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Abstract

We show that the equation governing pulse propagation in dispersion-managed optical fibers, as well as the reduced form
Žof that equation, does not have conserved or periodically conserved quantities other than the mass, momentum, and for the

.reduced equation only the Hamiltonian. Implications of this result for the problem of four-wave mixing in collisions of
pulses in optical telecommunication channels, are discussed. q 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž .The technique of dispersion management DM ,
where one periodically compensates fiber dispersion
by inserting in the transmission line segments of

Ž .fiber or Bragg gratings with the opposite sign of
dispersion, has become widely used in optical
telecommunications. For a review of advantages
which DM offers for the soliton data transmission

w xformat, see, e.g., Refs. 1,2 . The equation governing
Ž .pulse propagation in dispersion-managed DM fibers

Ž .is the nonlinear Schrodinger equation NLS where¨
the dispersion coefficient is a piecewise-constant,
periodic function of the propagation distance. This

1 E-mail: lakobati@optics.rochester.edu

equation can be written in the following non-dimen-
sional form:

E u 1 E 2 u
2< <i q d qD z qu u s0 . 1Ž . Ž .Ž .0 2E z 2 Et

Here we have used the fiber-optics convention,
whereby the propagation distance, z, plays the role
of the evolution variable, and the retarded time, t ,
the role of the spatial variable. The dispersion coeffi-

Ž .cient in Eq. 1 is explicitly written as a sum of its
average, constant part, d , and the periodic part,0
Ž .D z , whose average over the dispersion map period

Ž .vanishes. Specifically, D z takes on values D and1

D over the fiber segments of respective lengths L2 1

and L , which compose the map, and2

D L qD L s0 . 2Ž .1 1 2 2
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Ž .One can further normalize variables in Eq. 1 so as
w xto have 3 the map period equal to unity, i.e.

L qL s1 , 3Ž .1 2

and also

< < < <D L s D L s1 . 4Ž .1 1 2 2

Without loss of generality, in what follows we take

D L sq1 . 4’Ž .1 1

Ž .In Eq. 1 , we also assumed that the fiber is lossless.
From the applications standpoint, the most inter-

esting is the case of the so-called strong DM, where
< < 2both d and u are on the order of some small0

parameter e . In that case, it was found numerically
Ž w x. Ž .see, e.g., Ref. 4 that Eq. 1 can have long-living,
pulse-like solutions for either sign of d , and even0

for d s0. Those solutions had a remarkably regular0

structure with oscillating tails, which was explained
w x Ž .in Refs. 5,6 by representing the solution of Eq. 1

as a superposition of certain Hermite–Gaussian func-
Ž w x.tions see also Ref. 7 . Moreover, stationary solu-

tions of the following integro-differential equation,

1
2ia v y d v a vŽ . Ž .˙ 02

q d d a v a v a) v T s0 ,Ž . Ž . Ž .H 123 12,3v 1 2 3 123v

5Ž .
Ž .to which Eq. 1 is reduced in the strong DM limit

Ž < < 2 . w xi.e. for d ; u ;e<1 , were also found 8 to0
Ž .exhibit this regular structure. Eq. 5 was first de-

w xrived in Ref. 9 ; it was later re-derived in Refs.
w x8,10 by different techniques. In this equation, the
overdot denotes ErE z, and

z1 i
X X2a v , z s exp v D z dzŽ . Ž .H

2p 2

=
`

w xdt exp yivt u t , z , 6Ž . Ž .H
y`

T 'T v ,v ,v ,vŽ .123v 1 2 3

i1 2 2 2 2s dzexp y v qv yv yvŽ .H 1 2 320

=
z

X XD z dz . 7Ž . Ž .H

Ž . Ž .Note that in Eqs. 6 and 7 , the lower limit in the
z Ž X . Xintegral H D z dz is not important, and in what

Ž .follows we set it to be 0. In Eq. 5 and below we
use the following shorthand notations:

` ` `

d s dv dv dv ,H H H H123 1 2 3
y` y` y`

d sd v qv yv yv . 8Ž . Ž .12 ,3v 1 2 3

w xGiven the numerical discovery in Ref. 4 of the
highly regular structure of the pulse-like solutions of

Ž .Eq. 1 , one can ask whether that equation is inte-
grable, or in some sense close to being integrable, at

Ž .least for some values of its parameters D z and d .0

A straightforward calculation using the Painleve test´
answers the above question to the negative; the
details are presented in Appendix A. However, one
can still consider the following possibilities. First,

Ž .even though Eq. 1 is non-integrable, yet the re-
Ž . w xduced equation, Eq. 5 , can be integrable 11 .
Ž Ž .Second, integrability at least in the 1 q 1 -

.dimensional case usually implies the existence of
infinitely many conserved quantities for the equation

