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Abstract

Ž .Propagation of a pulsed optical beam a train of ultrashort optical pulses inside a linear dispersive medium is studied in
the far field without making the paraxial approximation. This approach permits us to obtain analytical results that are valid
for relatively large diffraction angles. Pulse characteristics are found to be affected considerably by the combination of
diffraction and dispersion. In a weakly dispersive medium, pulses wider than a few optical cycles maintain their shape but
experience temporal and spectral shifts whose magnitude depends on the diffraction angle. When the effects of group-veloc-
ity dispersion are included, the pulse width depends not only on the diffraction angle but also on the nature of dispersion
Ž .normal versus anomalous . Much larger off-axis pulse widths are predicted in the case of anomalous dispersion. q 1999
Elsevier Science B.V. All rights reserved.

1. Introduction

With the advent of solid-state lasers capable of
w xemitting a train of ultrashort optical pulses 1 , con-

siderable attention has focused on studying how such
pulses are affected as they propagate inside a linear

w xnondispersiÕe medium 2–9 . Most studies assume a
Gaussian spatial profile for the optical beam and a
Gaussian temporal profile for the pulse shape. Ka-

w xplan has considered pulses of arbitrary shape 8 but
focused mostly on the temporal evolution of the
on-axis intensity. It was shown recently that a pulsed
Gaussian beam does not remain Gaussian on propa-

Žgation even in a linear nondispersive medium such
.as free space when pulses contain only a few optical

w xcycles 9 . Moreover, the shape of the diffracted
beam depends on temporal phase modulation or fre-
quency chirp imposed on the pulse.

An interesting question that one may ask is how
pulsed optical beams are affected when they propa-

gate and diffract in a linear dispersive medium. Of
course, dispersive broadening of optical pulses is a
well-studied topic belonging to text books and has

w xattracted renewed attention 10 with the advent of
femtosecond-pulse lasers. However, most such stud-
ies decouple the diffraction and dispersion problem
by assuming that the spatial profile of the beam does
not change during propagation or assuming that the
pulsed beam is propagating in a waveguide such as

w xan optical fiber 11 . Even when diffraction and
dispersion are considered simultaneously, it is com-
mon to employ the slowly varying envelope approxi-
mation, the use of which limits the analysis to pulses
much broader than an optical cycle. However, con-
siderable progress has been made over the last two
years. Melamed and Felsen used an asymptotic tech-
nique to study pulsed-beam propagation in the parax-
ial far-field region without making the slowly vary-

w xing envelope approximation 12 . Oughstun used the
angular-spectrum approach and analyzed the pulsed-
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beam problem in a mathematically rigorous way
w xconsidering both dispersion and attenuation 13 . Sol-

haug et al. used a similar approach to study edge-dif-
fraction of a delta-function pulse by employing the

w xLorentz model for the dispersive medium 14 .
In this paper, propagation of pulsed optical beams

in a linear dispersive medium is studied approxi-
mately without using a specific model for the disper-
sive medium. Since the slowly varying envelope
approximation is not made, the analysis is applicable
to pulses shorter than a single cycle and, in principle,
can be used to study propagation of terahertz radia-

w xtion 15–17 . However, this paper focuses on optical
pulses wider than a few optical cycles. This feature
allows us to make several assumptions that simplify
the analysis considerably. First, the pulse spectrum is
assumed to be far from any medium resonances, and

Žsignal attenuation that is necessarily frequency de-
w x.pendent in a causal dispersive dielectric 13 is

ignored. Second, we make use of the far-field ap-
proximation but avoid the paraxial approximation to
ensure that the results are valid for large far-field
angles. The general formalism is developed in Sec-
tion 2 and applied to Gaussian beams containing
pulses of arbitrary shape. Section 3 is devoted to
study the case of weakly dispersive medium for
which an analytical expression for the diffracted
field can be obtained for arbitrary pulse shapes. The
results show that diffraction leads to temporal and
spectral shifts whose magnitudes vanishes only on
axis and can be quite large even for relatively small
diffraction angles. The effects of group-velocity dis-

Ž .persion GVD are studied in Section 4 where we
show that the dispersive broadening of ultrashort
pulses depends on the diffraction angle as well as on

Ž .the nature of GVD normal versus anomalous . The
analysis predicts much larger off-axis pulse widths in
the case of anomalous GVD.

