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Abstract

We show that the equation governing pulse propagation in dispersion-managed optical fibers, as well as the reduced form
of that equation, does not have conserved or periodically conserved quantities other than the mass, momentum, and (for the
reduced equation only) the Hamiltonian. Implications of this result for the problem of four-wave mixing in collisions of
pulses in optical telecommunication channels, are discussed. © 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The technique of dispersion management (DM),
where one periodically compensates fiber dispersion
by inserting in the transmission line segments of
fiber (or Bragg gratings) with the opposite sign of
dispersion, has become widely used in optica
telecommunications. For a review of advantages
which DM offers for the soliton data transmission
format, see, e.g., Refs. [1,2]. The equation governing
pulse propagation in dispersion-managed (DM) fibers
is the nonlinear Schrodinger equation (NLS) where
the dispersion coefficient is a piecewise-constant,
periodic function of the propagation distance. This
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equation can be written in the following non-dimen-
sional form:

du 1 a%u )
|—+E(dO+D(z))F+ulul =0. (1)
T

dz

Here we have used the fiber-optics convention,
whereby the propagation distance, z, plays the role
of the evolution variable, and the retarded time, T,
the role of the spatial variable. The dispersion coeffi-
cient in Eq. (1) is explicitly written as a sum of its
average, constant part, d,, and the periodic part,
D( z), whose average over the dispersion map period
vanishes. Specifically, D(z) takes on values D, and
D, over the fiber segments of respective lengths L,
and L,, which compose the map, and

D,L, +D,L,=0. (2)
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One can further normalize variables in Eq. (1) so as
to have [3] the map period equal to unity, i.e.

L, +L,=1, (3)
and also

ID,L,|=ID,L,|=1. (4)
Without loss of generality, in what follows we take
D,L,= +1. (4)

In Eq. (1), we also assumed that the fiber is lossless.
From the applications standpoint, the most inter-
esting is the case of the so-called strong DM, where
both d, and |ul®> are on the order of some small
parameter €. In that case, it was found numericaly
(see, eg., Ref. [4]) that Eq. (1) can have long-living,
pulse-like solutions for either sign of d,, and even
for d, = 0. Those solutions had a remarkably regular
structure with oscillating tails, which was explained
in Refs. [5,6] by representing the solution of Eg. (1)
as a superposition of certain Hermite—Gaussian func-
tions (see aso Ref. [7]). Moreover, stationary solu-
tions of the following integro-differential equation,

_ 1
ia(w) — Edowza( w)

+ fd123 8130 @) aA( @)@ (w3) Ty, =0,
(5)
to which Eq. (1) is reduced in the strong DM limit
(i.e. for dy~|ul®~ e < 1), were aso found [8] to
exhibit this regular structure. Eq. (5) was first de-
rived in Ref. [9]; it was later re-derived in Refs.

[8,10] by different techniques. In this equation, the
overdot denotes d/dz, and

a(w,z) = Zi exp[i—zwzsz( z’)dz’}

m

X/jcxdTeXp[—in]U(T,Z), (6)
Ti23, = T(01,0;,03,0)

1 i
=j;)dzexp[—5(wf+w§— wg— wZ)

foD(Z)dz’}. (7)

Note that in Egs. (6) and (7), the lower limit in the
integral [*D(Z)dZ is not important, and in what
follows we set it to be 0. In Eq. (5) and below we
use the following shorthand notations:

[dips = [i [1 [:dwldwzdws ,

81230 = (o +w,— w3~ w). (8)

Given the numerical discovery in Ref. [4] of the
highly regular structure of the pulse-like solutions of
Eg. (1), one can ask whether that equation is inte-
grable, or in some sense close to being integrable, at
least for some values of its parameters D(z) and d,,.
A straightforward calculation using the Painlevée test
answers the above question to the negative; the
details are presented in Appendix A. However, one
can dill consider the following possibilities. First,
even though Eg. (1) is non-integrable, yet the re-
duced equation, Eq. (5), can be integrable [11].
Second, integrability (at least in the (1+ 1)-
dimensional case) usually implies the existence of
infinitely many conserved quantities for the equation
in guestion. Thus one can ask whether Eq. (1) has
any ‘quasi-conserved’ quantities which would change
periodicaly in z. Below we cal such quantities
‘periodically conserved'. It is natural to assume that
the period with which such quantities could change
equals that of the dispersion map. In this work, we
use the method developed by Zakharov and Schul-
man [12,13] (see also Ref. [14] for a comprehensive
review) and answer the above two questions to the
negative.