Ž .in question. Thus one can ask whether Eq. 1 has
any ‘quasi-conserved’ quantities which would change
periodically in z. Below we call such quantities
‘periodically conserved’. It is natural to assume that
the period with which such quantities could change
equals that of the dispersion map. In this work, we
use the method developed by Zakharov and Schul-

w x Ž w xman 12,13 see also Ref. 14 for a comprehensive
.review and answer the above two questions to the

negative.
The rest of this work is organized as follows. In

Ž . Ž . Ž Ž ..Section 2 Section 3 we prove that Eq. 5 Eq. 1
Žwith d /0 can have no conserved periodically0

.conserved quantities other than the mass, momen-
tum, and the Hamiltonian. In fact, we show that for

Ž .Eq. 1 , even the Hamiltonian is not periodically
Ž .conserved. However, it should be noted that Eq. 5

admits infinitely many functionals with a quadratic
leading-order part, which are conserved up to the
fourth order inclusively. A similar statement also

Ž .holds for Eq. 1 , with ‘conserved’ being replaced by
‘periodically conserved’, and provided that a certain

Ž .condition on the coefficients D z and d is satis-0

fied. In Sections 2 and 3 we also comment on the
case d s0, which requires a slightly different anal-0
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ysis. In that case, we were also unable to find any
Ž .additional conserved or periodically conserved

quantities. Finally, in Section 4, we discuss the
implications of our results for both the non-return-
to-zero and soliton data transmission formats in opti-
cal telecommunications.

( )2. Conserved quantities of Eq. 5

w xFollowing Ref. 13 , we look for conserved quan-
Ž .tities, I, of Eq. 5 , in the following form:

< < 2 Ž4.Is dv f v a q dd a IŽ . Ž .H H 12 ,34v 1234

q dd a I Ž6. q PPP , 9Ž . Ž .H 123,456 123456

Ž . Ž . Ž4. Ž4.Žwhere a sa v , a sa v , I s I v ,v ,v 1 1 1234 1 2
. Ž . ) )v ,v , dd a sd d a a a a , etc. We3 4 12,34 1234 12,34 1 2 3 4

also note that due to our adoption of the fiber-optics
Ž .notations in Eq. 1 , the frequencies v play the same

w xrole as the wave vectors k played in Ref. 13 and
related works. The functions I Ž4. and I Ž6. satisfy the
following symmetry relations with respect to their
arguments:

I Ž4. s I Ž4. s I Ž4. s I Ž4. ) , 10Ž .1234 2134 1243 3412

I Ž6. s I Ž6. s I Ž6. ) , 11Ž .123456 P Ž123.P Ž456. 456123

Ž .where P 123 stands for any permutation of 1,2,3.
Ž .Note that T , defined in Eq. 7 , also satisfies1234

Ž .conditions 10 .
The requirement that I be conserved means that

Ž n.dIrdzs0 at each successive order O a . At the
Ž 2 .order O a , this condition always holds. At the next
Ž 4. Ž . Ž .order, O a , Eqs. 9 and 5 are used to obtain the

condition

1
Ž . Ž .4 4dd a f T yd I D s0 ,Ž .H 12 ,34 12,34 1234 0 1234 12,34ž /2

12Ž .

where we have denoted

f s f v q f v y f v y f v , 13Ž . Ž . Ž . Ž . Ž .12 ,34 1 2 3 4

1
Ž4. 2 2 2 2D s v qv yv yv . 14Ž .Ž .12 ,34 1 2 3 42

Ž .In deriving Eq. 12 , we have used symmetry condi-
Ž . Ž .tions 10 for T . Eq. 12 requires that1234

f12 ,34Ž4.I s T . 15Ž .1234 1234Ž4.2 d D0 12,34

Ž4. Ž .Then the I -term in expansion 9 is nonsingular
w xprovided that f T s0 on the so-called 1212,34 1234

singular manifold

v qv yv yv s0, DŽ4. s0 . 16Ž .1 2 3 4 12,34

w x Ž .It is known 15 that Eq. 16 has only two solutions:

v sv , v sv andŽ .1 3 2 4

v sv , v sv , 17Ž . Ž .2 3 1 4

both of which imply f s0. Hence a nonsingular12,34
Ž .fourth-order term in expansion 9 can always be

found, and therefore we need to consider the next
Ž 6.order, O a , of dIrdz. There we find a condition

Ž .4dd a 2 I TŽ . ŽH 123,456 Ž . Ž .45y3 345 126 12y6

Ž .4 Ž6. Ž6.Ž .yI 12y6 T yd D I s0 ,.Ž .126 45y3 345 0 123,456 123456

18Ž .
where DŽ6. is defined similarly to DŽ4. in Eq.123,456 12,34
Ž . Ž4. Ž4.Ž .14 , and I s I v qv yv ,v ,v ,v ,Ž45y3.345 4 5 3 3 4 5