2. Diffracted field

The pulsed-beam propagation problem is quite
simple conceptually when the dispersive medium is
linear since one can consider each Fourier compo-
nent independently. Indeed, in a linear dispersive
dielectric medium, Maxwell’s equations for the elec-

Ž .tromagnetic field E r,t can be solved in the fre-
w xquency domain using the Helmholtz equation 18

2 2 ˜= qb E r ,v s0, 1Ž . Ž .Ž .
˜where E is the Fourier component of E at the

frequency v and the propagation constant b obeys
the dispersion relation

b v sn v vrc. 2Ž . Ž . Ž .
Ž .Here n v is the frequency-dependent refractive in-

dex of the dispersive medium and c is the speed of
light in vacuum. We assume that the medium is

Ž .lossless and take n v to be real. Inclusion of loss is
straightforward and does not affect the results re-
ported here qualitatively when the absorption is
nearly frequency independent over the pulse spec-
trum. The vector nature of electromagnetic field is
ignored assuming that the plane of polarization does
not change during propagation.

˜Ž .We consider the case in which E r,v is known
Ž .at the plane zs0 and Eq. 1 is solved in the region

z)0. By using the angular spectrum representation
w x18 , the diffracted field can be obtained at each
frequency v. Taking the inverse Fourier transform,
one can express the diffracted field formally in the
form of a triple integral:

1
E r ,t s A p ,q ,vŽ . Ž .HHH

2p

=exp ib pxqqyqmz y iv tŽ .
=dp dq dv , 3Ž .

Ž .where the angular spectrum A p,q,v is obtained
from the incident field at zs0 by using

b 2

˜A p ,q ,v s E x , y ,0,vŽ . Ž .HH24p

=exp yib pxqqy dx dy. 4Ž . Ž .
We use the convention that integration limits, if
unspecified, extend from y` to `. The quantity m

Ž .in Eq. 3 is defined as

1r22 2 2 2° 1yp yq if p qq F1,Ž .~ms 5Ž .
1r2¢ 2 2i p qq y1 otherwise.Ž .

Ž .Eq. 3 is formally exact and can be used for
numerical computations for an arbitrary pulsed opti-
cal beam. However, such an approach is time con-
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suming numerically because of the triple integration
and hinders physical insight. It is much more useful

Ž .in practice to solve Eq. 3 approximately by making
some reasonable assumptions. We make two simpli-
fications. First, since the integration region p2 qq2

)1 corresponds to the contribution of evanescent
waves, it can be ignored for distances z4l, where
ls2p crv is the wavelength. It should be stressed
that the neglect of evanescent waves is justified here
only because signal attenuation is taken to be negli-
gible over the entire pulse spectrum assumed to be
located far from medium resonances. If medium
losses become significant, one must follow the recent

w xanalysis of Oughstun 13 . Second, we make the
far-field approximation, valid when the propagation
distance is much larger than the diffraction length
Ž . Ž .also called the Rayleigh range . By using Eqs. 4

Ž . Ž .and 5 , the integrals over p and q in Eq. 3 can be
evaluated analytically using the method of stationary

w xphase 18 , resulting in the following expression:

cosu x y 1
E r ,t s A , ,vŽ . H ž /ir r r b

=exp ib ry iv t dv . 6Ž . Ž .
Ž 2 2 2 .1r2where rs x qy qz and u is the diffraction

Ž .angle cosuszrr . Note that we have not made the
paraxial approximation to allow for large diffraction

Ž .angles. Eq. 6 is valid under quite general condi-
tions and governs propagation of pulsed fields of
arbitrary spatial and temporal profiles.