The rest of this work is organized as follows. In
Section 2 (Section 3) we prove that Eq. (5) (Eq. (1)
with d,# 0 can have no conserved (periodicaly
conserved) quantities other than the mass, momen-
tum, and the Hamiltonian. In fact, we show that for
Eg. (1), even the Hamiltonian is not periodically
conserved. However, it should be noted that Eg. (5)
admits infinitely many functionals with a quadratic
leading-order part, which are conserved up to the
fourth order inclusively. A similar statement aso
holds for Eq. (1), with ‘conserved’ being replaced by
‘periodically conserved’, and provided that a certain
condition on the coefficients D(z) and d, is satis-
fied. In Sections 2 and 3 we aso comment on the
case d, = 0, which requires a slightly different anal-
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ysis. In that case, we were aso unable to find any
additional conserved (or periodically conserved)
quantities. Finally, in Section 4, we discuss the
implications of our results for both the non-return-
to-zero and soliton data transmission formats in opti-
cal telecommunications.

2. Conserved quantities of Eq. (5)

Following Ref. [13], we look for conserved quan-
tities, I, of Eq. (5), in the following form:

| = fdwf(w)|aw|2 + f(d53)12,34|¥2%4

+f(d6a)123,456|1(22%456 + o (9

where a,=a(w), a,=alw,), & =1 w,, o,
w3,0,), (d88)15 3 = dip5s 81534 @85 8;, €fc. We
also note that due to our adoption of the fiber-optics
notations in Eq. (1), the frequencies w play the same
role as the wave vectors k played in Ref. [13] and
related works. The functions |® and 1® satisfy the
following symmetry relations with respect to their
arguments:

4 _ 1@ _ D =
|{23°,4 = |§1§4 = |£2213 = |§4)12 ) (10)
6 _ (6 _1(6) =
|£23°,456 = ||(>()123)P(456) = usgslzs- (11)

where P(123) stands for any permutation of 1,2,3.
Note that T,,5,, defined in Eq. (7), aso satisfies
conditions (10).

The requirement that | be conserved means that
dl/dz=0 at each successive order O(a"). At the
order O(a?), this condition always holds. At the next
order, O(a*), Egs. (9) and (5) are used to obtain the
condition

[ (082 5 T~ o182 = 0.
(12)

where we have denoted

f1o0=f(@1) +f(w;) —f(w3) = f(w,), (13)

1
AZas =5 (0] + w; —wi—f). (14)

In deriving Eq. (12), we have used symmetry condi-
tions (10) for T,,4,. EQ. (12) requires that

f
|f2‘%4 = 12’?2) 1234 -
2dy 41534

Then the 1®-term in expansion (9) is nonsingular
provided that f;,,T 53, =0 on the so-called [12]
singular manifold

(15)

W+ w,— w;— 0w, =0, A(l‘;)’34=0. (16)
It is known [15] that Eq. (16) has only two solutions:
(0= 03, w,=w,) and

(0= w3, w;=0,), (17)

both of which imply f,, 5, = 0. Hence a nonsingular
fourth-order term in expansion (9) can aways be
found, and therefore we need to consider the next
order, O(a®), of di /dz. There we find a condition

4
f( déa) 123,456(2[ | §4%_ 3)345 1126(12 6)
4 6 6 -
— {52~ )T 45— 3)25 ] —dy A(12)3,456 | 1(2)3456) =0,

(18)

where A 46 is defined similarly to AfD,, in Eq.
(14), and I((Af‘5)73)345 = 1w, + 05 — 0z, 03,0,,0s),
etc. From Eq. (18) we find, for d,+# 0, that a
nonsingular 1® could only exist if one has

4
f( dsa) 123,456( | 54%— 3)345T126(12 -6)

- |§g%s(12*6)T(45—3)345) =0 (19)
on the singular manifold

wg =0, 4(1%)3,456 =0.
(20)

We now show that Egs. (19) and (20) cannot have a
common solution, unless f(w)=Aw?+ Bw + C,
where A, B,C are arbitrary constants. For the latter
choice of f(w), the conserved quantities are just the
mass (also called the number of photons), momen-
tum, and the Hamiltonian [12].