Ž .etc. From Eq. 18 we find, for d /0, that a0

nonsingular I Ž6. could only exist if one has

Ž .4dd a I TŽ . ŽH 123,456 Ž . Ž .45y3 345 126 12y6

Ž .4 Ž .yI 12y6 T s0 19Ž ..Ž .126 45y3 345

on the singular manifold

v qv qv yv yv yv s0, DŽ6. s0 .1 2 3 4 5 6 123,456

20Ž .
Ž . Ž .We now show that Eqs. 19 and 20 cannot have a

Ž . 2common solution, unless f v sAv qBvqC,
where A, B,C are arbitrary constants. For the latter

Ž .choice of f v , the conserved quantities are just the
Ž .mass also called the number of photons , momen-

w xtum, and the Hamiltonian 12 .
Ž . Ž4.First, on manifold 20 , one has D qŽ45y3.345

Ž4. Ž .D s0. Then one can use Eq. 15 to trans-126Ž12y6.
Ž .form the l.h.s. of Eq. 19 into the form

T TŽ45y3.345 126Ž12y6.
dd a f , 21Ž . Ž .H 123,456 123,456Ž4.D12 ,6Ž12y6.
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Ž . Ž . Ž . Ž .where f s f v q f v q f v y f v y123,456 1 2 3 4
Ž . Ž . w xf v y f v . Next, it was shown in Ref. 15 that5 6

Ž Ž . 2 .f /0 unless f v sAv qBvqC on man-123,456
Ž .ifold 20 , except on any of its submanifolds of the
Ž . Ž .form 16 . Then Eq. 19 could only hold if the first

Ž .factor of the integrand in expression 21 , properly
Ž .symmetrized, vanishes on the manifold 20 :

T Ti jnŽ i jyn. Ž lmyk .k lm
s0 . 22Ž .Ý Ž4.Di j ,nŽ i jyn.Ž .ijksP 123

Ž .lmnsP 456

Ž . Ž .In Eq. 22 , indices i, j,k l,m,n take on values
Ž .1,2,3 4,5,6 in any permutation; thus the sum on the

l.h.s. contains 9 terms. To evaluate the l.h.s. of Eq.
Ž .22 , we use the explicit expression for T :1234

Ž .4exp yiD y112 ,34
T s , 23Ž .1234 Ž4.yi DŽ . 12 ,34

Ž . Ž . Ž X.found from Eqs. 7 and 2 – 4 , and also the
Ž . w xfollowing parametrization of manifold 20 15 :

1 1
v sPqR uq y q3Õ , 24aŽ .1 ž /u Õ

1 1
v sPqR uq q y3Õ , 24bŽ .2 ž /u Õ

1
v sPy2 R uq , 24cŽ .3 ž /u

1
v sPy2 R uy , 24dŽ .4 ž /u

1 1
v sPqR uy q q3Õ , 24eŽ .5 ž /u Õ

1 1
v sPqR uy y y3Õ , 24fŽ .6 ž /u Õ

where P, R and u,Õ are independent parameters.
Ž . Ž .Finally, we substitute Eq. 23 and Eq. 24 into Eq.

Ž .22 and evaluate it using the Mathematica symbolic
calculations package. As a result, we find that Eq.
Ž . Ž .22 , and hence Eq. 19 , do not hold on manifold
Ž . w20 . Note: We also verified that for T '1, i.e.1234

Ž .for the integrable NLS case, Eq. 22 does hold on
Ž . x Ž6.manifold 20 . Consequently, I must have a line

Ž .singularity, which invalidates expansion 9 . Thus
Ž .additional conserved quantities of the form 9 do

Ž .not exist for Eq. 5 .
The above consideration breaks down for d s00

Ž Ž .. Ž .cf. Eq. 12 , unless one has f v sAvqB, with

A, B being arbitrary constants. Since the latter choice
Ž .for f v with either A or B nonzero corresponds to

the conservation of the mass andror the momentum,
in which we are not interested here, we have to set
Ž . Ž . Ž 6.f v s0 to satisfy Eq. 12 . Then at the order O a

Ž .we find the condition to be exactly of the form 19
where now I Ž4. has not yet been determined. The
only nonzero solution to that equation which we
have been able to find is the obvious one, i.e.
I Ž4. sT . This corresponds to the Hamiltonian of1234 1234

Ž .Eq. 5 to be conserved. Furthermore, if we set
Ž4. Ž6. Ž 8.I s0 and I /0, then at the order O a we1234 123456

find the condition

Ž .6dd a I TŽ . ŽH 1234,5678 Ž . Ž .567y34 34567 128 12y8

Ž .6 Ž .yI 123y78 T s0 , 25Ž ..Ž .12378 56y4 456

Ž6. Ž6.Ž Ž . Žwhere I s I v qv qv y v qŽ567y34.34567 5 6 7 3
. .v ,v ,v ,v ,v ,v , etc. We verified that the4 3 4 5 6 7

most plausible choice for I Ž6.:

I Ž6. s T T , 26Ž .Ý123456 i jlŽ i jyl . Žm nyk .k m n

Ž .ijksP 123

Ž .lmnsP 456

Ž .which satisfies symmetry conditions 11 , does not
Ž .satisfy Eq. 25 . Thus, we were unable to find any

Ž .additional conserved quantities of Eq. 5 for d s0,0

either.