To make further analytical progress, we assume
that the input beam incident at the plane zs0 has a
Gaussian shape. The pulse shape is still arbitrary.
More specifically, we use the following form for
˜Ž .E x, y,0,v :

x 2 qy2

Ẽ x , y ,0,v sexp y S v , 7Ž . Ž . Ž .2ž /2 a vŽ .
Ž .where a v is related to the spot size at zs0 and in

Ž .general can depend on frequency. S v is the com-
plex spectral amplitude of the pulse and is normal-

Ž . Ž .ized such that HS v dvs1. Using Eq. 7 in Eq.
Ž .4 , we obtain

b 2a2 b 2a2
2 2A p ,q ,v s exp y p qq S v .Ž . Ž .Ž .ž /2p 2

8Ž .

How does the beam waist a depends on the
frequency v? It is common to assume that a is a
constant, independent of v. This assumption holds if

Ž .the input field can be factored as E x, y,0,t s
Ž . Ž . Ž . Ž .F x, y A t , where F x, y and A t govern the0 0

beam shape and the pulse shape, respectively. How-
ever, there is some evidence in the literature on
terahertz radiation that the beam waist a may change
with the frequency v such that the diffraction length,
defined as L sba2, is the same for all frequencydiff

w xcomponents 12–16 . One may expect a similar be-
havior in other regions of the electromagnetic spec-
trum. Indeed, the beam waist in laser cavities also

y1r2 w xfollows the same v dependence 19 , making
the diffraction length L constant. For this reason,diff

we consider both cases in this paper and refer to
them as the ‘‘constant beam waist’’ and ‘‘constant
diffraction length’’ cases.

The analysis so far applies for pulses of arbitrary
duration. We now focus on the case in which the
pulses are wide enough that they contain a few
optical cycles at the carrier frequency v . By using0

Ž . Ž .Eq. 8 in Eq. 6 and introducing the pulse envelope
Ž .A r,t through

E r ,t sA r ,t exp i b ryv t , 9Ž . Ž . Ž . Ž .0 0

where b is the value of b at the carrier frequency0
Ž .v , we obtain the following expression for A r,t :0

cosu
2A r ,t s ba exp i byb ry iŽ . Ž .Ž .H 02p ir

= 1 2 2 2vyv ty b a sin u S v dv .Ž . Ž .0 2

10Ž .

The evaluation of the frequency integral in Eq.
Ž . Ž .10 requires knowledge of b v as defined in Eq.
Ž .2 . If the dispersion characteristics of the medium

Ž .are known precisely through n v , one can use them
to calculate the integral. This is the approach adopted
for studying precursors when a pulse has a sharp

w xleading or trailing edge 10 . It has also been used for
diffraction of a delta-function pulse by using a

w xLorentz model for the dispersive medium 14 . The
Ž .knowledge of the precise functional form of n v is

essential when the pulse spectrum is so wide that it
Ž .overlaps with one or more atomic resonances of the

medium. However, for pulses wider than a few
optical cycles whose carrier frequency is far from
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any medium resonances and whose shape is reac-
Ž .tively smooth no abrupt leading and trailing edges ,

the dispersive medium can be characterized by using
Ž .the Taylor expansion of b v around the carrier

w xfrequency v of the pulse 11 :0

21
b v sb qb vyv q b vyvŽ . Ž . Ž .0 1 0 2 02

q PPP , 11Ž .
Ž m m.where b s d brdv with ms0,1,2, PPP .m vsv 0

Here, b , b , etc. take into account dispersive ef-1 2

fects at progressively higher orders. Physically, b1

'1rÕ is inversely related to the group velocity,g

and b is called the GVD parameter since it takes2
Ž .into account the dispersion frequency dependence