First, on manifold (20), one has A} 545 +
A%q2-6 = 0. Then one can use Eq. (15) to trans-
form the l.h.s. of Eq. (19) into the form

f( dda) 193 456

W+ W, + w3~ Wy — Wy —

T(45 - 3)345T126(12 -6) f

A@ 123,456 1 (21)
12,6(12— 6)
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where  fip5 455 = f(w;) + f(w,) + f(wy) — f(w,) —
f(ws) — f(wg). Next, it was shown in Ref. [15] that
f125456 # O (Unless f(w) = Aw? + Bo + C) on man-
ifold (20), except on any of its submanifolds of the
form (16). Then Eqg. (19) could only hold if the first
factor of the integrand in expression (21), properly
symmetrized, vanishes on the manifold (20):
T. T

ijnij—n) (Im—kklm
r yC =0. (22)
ijk=P(123) ij,n(ij—mn
Imn = P(456)

In Eq. (22), indices i,j,k (I,m,n) take on values
1,2,3 (4,5,6) in any permutation; thus the sum on the
I.h.s. contains 9 terms. To evaluate the |.h.s. of Eq.
(22), we use the explicit expression for T,,q,:
exp[ —i 4] — 1
( . ) A(lé),34 ’

found from Egs. (7) and (2)—(4'), and aso the
following parametrization of manifold (20) [15]:

Tioae = (23)

1 1
w,=P+Rlu+——-——+30], (24a)
! u o

1 1
w,=P+Rlu+—+4+—-3v], (24b)
2 u v

1
w3=P—2R(u+E), (24c)

1
w4=P—2R(u—G), (24d)

1 1
wg=P+Rlu——+—+30], (24e)
> u o

1 1
(1)6=P+R(U—G—;—3U), (24f)

where P,R and u,v are independent parameters.
Finally, we substitute Eq. (23) and Eq. (24) into Eq.
(22) and evaluate it using the Mathematica symbolic
calculations package. As a result, we find that Eq.
(22), and hence Eqg. (19), do not hold on manifold
(20). [Note: We aso verified that for Ty, =1, i.e.
for the integrable NLS case, Eq. (22) does hold on
manifold (20).] Consequently, 1©® must have a line
singularity, which invaidates expansion (9). Thus
additional conserved quantities of the form (9) do
not exist for Eq. (5).

The above consideration breaks down for d, =0
(cf. Eq. (12)), unless one has f(w) = Aw + B, with

A, B being arbitrary constants. Since the latter choice
for f(w) with either A or B nonzero corresponds to
the conservation of the mass and/or the momentum,
in which we are not interested here, we have to set
f(w) = 0 to satisfy Eq. (12). Then at the order O(a®)
we find the condition to be exactly of the form (19)
where now |® has not yet been determined. The
only nonzero solution to that equation which we
have been able to find is the obvious one, i.e
1% = T1534. This corresponds to the Hamiltonian of
Eq. (5 to be conserved. Furthermore, if we set
1%, =0and 18}, # 0, then at the order O(a®) we
find the condition

6
f (déa) 1234,5678( | 552577 34)34567T128(12— 8)

6 _

- |§2)378(123*78)T(56—4)456) =0, (25)
where 18, 3434567 = | (w5 + wg + ;) — (w3 +
w4),w3,w4,w5,w6,w7 ), etc. We verified that the
most plausible choice for 1®:

6 —
|{2%456_ Z Tijl(ijfl)T(mn—k)kmn ’ (26)
ijk=P(123)
Imn= P(456)

which satisfies symmetry conditions (11), does not
satisfy Eq. (25). Thus, we were unable to find any
additional conserved quantities of Eq. (5) for d, =0,
either.

