirping can be understood by examining Eq.
(10), which shows that dC/d¢ contains a negative term
(since By < 0 for anomalous dispersion) and an exponen-
tially decreasing positive term. Initially the positive
term dominates, and the chirp increases with propaga-
tion. However, the nonlinear term is reduced because of
fiber loss, and dC/d¢ becomes negative, resulting in a
downward concave trajectory. In addition, the boundary
condition [Eq. (11)] requires that

1
f C(&)dé = 0. (18)
0

For a concave-down trajectory this integral relation can
be satisfied only for negatively prechirped pulses [C(0)
< 0].

Since both the soliton width and the chirp are allowed
to vary along z periodically in the new operating regime
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Fig. 1. Comparison of (a) launching peak power and (b) initial
chirp for chirped (solid curves) and unchirped (dotted curves)

solitons as a function of normalized amplifier spacing when am-
plifiers with 10-dB gain (I' = 2.3) are placed 40 km apart.

proposed here, it is important to consider the extent of
their variation in each fiber section between two amplifi-
ers. Figure 2 shows variation of pulse width and chirp
along the fiber length for z, = 0.4 (top row) and z,4
= 2.1 (bottom row) under launch conditions correspond-
ing to a chirped (solid curve) and an unchirped (dotted
curve) soliton. In the z4, < 1 regime the chirp is fairly
periodic and recovers its initial value in both cases. But
since the unchirped soliton does not impose periodicity of
the pulse width, soliton width is reduced by 1% after one
amplifier spacing. In contrast, the width recovers its ini-
tial value for the chirped soliton. In the z, > 1 regime,
however, the perturbation becomes too great for the un-
chirped soliton to maintain the periodic nature of the
pulse width and chirp. As seen in Fig. 2(c), the soliton
width can vary by as much as 20% (dotted curve) and is
smaller by 10% after one amplifier spacing. In contrast,
the chirped soliton recovers both pulse width and chirp af-
ter each amplifier. Also, width variations are much
smaller (<5%) for chirped solitons showing clearly that
such solitons are not perturbed significantly even when
ZA > 1.

To check the validity of variational analysis, Fig. 3 is
obtained with the same parameters as those used in Fig.
2 except that the NSE is solved numerically over 20 am-
plification stages (a total transmission distance of 800
km). The root-mean-square (RMS) width! and chirp of
the pulse are calculated numerically. We decided to es-
timate the RMS width since the shape of the pulse is not
guaranteed to remain preserved even though variational
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analysis requires it. We estimate the chirp parameter by
fitting a parabola to the phase profile in the vicinity 7
= 0 and noting from Eq. (4) that the quadratic term var-
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Fig. 2.  Evolution of pulse width and chirp over one amplifier
stage for chirped (solid curves) and unchirped (dotted curves)
solitons as predicted by variational analysis. Normalized ampli-
fier spacing z4, = 0.4 for top row and 2.1 for bottom row.
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Fig. 3. Same as in Fig. 2 except that soliton evolution over 20
amplification stages (total distance of 800 km) is shown by solv-
ing the NSE numerically.
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Fig. 4. Poincaré map obtained by plotting soliton width and
chirp at the end of each amplifier section for 100 amplification
stages (4000 km) for unchirped (left graph) and chirped (right
graph) solitons. For z, = 0.4, a nearly circular compact region
shows the quasi-periodic nature of soliton evolution. For z,4
= 2.1, soliton width and chirp vary over a wider region.

ies as Ct%/272. Figure 3 shows that the periodicity in C
and 7is maintained only approximately over multiple am-
plifiers. For example, RMS pulse width varies 1% from
amplifier to amplifier when z, = 0.4, and variations be-
come as large as 10% when z4, = 2.1. This is not surpris-
ing and indicates that the sech pulse shape is not true
pulse shape for the periodic solution of the NSE. As we
noted earlier, variational analysis cannot accurately pre-
dict the soliton parameters once the shape of the soliton is
no longer preserved. Figure 3(a) and 3(c) show that the
RMS width varies less when a chirped soliton is launched.
For instance, in the case z4, = 2.1, the widths of un-
chirped solitons exhibit more than 20% variation,
whereas chirped solitons exhibit a maximum of 10%
variation in width. This feature suggests that, in gen-
eral, the use of prechirped solitons is likely to provide bet-
ter system performance compared with unchirped soli-
tons.

To explore the soliton-stability issue, we have plotted
the chirp and width variations in the two-dimensional
phase space as a Poincaré map, since such a map shows
the phase-space region over which width and chirp vary
along the fiber length. Figure 4 shows the Poincaré map
for chirped (right side) and unchirped (left side) solitons
over 100 amplifier spacing (4000 km). Ideally, if the sys-
tem is perfectly periodic, we would expect all points to co-
incide, resulting in a single dot in the plot. Our numeri-
cal results show that for both z, = 0.4 and z4, = 2.1, the
chirped soliton is more localized, implying that both the
soliton width and the chirp vary over a smaller range
from one amplifier to the next. This behavior confirms
our variational result that prechirping is necessary for
stable propagation.
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Finally, we compare our results with those of Forysiak
et al.,'t who also studied the average-soliton dynamics in
the regime z4, > 1. They used an operator-splitting tech-
nique to find the optimum distance at which an unchirped
pulse can be launched, whereas our analysis predicts the
initial chirp required at the beginning of the fiber section.
These two points of view are formally equivalent if we
note from Fig. 2 that the chirp indeed becomes zero at a
certain distance. However, the two approaches are so
different that a direct comparison is difficult. The func-
tion F(z) in Ref. 11 is a measure of the deviation of the
system performance from the ideal NSE case, and its
variation with z appears to be similar to the chirp varia-
tion —C(z) seen in Fig. 2 for z, = 2.1. However, we
were not able to relate F(z) and C(z) analytically.

5. CONCLUSION

In conclusion, we have found a new operating regime for
soliton transmission in constant-dispersion lightwave sys-
tems. This regime requires launching of an initially
chirped soliton. Our variational analysis recovers the
guiding-center soliton result in the regimez, < 1. By al-
lowing both the pulse width and the chirp to vary over
each amplifier section, we find that prechirping of the
pulse is necessary to sustain path-averaged solitons in
the regime z, ~ 1 in a periodically amplified optical com-
munication system. We use the results of variational
analysis to determine the amount of prechirping and ini-
tial peak power required to recover initial launch values
at each amplifier. Numerical solutions of the NSE show
that the use of prechirped solitons improves stability
since variations of pulse width and chirp over a large
transmission distance are much smaller than with
guiding-center solitons. The new operating regime
should be useful at high bit rates (>20 Gb/s) because it
permits amplifier spacing to become larger than the dis-
persion length.
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