Ž .of the group velocity. The Taylor expansion 11
should be used with caution when it becomes neces-
sary to include the third- and higher-order terms
since the approximation becomes quite poor for long
propagation distances and cannot be improved by

w xjust including more and more terms 20 .
Ž .Using Eq. 11 and introducing a new dimension-

Ž .less frequency variable fs vyv T , where T is0 0 0
Ž .a measure of the input pulse width, Eq. 10 can be

rewritten as

cosu
2A r ,t s baŽ . Ž .H

2p ir

=
b r2 12 2 2 2exp i f y b a sin uy ift22ž /2T0

=S f df , 12Ž . Ž .
Ž .where ts tyb r rT is the normalized ‘‘re-1 0

Ž .duced’’ time. Eq. 12 requires a single integration
that can be performed analytically in some special
cases and provides considerable physical insight into
the combined effects of dispersion and diffraction.

3. Nondispersive or weakly dispersive medium

We first consider the situation in which the
Ž .medium is either nondispersive b s0 or is weakly2

dispersive such that the propagation distance r<

2 < <L , where L sT r b is the so-called disper-disp disp 0 2
w xsion length 11 . In both cases, b and higher-order2

dispersion parameters can be set to zero in the
Ž .expansion 11 . As discussed earlier, one may treat

the beam waist a to be constant or frequency depen-
dent such that the diffraction length is constant. We
consider these two cases separately.

3.1. Constant beam waist

Assuming that the beam waist a does not depend
Ž .on the frequency f in Eq. 12 , we obtain

A r ,t sF r 1qd fŽ . Ž . Ž .Hcw 1

=exp yb 2a2 sin2u d fy ift S f df ,Ž .Ž .0 1

13Ž .

where

b a2cosu0 1 2 2 2F r s exp y b a sin u 14Ž . Ž .Ž .cw 022p ir

Ž .is the continuous-wave CW solution found when
the input beam is not pulsed. The dimensionless

Ž . Ž .parameter d sb r b T . The integral in Eq. 131 1 0 0

can be performed analytically for arbitrary pulse
shapes and results in the following expression:

d
A r ,t sF r 1q id A ty it , 15Ž . Ž . Ž . Ž .cw 1 0 sž /dt

Ž .where A t is the input pulse shape at the plane0

zs0 and the parameter t is defined ass

t u sb b a2 sin2urT . 16Ž . Ž .s 1 0 0

Ž .It is evident from Eq. 15 that the pulse charac-
teristics are affected considerably even when disper-
sive effects are small or negligible. In general, the
pulse shape is not preserved and is predicted to
become asymmetric because of the presence of the

Ž .time derivative in Eq. 15 . However, the parameter
Ž .y1d is quite small since d ; v T , and the asym-1 1 0 0

metric nature of the pulse is not likely to be notice-
able until pulse width is reduced below a few optical
cycles. Since such pulses have now become avail-
able, for example from mode-locked Ti:sapphire
lasers, one may be able to observe the asymmetry in
actual experiments.

For pulses for which v T 41, the pulse shape0 0

and the pulse spectrum are preserved only on axis
Ž . Ž . Ž .t s0 . Off axis u/0 , Eq. 15 shows an imagi-s

nary shift of the pulse envelope. To understand the
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meaning of such a shift, consider an unchirped
Ž . Ž 2 .Gaussian pulse for which A t sexp yt r2 .0

Since

2 2A ty it sexp y t yt r2q itt , 17Ž . Ž .Ž .0 s s s

clearly the pulse peak is shifted and is located at
tst . At the same time, the pulse spectrum iss

shifted toward the red side. The temporal and spec-
tral shifts both depend on the diffraction angle u as

Ž .indicated in Eq. 16 and vanish when us0. The
Ž .origin of spectral shift is evident in Eq. 13 , where

the amplitude of each spectral component gets multi-
plied by a u-dependent exponential factor. As a

Ž .result, high-frequency components v)v are0

slightly damped, while the low-frequency compo-
Ž .nents v-v are enhanced, shifting the spectrum0

toward the red side. Physically, low-frequency com-
ponents diffract more than high-frequency compo-
nents because of their smaller diffraction length,
resulting in an apparent red shift in the pulse spec-
trum that increases as u increases. As seen in Eq.
Ž .17 , spectral changes also result in a shift in the
intensity peak of the diffracted pulse.