3. Periodically conserved quantities of Eq. (1)

First, we rewrite Eg. (1) in the form similar to
that of Eq. (5):

1
ia, — Ed( Z)w’a, + fd123812,3walaza§ =0,
(27)

where d(z) = dy, + D(z) and a, = (1/(27))
[%  drexpl—iw7]u(r,z). We look for a periodi-
cally conserved quantity in the form (9), with f(w),
1, 1® etc. being independent of z. In Appendix
B, we show that the same results as will be obtained
below, also hold when these coefficients are periodic
functions of z (The latter case includes, in particu-
lar, the Hamiltonian of Eg. (1).) Thus, taking f(w),
I 1® etc. as being z-independent does not seem
to limit the generality of our results. We show below
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that Eq. (1) has no periodically conserved quantities
of the form (9), apart from the mass and the momen-
tum, which are, in fact, conserved exactly rather than
periodicaly. In particular, we show, at the end of
this section, that the Hamiltonian of Eg. (1) is not
periodically conserved.

Proceeding along the lines of the preceding sec-
tion, we find at the order O(a*) a condition of the
form (12) with T;,5, =1 and d, being replaced by
d(z). Then the requirement

[ d2=0 (28)

at that order yields the following equation for 1®:
1 1 A@ (P90
Ef12,34/0 dzexp| —iAf;)3, 0 d(z)dz

=i I{§)34(exp[ _idoAS?M] - 1)- (29)
In deriving the last equation, we have used an ap-
proximation

i z
aw=cwexp[—§w2fod(z’)dz’], (30)

with ¢, being independent of z at this order. The
rhs. of Egq. (29 vanishes for dyAfD,, =27 M,
where M is any integer. Hence in order for a nonsin-
gular 1 to exigt, the |.h.s. of EqQ. (29) must vanish
on any manifold of the form

w,+ w,— w3 —w, =0,

doAPs =27M, MeZ. (31)
For M = 0, this always holds, as discussed in Section
2, because f,5,=0. For M#0, fj,5 #0in gen-
eral. Moreover, it is easy to show that solutions to
Eq. (31) always exist even for M # 0, such that, e.g.,
(0, — @,)? > max(0,8mM /d,). Thus we must re-
quire that the integral on the |.h.s. of Eqg. (29) vanish.
This yields the following relation between the pa
rameters of the dispersion map:

1
Ll+_=N! (32)

where N is an arbitrary integer. In deriving Eq. (32)
we have used Eq. (2)—(4'). Thus, when condition
(32) is satisfied, a nonsingular 1 can aways be
found, and we need to proceed to the next order.
Our consideration of the order O(a®) is similar to
that in Section 2, with one exception. Namely, in

addition to the term which has the form of the I.h.s.
of Eq. (18) with T,,,, =1 and d, replaced by d(2),
one also gets a contribution from the term which
occured at the previous order (i.e. the one of the
form of the l.h.s. of Eq. (12). That lower-order term
contributes to the order O(a®), because c, in Eq.
(30), which was used in the derivation of Eq. (29),
does depend on z through terms of order O(a?) and
higher (cf. Eq. (27)). Caculation of such terms
would be a delicate task, due to the occurrence of a
logarithmically diverging phase [16], and we do not
perform it here. Instead, we use the following simple
trick. Let us denote

F(z)=

f12,34
22— d(2) A2

X exp

z
AR [ d(Z)dz } (33)

Then the z-integral over one map period of the |.h.s.
of the counterpart of Eq. (12) for Eg. (1) can be
rewritten as follows:

1
[ dz[(d8¢)22aF(2)
0
d(ciC¢5C4)
az

= — [dz[(d5)1.4 fZF(z’)dz’.