( )3. Periodically conserved quantities of Eq. 1

Ž .First, we rewrite Eq. 1 in the form similar to
Ž .that of Eq. 5 :

1
2 )ia y d z v a q d d a a a s0 ,Ž .˙ Hv v 123 12,3v 1 2 32

27Ž .
Ž . Ž . Ž Ž ..where d z s d q D z and a s 1r 2p0 v

` w x Ž .H dt exp yivt u t , z . We look for a periodi-y`

Ž . Ž .cally conserved quantity in the form 9 , with f v ,
I Ž4., I Ž6., etc. being independent of z. In Appendix
B, we show that the same results as will be obtained
below, also hold when these coefficients are periodic

Žfunctions of z. The latter case includes, in particu-
Ž . . Ž .lar, the Hamiltonian of Eq. 1 . Thus, taking f v ,

I Ž4., I Ž6., etc. as being z-independent does not seem
to limit the generality of our results. We show below
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Ž .that Eq. 1 has no periodically conserved quantities
Ž .of the form 9 , apart from the mass and the momen-

tum, which are, in fact, conserved exactly rather than
periodically. In particular, we show, at the end of

Ž .this section, that the Hamiltonian of Eq. 1 is not
periodically conserved.

Proceeding along the lines of the preceding sec-
Ž 4.tion, we find at the order O a a condition of the

Ž .form 12 with T '1 and d being replaced by1234 0
Ž .d z . Then the requirement

dI1
dzs0 28Ž .H

dz0

at that order yields the following equation for I Ž4.:

z1 1 X XŽ .4f dz exp yiD d z dzŽ .H H12 ,34 12,342 0 0

Ž .Ž4. 4s i I exp yid D y1 . 29Ž .Ž .1234 0 12,34

In deriving the last equation, we have used an ap-
proximation

zi
X X2a sc exp y v d z dz , 30Ž . Ž .Hv v 2 0

with c being independent of z at this order. Thev

Ž . Ž4.r.h.s. of Eq. 29 vanishes for d D s2p M,0 12,34

where M is any integer. Hence in order for a nonsin-
Ž4. Ž .gular I to exist, the l.h.s. of Eq. 29 must vanish

on any manifold of the form

v qv yv yv s0,1 2 3 4

d DŽ4. s2p M , MgZ . 31Ž .0 12,34

For Ms0, this always holds, as discussed in Section
2, because f s0. For M/0, f /0 in gen-12,34 12,34

eral. Moreover, it is easy to show that solutions to
Ž .Eq. 31 always exist even for M/0, such that, e.g.,

Ž .2 Ž .v yv Gmax 0,8p Mrd . Thus we must re-1 2 0
Ž .quire that the integral on the l.h.s. of Eq. 29 vanish.

This yields the following relation between the pa-
rameters of the dispersion map:

1
L q sN , 32Ž .1 d0

Ž .where N is an arbitrary integer. In deriving Eq. 32
Ž . Ž X.we have used Eq. 2 – 4 . Thus, when condition

Ž . Ž4.32 is satisfied, a nonsingular I can always be
found, and we need to proceed to the next order.

Ž 6.Our consideration of the order O a is similar to
that in Section 2, with one exception. Namely, in

addition to the term which has the form of the l.h.s.
Ž . Ž .of Eq. 18 with T s1 and d replaced by d z ,1234 0

one also gets a contribution from the term which
Žoccured at the previous order i.e. the one of the

Ž .form of the l.h.s. of Eq. 12 . That lower-order term
Ž 6.contributes to the order O a , because c in Eq.v

Ž . Ž .30 , which was used in the derivation of Eq. 29 ,
Ž 2 .does depend on z through terms of order O a and

Ž Ž ..higher cf. Eq. 27 . Calculation of such terms
would be a delicate task, due to the occurrence of a

w xlogarithmically diverging phase 16 , and we do not
perform it here. Instead, we use the following simple
trick. Let us denote

f12 ,34 Ž . Ž .4 4F z s yd z D IŽ . Ž . 12 ,34 1234ž /2

=
z

X XŽ .4exp yiD d z dz . 33Ž . Ž .H12 ,34
0

Then the z-integral over one map period of the l.h.s.
Ž . Ž .of the counterpart of Eq. 12 for Eq. 1 can be

rewritten as follows:
1
dz ddc F zŽ . Ž .H H 12 ,34

0
) ) zE c c c cŽ .1 1 2 3 4 X Xsy dz dd F z dz .Ž . Ž .H H H12 ,34

E z0 0

34Ž .
Here we have used integration by parts and the fact

1 Ž . Ž Ž ..that H F z dzs0 cf. Eq. 29 . Also, the notation0
Ž . Ž .ddc is analoguous to the notation dd a ,12,34 12,34