3.2. Constant diffraction length

Assuming that the beam waist a depends on v

such that the diffraction length, L sba2, is con-diff
Ž .stant and using this fact in Eq. 12 , we obtain the

simple result

A r ,t sF r A ty it , 18Ž . Ž . Ž . Ž .cw 0 s

where the u-dependent parameter t is now defineds

as

t u sb L sin2ur 2T . 19Ž . Ž . Ž .s 1 diff 0

Ž . Ž .A comparison of Eqs. 15 and 18 shows two
main differences in the case of constant diffraction
length. First, the pulse shape does not change no
matter how small the pulse becomes since the time-
derivative term is absent. Second, the temporal and
spectral shifts are reduced by a factor of two if we

2 Ž .interpret b a in Eq. 16 as the average diffraction0

length.
The diffraction-induced temporal and spectral

shifts can be substantial even at angles not too far
from the axis of propagation. They can be observed

Ž .in a nondispersive medium or even free space . As

an example, t ;1 for us28 if we use T s50 fs,s 0

L s1 cm, Õ s1rb s2=108 mrs and l sdiff g 1 0

800 nm, assuming a Ti:sapphire laser source. Even
Žfor such relatively wide pulses full width at half

.maximum more than 80 fs , one can expect a spec-
tral shift comparable to 1rT , and a shift in the0

intensity-peak position comparable to T when mak-0

ing measurements 28 off-axis. Such changes should
be easily observable in practice. The pulse width
remains unaffected since the effects of GVD have
been neglected in this section.

4. Effects of group-velocity dispersion

When the effects of GVD are included by retain-
Ž .ing the b term in Eq. 11 , the frequency integral in2

Ž .Eq. 12 cannot be performed in a closed form
except for some specific input pulse shapes. We
again consider the two cases of frequency-indepen-
dent and frequency-dependent beam waists sepa-
rately.

4.1. Constant beam waist

Assuming that the beam waist a does not depend
Ž .on the frequency f in Eq. 12 and taking a Gaussian

Žshape for the pulse spectrum corresponding to a
.Gaussian-shaped input pulse , we obtain the follow-

ing result:

21 d d d2
A r ,t sA r 1q id yŽ . Ž .(cw 1 2ž /b dt 2 dt

=

2
ty itŽ .s

exp y , 20Ž .ž /2b z ,uŽ .
where

2 2b z ,u s1q b asinu d qdŽ . Ž . Ž .0 2 1

y ib zsecu d , 21Ž . Ž .0 2

and

b b1 2
d s , d s . 22Ž .1 2 2b T b T0 0 0 0

Ž .Eq. 20 shows how the combination of diffrac-
tion and dispersion affects a Gaussian pulse as it
propagates in a linear dispersive medium. In general,
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pulse shape does not remain Gaussian because of
Ž .time derivatives appearing in Eq. 20 . However,

both d and d are quite small unless the pulse1 2

becomes so short that it lasts for only a few optical
cycles. For Gaussian pulses for which v T 41,0 0

one can neglect the time derivatives appearing in Eq.
Ž .20 . Such Gaussian pulses remain approximately
Gaussian on propagation although they experience
temporal and spectral shifts, become chirped, and
their width increases. The broadening factor B, de-
fined as the increase in the pulse width relative to the
input width, is found to be