(34)
Here we have used integration by parts and the fact
that [$F(2)dz=0 (cf. Eq. (29)). Also, the notation
(d&c),, 5, is analoguous to the notation (déa);, s,
defined after Eq. (9). Now theterm d(c,c,c; ¢, )/dz
can be computed using Egs. (30) and (27). Adding
the result to the term of the form of the I.h.s. of Eq.
(18), as discussed above, we finaly arrive at the
condition at the order O(a°):

1
2Ref0 de(d80)123,456

X

‘ e
f12,6(12—6)j;) exp[ —I A&2?6(12*6)
z /" /" , S (4
Xfo d(z")dz }dz —2i I(453)345)
i 4 z /
XeXp[_ ! 454%—3)3,45/; d(z) dz’}

B 6
= — f(d50)123,456|](.2)3456

X ( exp[ —id, Aig%Asa]

-1). (35)



T.l. Lakoba / Physics Letters A 260 (1999) 68—77 73

Note that the r.h.s. of this equation is always real due
to symmetry conditions (11).

Singularities of 1® can occur on any of the
following singular manifolds:
w,tw,+w;— w,— ws— wg=0,
oA 456 =27M, MEeZ. (36)

On these manifolds, the l.h.s. of Eq. (35) is trans-
formed into the form:

|mf(d50)123,456 f123.456
, 1 1 \?
>< — —
do +D; d0 +D,

N
Edo Ai‘z‘?g,(lzs)} sin[ d, Ai‘z%(lze)]

sin
X 1
Sin[Edo Ag‘z%(lz—e)}
S L, L, 1
+8y 0 + ,
M: dy+D; dy+D, A(lé),s(lz—e)

(37)

where the integer N was defined in Eqg. (32), and
Sy o= 1for M=0and , , = 0 otherwise. In deriv-
ing expression (37), we have also used Eq. (2)—(4)
and (29). Now it sufficies to show that expression
(37) does not vanish for M =0 (i.e. on singular
manifold (20)), provided that f(w) # Aw? + Bo +
C. In fact, the term with g, , does vanish there, as
noted in the paragraph following Eq. (24). However,
the rest of the expression does not vanish on mani-
fold (20). The corresponding calculations, which re-
quire symmetrization of that term as per Eq. (22) and
then use of Eq. (24), are too cumbersome even for
Mathematica. The easiest way to verify that the term
in question does not vanish is to simply evaluate it
numerically (still with Mathematica or a similar
package) for some particular values of d, and N and
at some particular point on manifold (20). Alterna-
tively, one could expand it in the Taylor series for

smal o and subsequently convince oneself that the
result is indeed nonzero. We performed the verifica-
tion using both ways. Thus we have shown that even
with condition (32) satisfied, a nonsingular 1©® does
not exist. Hence Eq. (1) does not have additional
periodically conserved quantities for d, # O.

As in Section 2, the above analysis requires some
modification for the case d, = 0. Since that modifi-
cation is a straightforward combination of the calcu-
lations used in this and the previous sections, we do
not give its details here, but simply state the final
result. Namely, we were unable to find additional
periodically conserved quantities in this case, either.

To conclude this section, we now show that the
Hamiltonian of Eq. (1) is not periodically conserved.
The quadratic part of the Hamiltonian is:

H==fdw(%d(zyvﬁ|qu+"'- (38)

i.e. in terms of expansion (9), f(w) = d(z)w?/2. As
shown in Appendix B, the same results are obtained
for f(w) = w?/2, and hence we present the details
of our analysis for the latter form of f. We first
consider the case d,+ 0. If condition (32) is not
satisfied, then the | ® found from Eg. (29) is singu-
lar on any of the manifolds (31) with M # 0, and
therefore the Hamiltonian is not conserved aready at
order O(a*). If condition (32) is satisfied, then a
nonsingular |® does exist, and at the next order,
O(a®), we arrive at expression (37) where f 5 455 =
A, 456 To guarantee existence of anonsingular 1©,
this expression must vanish on any of the manifolds
(36). For M =0, it does indeed vanish due to the
special form of f(w). However, for M+ 0, where
f123.456 # O, it does not vanish identically. We veri-
fied this by taking random points on the following
submanifold of manifold (36):

2aM [ 27M\? 3

w;=w,=0, w3 = a + q a2+z,
0 0

1 27M 27M 27 M \? , 1

==+ , = + -=

“sT o g, T g, d ) ¢ 4

(39)

(where « is a rea parameter) and evauating the
symmetrized, as per Eq. (22), expression (37) for
various values of N and M. Thus we showed that
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the corresponding 1® is singular even for f(w) =
0?/2, and hence there exists no periodically con-
served quantity of Eq. (1) whose leading-order part
would coincide with that of the Hamiltonian. In
particular, the Hamiltonian itself is not conserved.