Ž . Ž ) ) .defined after Eq. 9 . Now the term E c c c c rE z1 2 3 4
Ž . Ž .can be computed using Eqs. 30 and 27 . Adding

the result to the term of the form of the l.h.s. of Eq.
Ž .18 , as discussed above, we finally arrive at the

Ž 6.condition at the order O a :
1

2 Re dz ddcŽ .H H 123,456
0

=
z

Ž .4 Ž .f exp yiD 12y6HŽ .12,6 12y6 12,6ž 0

=

Xz
XX XX X Ž .4d z dz dz y2 i IŽ .H Ž .45y3 345 /0

=
z

X XŽ .4exp yiD d z dzŽ .HŽ .45y3 3,45
0

sy ddc I Ž6.Ž .H 123,456 123456

= Ž .6exp yid D y1 . 35Ž .Ž .0 123,456
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Note that the r.h.s. of this equation is always real due
Ž .to symmetry conditions 11 .

Singularities of I Ž6. can occur on any of the
following singular manifolds:

v qv qv yv yv yv s0,1 2 3 4 5 6

d DŽ6. s2p M , MgZ . 36Ž .0 123,456

Ž .On these manifolds, the l.h.s. of Eq. 35 is trans-
formed into the form:

Im ddc fŽ .H 123,456 123,456

=

21 1
y2 yž /d qD d qD0 1 0 2�

=

N Ny1
Ž . Ž .4 4Ž . Ž .sin d D 12y6 sin d D 12y60 12,6 0 12,62 2

1
Ž .4 Ž .sin d D 12y60 12,62

L L 11 2
qd q ,M ,0 Ž4.ž /d qD d qD D0 1 0 2 12,6Ž12y6. 0

37Ž .

Ž .where the integer N was defined in Eq. 32 , and
d s1 for Ms0 and d s0 otherwise. In deriv-M ,0 M ,0

Ž . Ž . Ž X.ing expression 37 , we have also used Eq. 2 – 4
Ž .and 29 . Now it sufficies to show that expression

Ž . Ž37 does not vanish for Ms0 i.e. on singular
Ž .. Ž . 2manifold 20 , provided that f v /Av qBvq

C. In fact, the term with d does vanish there, asM ,0
Ž .noted in the paragraph following Eq. 24 . However,

the rest of the expression does not vanish on mani-
Ž .fold 20 . The corresponding calculations, which re-

Ž .quire symmetrization of that term as per Eq. 22 and
Ž .then use of Eq. 24 , are too cumbersome even for

Mathematica. The easiest way to verify that the term
in question does not vanish is to simply evaluate it

Žnumerically still with Mathematica or a similar
.package for some particular values of d and N and0

Ž .at some particular point on manifold 20 . Alterna-
tively, one could expand it in the Taylor series for

small v and subsequently convince oneself that the
result is indeed nonzero. We performed the verifica-
tion using both ways. Thus we have shown that even

Ž . Ž6.with condition 32 satisfied, a nonsingular I does
Ž .not exist. Hence Eq. 1 does not have additional

periodically conserved quantities for d /0.0

As in Section 2, the above analysis requires some
modification for the case d s0. Since that modifi-0

cation is a straightforward combination of the calcu-
lations used in this and the previous sections, we do
not give its details here, but simply state the final
result. Namely, we were unable to find additional
periodically conserved quantities in this case, either.

To conclude this section, we now show that the
Ž .Hamiltonian of Eq. 1 is not periodically conserved.

The quadratic part of the Hamiltonian is:

1
22 < <Hs dv d z v a q PPP , 38Ž . Ž .H vž /2

Ž . Ž . Ž . 2i.e. in terms of expansion 9 , f v sd z v r2. As
shown in Appendix B, the same results are obtained

Ž . 2for f v sv r2, and hence we present the details
of our analysis for the latter form of f. We first

Ž .consider the case d /0. If condition 32 is not0
Ž4. Ž .satisfied, then the I found from Eq. 29 is singu-

Ž .lar on any of the manifolds 31 with M/0, and
therefore the Hamiltonian is not conserved already at

Ž 4. Ž .order O a . If condition 32 is satisfied, then a
nonsingular I Ž4. does exist, and at the next order,
Ž 6. Ž .O a , we arrive at expression 37 where f s123,456

DŽ6. . To guarantee existence of a nonsingular I Ž6.,123,456

this expression must vanish on any of the manifolds
Ž .36 . For Ms0, it does indeed vanish due to the

Ž .special form of f v . However, for M/0, where
f /0, it does not vanish identically. We veri-123,456

fied this by taking random points on the following
Ž .submanifold of manifold 36 :

22p M 2p M 3
2v s v s0, v s q a q ,1 2 3 ž /d d 40 0

21 2p M 2p M 2p M 1
2v s " a , v s q a y4,5 6 ž /2 d d d 40 0 0

39Ž .