1r22 2z sec u
B z ,u s hq , 23Ž . Ž .2ž /hLdisp

where h is given by

Ldiff 2h u s1qsgn b sin u , 24Ž . Ž . Ž .2 Ldisp

and the diffraction and dispersion lengths are defined
as

2 2 < <L sb a , L sT r b . 25Ž .diff 0 disp 0 2

We also assumed d qd2 fd since d2rd -10y4
2 1 2 1 2

for most dispersive media.
The broadening factor B reduces to the well-

w x w Ž .2 x1r2known standard result 11 , Bs 1q zrL ,disp

only for the on-axis case corresponding to us0. In
the off-axis case, pulse width depends not only on u

but also on the relative magnitudes of the dispersion
and diffraction lengths and the sign of b . Fig. 12

shows the broadening factor B as a function of u for
two values of the normalized propagation distance

Ž .ZszrL in the cases of normal dashed line anddisp
Ž .anomalous solid line GVD assuming that the

diffraction and dispersion lengths are equal. The
diffracted Gaussian pulse is wider off axis in both
cases but the broadening factor is quite different.
Somewhat surprisingly, at a fixed far-field angle,
pulse width is larger in the case of anomalous disper-
sion. In fact, the off-axis enhancement of the pulse
width is barely noticeable in the normal-GVD case
but can exceed a factor of two in the case of
anomalous GVD. Although this prediction is made
here using Gaussian pulses as an example, it holds
qualitatively for other common pulses shapes.

Fig. 1. Broadening factor B as a function of far-field angle u for
Ž .two values of Zs zrL in the case of normal dashed line anddisp

Ž .anomalous solid line dispersion. The spot size of the input
Gaussian pulse is assumed to be the same for all frequency
components. The pulse and beam parameters are chosen such that
the diffraction and dispersion lengths are equal.

4.2. Constant diffraction length

Assuming that the beam waist a depends on v

such that the diffraction length L sba2 is con-diff
Ž .stant in Eq. 12 and using a Gaussian spectrum, we

obtain the simple result
21 ty itŽ .s

A r ,t sA r exp y , 26Ž . Ž . Ž .(cw ž /b 2b z ,uŽ .
Ž .where b z,u is now given by

b z ,u s1qb L sin2u d r2y ib zsecu d .Ž . 0 diff 2 0 2

27Ž .
Ž . Ž .A comparison of Eqs. 20 and 26 shows two main

differences in the case of constant diffraction length.
First, the pulse shape remains Gaussian no matter
how small the pulse becomes since the time-deriva-
tive terms are absent. Second, the broadening factor

Ž .is different because the second term in Eq. 27 is
one half of that found for the case of constant width.
In fact, the broadening factor is still given by Eq.
Ž .23 if h is redefined as

Ldiff 2h u s1qsgn b sin u . 28Ž . Ž . Ž .2 2 Ldisp
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Fig. 2 shows the broadening factor B as a func-
tion of u for two values of ZszrL in the normaldisp
Ž . Ž .dashed line and anomalous solid line GVD cases

Žunder conditions identical to those of Fig. 1 L sdiff
.L . A comparison of Fig. 1 and Fig. 2 shows adisp

qualitatively similar behavior but substantial quanti-
tative differences. More specifically, the enhance-
ment in pulse width is lower in the case of constant
diffraction length. Note also that in both cases, the
off-axis enhancement factor is barely noticeable until
the far-field diffraction angle exceeds 108. This is the
reason why the paraxial approximation was avoided
in this paper. The results shown in Fig. 1 and Fig. 2
are valid for large diffraction angles as long as
z4L .diff

4.3. Higher-order dispersiÕe effects

Ž .As mentioned earlier, the Taylor expansion 11
should be used with caution when it becomes neces-
sary to include the third- and higher-order terms. For
pulses shorter than 1 ps but wide enough to contain
several optical cycles, one may include the cubic
term in the Taylor expansion provided certain condi-

w xtions discussed in Ref. 20 are satisfied. In that case,
it is no longer possible to carry out the frequency

Ž .integral in Eq. 12 analytically, and one must resort

Fig. 2. Same as in Fig. 1 except that the spot size of the input
Gaussian pulse depends on frequency such that the diffraction
length is the same for all frequency components of the pulse.
Solid and dashed lines correspond to the cases of anomalous and
normal dispersion, respectively.