In the case d,=0 the analysis is modified as
follows. First of all, it easy to see that f(w) must be
identically zero. Then the first nontrivial condition
arises at the order O(a®):

foldzf( dd¢) 123456

X

z
|Ei)5—3)345eXp[ —I 4(13),6(12* 6)_/;) d(z)dz }

_ Il(ﬁg(lze)exp[ —i Agj%73)3’45/1d( Z)dz } ) =0.
0
(40)
Its obvious nonzero solution is
_iA® ]
- SPL ] 2
(—1) A&z),34

Note that at this order, we have obtained the same
result as for Eg. (5) with d,=0 (cf. Eg. (23)).
However, at the next order we aready find a differ-

ence from the case of Eq. (5). At that order, O(a®),
we obtain the following condition:

1
4
2 Re/;) dzf( dsc) 1234,5678( |§331— 5)(567 — 34)67

(41)

z z
x]’em[—iAggm_@]'d(zqdzidz (49)
0 0
- |§é%s7 —34)47(56—3)
z H 4 z /" /" /
Xfoexp[—mgs’ﬁa)svsefo d(z")dz }dz )
z
Xexp[—iAgg?s(lz—a)f d( Z’)dz’}
0

1 1
5. D, Ref(d5C)1234,5678

1(©) exp[ —i A2~ 8)] -1
567 — 34)34567 ,
( ) Afz‘?s(lz -8)

X

(42)

where 1 is given by Eq. (41). For A9y, o=
27 M, where M is anonzero integer, |® issingular,
unless the l.h.s. vanishes there. Using the above
condition for Af%g,, 5. the Lhs. of Eq. (42) is
transformed into the form:

1 1
2 D_f - D_§ Re/(d5C)1234,5678

4 e
y |25%7—34)47(56— 3)(eXp[ —I AES%S—S)&SG] - 1)
4 4
A((S()s— 3)3,56( A((sgs— 3356 T 27M )

4 C A4
|((32— 5)(567 — 34)67(9Xp[ —I 4(34),5(34 - 5)] - 1)
A3 5)( A g5 + 27 M )

(43)
Obvioudly, on the 6-dimensional manifold
W+ W, + w3+ w,— wg— wg— w;— wg =0,
A(lg),B(lZ—S) =27M#0, (44)

one has enough degrees of freedom to make expres-
sion (43) nonzero, with the only exception being the
case of a symmetric dispersion map when D, =
—D,. Note that in the latter case, 1©® does not
vanish identically, because expression (43) holds
only on manifold (44). Therefore, even if there exists
a periodically conserved quantity with | given by
Eq. (41) and 1® found from Eg. (42), it must be
different from the Hamiltonian of Eq. (1) with d, =0
(note that the latter also has f(w) # 0). We did not
investigate the possibility of existence of such a
quantity in the case of a symmetric map, because the
required calculations at the order O(al®) are ex-
tremely cumbersome.

4, Summary and discussion

The main results of this study are the following.
First, we showed (in Appendix A) that the Painleve
test fails for Eqg. (1), thus indicating that that equa-
tion is not integrable by the Inverse Scattering Trans-
form. Second, we applied the method of Zakharov
and Schulman to the reduced form of Eq. (1) in the
strong DM limit, Eq. (5), and showed that it does not
have conserved quantities other than the mass (num-
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ber of photons), the momentum, and the Hamilto-
nian. Third, using the same method, we showed that
Eq. (1) does not have periodically conserved quanti-
ties other than the mass and the momentum, which
are conserved exactly rather than periodicaly. We
note here that there was a dight difference between
the calculations for Eqg. (5) and those for Eq. (1).
While the former calculations are just the straightfor-
ward application of the Zakharov—Schulman method
to the specific equation, the latter ones required a
certain modification, which was explained in the
paragraph immediately preceding Eq. (33). Let us
also mention that our results for the case d, =0,
indicating the absence of conserved (or periodically
conserved) quantities for Egs. (1) and (5), are not
truly rigorous. Rather, we showed that for some very
plausible form of 1® and 1®, additional conserved
(or periodically conserved) quantities do not exist.
Establishing a rigorous result in that case remains an
open problem.