Ž .where a is a real parameter and evaluating the
Ž . Ž .symmetrized, as per Eq. 22 , expression 37 for

various values of N and M. Thus we showed that
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Ž6. Ž .the corresponding I is singular even for f v s
v 2r2, and hence there exists no periodically con-

Ž .served quantity of Eq. 1 whose leading-order part
would coincide with that of the Hamiltonian. In
particular, the Hamiltonian itself is not conserved.

In the case d s0 the analysis is modified as0
Ž .follows. First of all, it easy to see that f v must be

identically zero. Then the first nontrivial condition
Ž 6.arises at the order O a :

1
dz ddcŽ .H H 123,456

0

=
z

X XŽ . Ž .4 4 Ž .I exp yiD 12y6 d z dzŽ .HŽ .45y3 345 12,6ž 0

1 X XŽ . Ž .4 4Ž .yI 12y6 exp yiD d z dz s0 .Ž .HŽ .126 45y3 3,45 /0

40Ž .

Its obvious nonzero solution is
Ž .4exp yiD y112 ,34Ž4.I s . 41Ž .1234 Ž4.yi DŽ . 12 ,34

Note that at this order, we have obtained the same
Ž . Ž Ž ..result as for Eq. 5 with d s0 cf. Eq. 23 .0

However, at the next order we already find a differ-
Ž . Ž 8.ence from the case of Eq. 5 . At that order, O a ,

we obtain the following condition:

1 Ž .42 Re dz ddc IŽ .H H Ž .1234,5678 Ž .34y5 567y34 67ž0

=

Xz z
XX XX XŽ .4 Ž .exp yiD 34y5 d z dz dz 49Ž . Ž .H H34 ,5

0 0

Ž .4yI Ž .Ž .567y34 47 56y3

=

Xz z
XX XX XŽ .4exp yiD d z dz dzŽ .H HŽ .56y3 3,56 /0 0

z
X XŽ .4 Ž .=exp yiD 12y8 d z dzŽ .H12 ,8

0

1 1
s y Re ddcŽ .H 1234,5678ž /D D1 2

=

Ž .4 Ž .exp yiD 12y8 y112 ,8Ž .6I ,Ž .567y34 34567 Ž .4ž /Ž .D 12y812,8

42Ž .

Ž4. Ž . Ž4.where I is given by Eq. 41 . For D s12,8Ž12y8.
2p M, where M is a nonzero integer, I Ž6. is singular,
unless the l.h.s. vanishes there. Using the above

Ž4. Ž .condition for D , the l.h.s. of Eq. 42 is12,8Ž12y8.
transformed into the form:

1 1
2 y Re ddcŽ .H 1234,56782 2ž /D D1 2

=

Ž . Ž .4 4I exp yiD y1Ž .Ž .Ž . Ž .567y34 47 56y3 56y3 3,56

Ž4. Ž4.ž D D q2p MŽ .Ž56y3.3 ,56 Ž56y3.3 ,56

Ž .Ž4. 4 Ž .I exp yiD 34y5 y1Ž .Ž34y5.Ž567y34.67 34,5
y .Ž . Ž .4 4 /Ž . Ž .D 34y5 D 34y5 q2p MŽ .34 ,5 34,5

43Ž .

Obviously, on the 6-dimensional manifold

v qv qv qv yv yv yv yv s0,1 2 3 4 5 6 7 8

DŽ4. s2p M/0 , 44Ž .12 ,8Ž12y8.

one has enough degrees of freedom to make expres-
Ž .sion 43 nonzero, with the only exception being the

case of a symmetric dispersion map when D s1

yD . Note that in the latter case, I Ž6. does not2
Ž .vanish identically, because expression 43 holds

Ž .only on manifold 44 . Therefore, even if there exists
a periodically conserved quantity with I Ž4. given by

Ž . Ž6. Ž .Eq. 41 and I found from Eq. 42 , it must be
Ž .different from the Hamiltonian of Eq. 1 with d s00

Ž Ž . .note that the latter also has f v 'u 0 . We did not
investigate the possibility of existence of such a
quantity in the case of a symmetric map, because the

Ž 10 .required calculations at the order O a are ex-
tremely cumbersome.