We also showed that when condition (32) holds,
then Eq. (1) has infinitely many quantities with
quadratic leading-order part, which are periodically
conserved up to the order O(a?) inclusively. This
fact can be interpreted as ‘approximate integrability’
in those cases where one is justified to treat the
nonlinear terms in Eq. (1) as a small perturbation.
This is precisely what occurs in the theory of the
non-return-to-zero (NRZ) data transmission in opti-
cal telecommunications. There, a logica ONE is
represented by a rectangular pulse which occupies
the entire bit slot. If there are two adjacent ONEs,
the field between them does not go to zero, in
contrast to what occurs in the soliton transmission
format. Hence the name ‘NRZ’. An important quan-
tity in optical telecommunications is the detected
pulse energy (which we called ‘mass’ or ‘ number of
photons above). Thus, since an NRZ pulse is ap-
proximately 5 times broader than the soliton which
would represent the same bit of information, then its
power (i.e. |ul?) is correspondingly lower. Therefore,
one usually treats nonlinear terms in the evolution of
NRZ pulses as a small perturbation.

One of the serious detrimental effects caused by
collisions of NRZ pulses belonging to different fre-
quency channels with frequencies w, and w, is
four-wave mixing (FWM), i.e. creation of a rela
tively small field at frequency, say, 2w, — w,,

through the nonlinearity. If in addition to the fre-
guency matching condition,

w0, tw,=0,+ 20w, - w,), (45a)

the propagation constants, 3, = d(z)w?/2, of these
four waves satisfy the relation

1 2
Edo(a’f"‘ w%_ wg_ (2&)1— wZ) )Lmap

—27M, MezZ, (45b)

then the FWM field with frequency Qw, — w,) will
grow linearly (on average) with the propagation dis-
tance [17]. Note that Eqg. (45) coincide with Eqg. (31)
above. Experimentally, one observes [17,18] sharp
peaks of the FWM field, whose locations are deter-
mined by Eq. (45b), as one varies the frequency
separation (w, — w,) (note that the lL.h.s. of Eq.
(45b) equals —dy(w, — w,)?). However, if parame-
ters of the dispersion map satisfy condition (32), then
we predict that (almost) no FWM will be observed
for any frequency separation. This conclusion, which
in our analysis is a consequence of the aforemen-
tioned ‘ approximate integrability’ of Eq. (1), is con-
firmed by the direct calculation of the FWM field
[19]. In fact, our condition (32) follows from Eg. (8)
of Ref. [19], where one hasto set N=2and o =0.
Note also that the same conclusion regarding the
absence (or, more precisely, strong suppression) of
FWM in collisions of NRZ pulses should also hold
in the strong DM regime irrespective of the exact
vaues of d, and L,, because the corresponding
equation, Eq. (5), is aso ‘approximately integrable
up to the order O(a®*).

Since condition (32) implies ‘integrability’ of Eq.
(2) only at the lowest nontrivial order (i.e., at O(a*)),
we expect that it should not be relevant for the
dynamics of DM solitons. Indeed, the latter, in con-
trast to NRZ pulses, are essentialy nonlinear objects,
for which dl terms O(a") in expansion (9) play
equally important role. Thus, DM solitons should
exhibit features of solitary waves in non-integrable
systems. One such feature is the inelastic interaction
of adjacent DM solitons (with the same central fre-
guencies), which was reported in Ref. [20]. Our own
numerical simulations of Eq. (1), performed with
condition (32) being imposed on the coefficients
D(z) and d,, showed that the interaction remains
inelastic under that condition as well.
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Moreinteresting, however, isthe problem of FWM
in collisions of DM solitons with disparate frequen-
cies. On one hand, the results of Ref. [21], where this
problem was considered for the conventiona (i.e.
NLS) solitons, suggest that a treatment based on the
same assumptions as in the NRZ case (cf. their Eq.
(4)), except that the shape of the soliton is now
explicitly accounted for, yields good agreement with
numerical simulations. On the other hand, since the
soliton width is considerably smaller than the dis-
tance between consecutive solitons in a communica-
tion channel, there is, in general, asymmetry between
the beginning and the end of the collision [22] in
systems with periodically varying dispersion. This
asymmetry, and hence the size of the FWM field,
depends on a number of parameters, such as the
pulse width, frequency separation, average disper-
sion, and lengths L, and L, (= (1 — L)) of thefiber
sections. We numericaly simulated the collision of
two DM solitons of Eqg. (1), having fixed all of these
parameters (at, respectively, T,=/1/2 (cf. Ref.
[5), v, — w,=58mw, and d,=1/175) but L,,
which we varied between 0 and 1. The dependence
of the energy of the FWM field appeared to be both
irregular and strong, with variations between the
maximum and minum values being more than two
orders of magnitude. This numerical observation,
along with the above argument involving Ref. [21],
indicate that calculation of the FWM field in colli-
sions of DM solitons is an interesting open problem.
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Appendix A. Painlevé test for Eq. (1)

Following the approach outlined, e.g., in Ref.
[23], we consider the following independent expan-
sionsfor uand v=u":

U=¢a2Uj¢j1 U=¢BZU1¢11 (A1)

j=0 j=0

where

dp=1-9(2), v=v(2). (A2
Coefficients «, B and functions u;, v;, and ¢(z) are
to be determined. Since the details of this approach
can be found, e.g., in Ref. [23], here we only give
final results obtained at each step of the calculations.
Substituting Eq. (A1) into Eg. (1), we obtain the
following condition at the leading order:

a=B=-1, uw,=—d(z). (A3)
Next, at the order O(¢$'~2) we find that the reso-
nances [23] are located at

j=-1,0,3,4. (A4)
Note that the first two resonances correspond to the
arbitrariness of ¢(z) and u,, respectively. There-
fore, we have to consider all the conditions arising at
each successive order from O(¢1 3) = 0(¢ 2) to
O(¢* %) =0(¢). At the orders O(¢ 2) through
O(¢°) we find, respectively, the following condi-
tions:

iu, di v, di

Tz a2 T T d(z) Az (AS)

1 (i d(uod(2)) uo(%)z),

u; = u;(2),

P s @ dz

ot (_id(vod(z))_u(y)z)

" 3(d(2)’ dz Ndz) J
(A6)

u; arbitrary, vg= é(ugd( z) + d?—i)j_:f)
(A7)

Finally, at the order O(¢) we find that the necessary
condition for u, and v, to exist is

1 d2d( z) dd(z) \?
—( a z))z (3uO d( z) —aZ 3u0( e )
+%—d(d§;)) ):o. (A8)

Egs. (A7) and (A8) were obtained with the Maple
symbolic calculations package. Obviously, Eq. (A8)
does not hold for the piecewise-constant dispersion
coefficient d(z). Thus Eq. (1) does not pass the
Painleve test.
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Appendix B. Coefficients in expansion (9) for
periodically conserved quantities

Here we show that all conclusions of Section 3
remain the same if instead of constant coefficients
f(w), 1@, 1©, etc., considered there, one takes
those coefficients to be periodic functions of z.
Naturally, we assume that the periodicity is that of
the dispersion map.

Consider the quantity [;(dl/dz)dz. Using Eq.
(9), where now the coefficients are functions of z,
we find:

/01%d2=fdw( f(w,z=1)la,( z=1)|2

~f(w,2=0)la,(z=0)?) + - --

1 d 2
=f0dzfdwf(w,z=0) EIawI + .-
(B1)

We have not written explicitly the terms proportional
to 1@, 1® etc., because they have exactly the same
form as the term in Eq. (B1). We have also used the
periodicity condition: f(w,z=1) = f(w,z= 0). Thus
the statement formulated at the beginning of this
Appendix is proved.
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