4. Summary and discussion

The main results of this study are the following.
Ž .First, we showed in Appendix A that the Painlevé
Ž .test fails for Eq. 1 , thus indicating that that equa-

tion is not integrable by the Inverse Scattering Trans-
form. Second, we applied the method of Zakharov

Ž .and Schulman to the reduced form of Eq. 1 in the
Ž .strong DM limit, Eq. 5 , and showed that it does not

Žhave conserved quantities other than the mass num-
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.ber of photons , the momentum, and the Hamilto-
nian. Third, using the same method, we showed that

Ž .Eq. 1 does not have periodically conserved quanti-
ties other than the mass and the momentum, which
are conserved exactly rather than periodically. We
note here that there was a slight difference between

Ž . Ž .the calculations for Eq. 5 and those for Eq. 1 .
While the former calculations are just the straightfor-
ward application of the Zakharov–Schulman method
to the specific equation, the latter ones required a
certain modification, which was explained in the

Ž .paragraph immediately preceding Eq. 33 . Let us
also mention that our results for the case d s0,0

Žindicating the absence of conserved or periodically
. Ž . Ž .conserved quantities for Eqs. 1 and 5 , are not

truly rigorous. Rather, we showed that for some very
plausible form of I Ž4. and I Ž6., additional conserved
Ž .or periodically conserved quantities do not exist.
Establishing a rigorous result in that case remains an
open problem.

Ž .We also showed that when condition 32 holds,
Ž .then Eq. 1 has infinitely many quantities with

quadratic leading-order part, which are periodically
Ž 4.conserved up to the order O a inclusively. This

fact can be interpreted as ‘approximate integrability’
in those cases where one is justified to treat the

Ž .nonlinear terms in Eq. 1 as a small perturbation.
This is precisely what occurs in the theory of the

Ž .non-return-to-zero NRZ data transmission in opti-
cal telecommunications. There, a logical ONE is
represented by a rectangular pulse which occupies
the entire bit slot. If there are two adjacent ONEs,
the field between them does not go to zero, in
contrast to what occurs in the soliton transmission
format. Hence the name ‘NRZ’. An important quan-
tity in optical telecommunications is the detected

Žpulse energy which we called ‘mass’ or ‘number of
.photons’ above . Thus, since an NRZ pulse is ap-

proximately 5 times broader than the soliton which
would represent the same bit of information, then its

Ž < < 2 .power i.e. u is correspondingly lower. Therefore,
one usually treats nonlinear terms in the evolution of
NRZ pulses as a small perturbation.

One of the serious detrimental effects caused by
collisions of NRZ pulses belonging to different fre-
quency channels with frequencies v and v is1 2

Ž .four-wave mixing FWM , i.e. creation of a rela-
tively small field at frequency, say, 2v yv ,1 2

through the nonlinearity. If in addition to the fre-
quency matching condition,

v qv sv q 2v yv , 45aŽ . Ž .1 1 2 1 2

Ž . 2the propagation constants, b sd z v r2, of thesev

four waves satisfy the relation

1 22 2 2d v qv yv y 2v yv LŽ .Ž .0 1 1 2 1 2 map2

s2p M , MgZ , 45bŽ .
Ž .then the FWM field with frequency 2v yv will1 2

Ž .grow linearly on average with the propagation dis-
w x Ž . Ž .tance 17 . Note that Eq. 45 coincide with Eq. 31

w xabove. Experimentally, one observes 17,18 sharp
peaks of the FWM field, whose locations are deter-

Ž .mined by Eq. 45b , as one varies the frequency
Ž . Žseparation v yv note that the l.h.s. of Eq.1 2

Ž . Ž .2 .45b equals yd v yv . However, if parame-0 1 2
Ž .ters of the dispersion map satisfy condition 32 , then

Ž .we predict that almost no FWM will be observed
for any frequency separation. This conclusion, which
in our analysis is a consequence of the aforemen-

Ž .tioned ‘approximate integrability’ of Eq. 1 , is con-
firmed by the direct calculation of the FWM field
w x Ž . Ž .19 . In fact, our condition 32 follows from Eq. 8

w xof Ref. 19 , where one has to set Ns2 and as0.
Note also that the same conclusion regarding the

Ž .absence or, more precisely, strong suppression of
FWM in collisions of NRZ pulses should also hold
in the strong DM regime irrespective of the exact
values of d and L , because the corresponding0 1

Ž .equation, Eq. 5 , is also ‘approximately integrable’
Ž 4.up to the order O a .
Ž .Since condition 32 implies ‘integrability’ of Eq.

Ž . Ž Ž 4..1 only at the lowest nontrivial order i.e., at O a ,
we expect that it should not be relevant for the
dynamics of DM solitons. Indeed, the latter, in con-
trast to NRZ pulses, are essentially nonlinear objects,

Ž n. Ž .for which all terms O a in expansion 9 play
equally important role. Thus, DM solitons should
exhibit features of solitary waves in non-integrable
systems. One such feature is the inelastic interaction

Žof adjacent DM solitons with the same central fre-
. w xquencies , which was reported in Ref. 20 . Our own

Ž .numerical simulations of Eq. 1 , performed with
Ž .condition 32 being imposed on the coefficients

Ž .D z and d , showed that the interaction remains0

inelastic under that condition as well.
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More interesting, however, is the problem of FWM
in collisions of DM solitons with disparate frequen-

w xcies. On one hand, the results of Ref. 21 , where this
Žproblem was considered for the conventional i.e.

.NLS solitons, suggest that a treatment based on the
Žsame assumptions as in the NRZ case cf. their Eq.

Ž ..4 , except that the shape of the soliton is now
explicitly accounted for, yields good agreement with
numerical simulations. On the other hand, since the
soliton width is considerably smaller than the dis-
tance between consecutive solitons in a communica-
tion channel, there is, in general, asymmetry between

w xthe beginning and the end of the collision 22 in
systems with periodically varying dispersion. This
asymmetry, and hence the size of the FWM field,
depends on a number of parameters, such as the
pulse width, frequency separation, average disper-

Ž Ž ..sion, and lengths L and L s 1yL of the fiber1 2 1

sections. We numerically simulated the collision of
Ž .two DM solitons of Eq. 1 , having fixed all of these

Ž Ž'parameters at, respectively, T s 1r2 cf. Ref.0
w x. .5 , v yv s5.8p , and d s1r17.5 but L ,1 2 0 1

which we varied between 0 and 1. The dependence
of the energy of the FWM field appeared to be both
irregular and strong, with variations between the
maximum and minum values being more than two
orders of magnitude. This numerical observation,

w xalong with the above argument involving Ref. 21 ,
indicate that calculation of the FWM field in colli-
sions of DM solitons is an interesting open problem.
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( )Appendix A. Painleve test for Eq. 1´

Following the approach outlined, e.g., in Ref.
w x23 , we consider the following independent expan-
sions for u and Õ'u) :

` `

a j b jusf u f , Õsf Õ f , A1Ž .Ý Ýj j
js0 js0

where

fstyc z , u su z , Õ sÕ z . A2Ž . Ž . Ž . Ž .j j j j

Ž .Coefficients a , b and functions u , Õ , and c z arej j

to be determined. Since the details of this approach
w xcan be found, e.g., in Ref. 23 , here we only give

final results obtained at each step of the calculations.
Ž . Ž .Substituting Eq. A1 into Eq. 1 , we obtain the

following condition at the leading order:

asbsy1, u Õ syd z . A3Ž . Ž .0 0

Ž jy3.Next, at the order O f we find that the reso-
w xnances 23 are located at

jsy1, 0, 3, 4 . A4Ž .
Note that the first two resonances correspond to the

Ž .arbitrariness of c z and u , respectively. There-0

fore, we have to consider all the conditions arising at
Ž 1y3. Ž y2 .each successive order from O f sO f to

Ž 4y3. Ž . Ž y2 .O f sO f . At the orders O f through
Ž 0.O f we find, respectively, the following condi-

tions:
iu dc iÕ dc0 0

u s , Õ sy , A5Ž .1 1d z dz d z dzŽ . Ž .
21 d u d z dcŽ .Ž .0

u s i yu ,2 02 ž /ž /dz dz3 d zŽ .Ž .
21 d Õ d z dcŽ .Ž .0

Õ s yi yÕ ,2 02 ž /ž /dz dz3 d zŽ .Ž .
A6Ž .

1 u d2c0
u arbitrary, Õ s u d z q .Ž .3 3 32 2ž /d zu dzŽ .0

A7Ž .
Ž .Finally, at the order O f we find that the necessary

condition for u and Õ to exist is4 4
221 d d z d d zŽ . Ž .

3u d z y3uŽ .0 02 2 ž /ž dzdzd zŽ .Ž .
2

du d d zŽ .Ž .0
q s0 . A8Ž ./dz dz

Ž . Ž .Eqs. A7 and A8 were obtained with the Maple
Ž .symbolic calculations package. Obviously, Eq. A8

does not hold for the piecewise-constant dispersion
Ž . Ž .coefficient d z . Thus Eq. 1 does not pass the

Painleve test.´
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( )Appendix B. Coefficients in expansion 9 for
periodically conserved quantities

Here we show that all conclusions of Section 3
remain the same if instead of constant coefficients
Ž . Ž4. Ž6.f v , I , I , etc., considered there, one takes

those coefficients to be periodic functions of z.
Naturally, we assume that the periodicity is that of
the dispersion map.

1Ž .Consider the quantity H dIrdz dz. Using Eq.0
Ž .9 , where now the coefficients are functions of z,
we find:

dI1 2< <dzs dv f v , zs1 a zs1Ž . Ž .ŽH H vdz0

< < 2yf v , zs0 a zs0 q PPPŽ . Ž . .v

d1 2< <s dz dv f v , zs0 a q PPP .Ž .H H vdz0

B1Ž .

We have not written explicitly the terms proportional
to I Ž4., I Ž6., etc., because they have exactly the same

Ž .form as the term in Eq. B1 . We have also used the
Ž . Ž .periodicity condition: f v, zs1 s f v, zs0 . Thus

the statement formulated at the beginning of this
Appendix is proved.
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