Ž .to numerical simulations. However, Eq. 12 remains
useful since it involves only a one-dimensional inte-

Ž .gration, in contrast with Eq. 12 involving a three-
dimensional integration, that can be performed easily

Ž .using the fast-Fourier-transform FFT algorithm. An
additional advantage of the numerical approach is
that optical pulses of arbitrary shape can be consid-
ered.

As an example, consider the propagation of ultra-
short optical pulses through a silica glass slab. Dis-

Žpersive properties of silica glass are well known see,
w x.for example, Section 2.3 of Ref. 11 . In fact, the

wavelength dependence of the refractive index for
fused silica is well approximated by the the Sell-

w xmeier equation 21

3 Bj2n l s1q , 29Ž . Ž .Ý 2 21yl rljjs1

where l is a resonance wavelength and B is thej j

corresponding oscillator strength. The parameters Bj

and l are determined empirically from experimentalj
Ž .data and are found to be for fused silica B s1

0.6961663, B s0.4079426, B s0.8974794, l s2 3 1

0.0684043 mm, l s 0.1162414 mm, and l s2 3

9.896161 mm. One can use this functional form in
Ž .Eq. 10 and include dispersive effects to all orders

for pulses of arbitrary shape. In practice, it is often
sufficient to include dispersive effects only up to
third order for pulses as short as 20 fs in the wave-

Ž .length region near 1 mm. In that case, Eq. 12 can
be written as

L cosudiff
A r ,t sŽ .

2p ir

=
ib r f 2 ib r f 3

2 e 3 e
exp q y it fH 2 3ž /2T 6T0 0

=S f df , 30Ž . Ž .
2Ž .where r szsecuq isin u L r2. The frequencye diff

dependence of spot size was included assuming a
constant diffraction length. This equation can be
used for pulses of arbitrary shape. The main effect of
third-order dispersion for both on- and off-axis mea-
surements is to distort the pulse shape such that it
becomes asymmetric and develops an oscillatory tail.

w xSince these effects are well known 11 , numerical
results are not given here.
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Ž .In Eq. 30 , the parameters b and b vary with2 3

wavelength and have typical values b sy202

ps2rkm and b s0.1 ps3rkm near 1.55 mm. Since3
Ž .the GVD is anomalous negative b for wave-2

lengths larger than 1.27 mm, but normal otherwise, a
silica glass slab is an ideal testing ground for verify-
ing the prediction that off-axis pulse width depends
on the nature of chromatic dispersion. One can use a
Ti:sapphire laser capable of emitting femtosecond
pulses at 780 nm, and the second-harmonic-genera-
tion technique can provide femtosecond pulses near
1.56 mm. As an example, both diffraction and dis-
persion lengths are about 1 cm for a pulsed optical

Ž .beam with T s50 fs and a v s50 mm. Propaga-0 0

tion over a distance of 10 cm or show should show
significant differences between the normal- and
anomalous-dispersion regimes when pulse shapes and
spectra are measured off axis.

5. Concluding remarks

This paper has considered propagation of a pulsed
optical beam in a linear dispersive medium. The

Žinput beam is initially Gaussian in transverse direc-
.tions but consists of a train of ultrashort optical

pulses of arbitrary shape. The propagation problem is
solved analytically by using the angular spectrum
representation of electromagnetic fields. The analysis
is simplified considerably making the far-field ap-
proximation but the paraxial approximation is
avoided. This approach permits us to obtain analyti-
cal results that are valid for relatively large diffrac-
tion angles. Pulse characteristics are found to be
affected considerably by the combination of diffrac-
tion and dispersion. They also depend on whether the
spot size of the input beam is constant or depends on
the frequency. We have considered both cases and
compared the results.

In a weakly dispersive medium, pulses wider than
a few optical cycles maintain their shape but experi-
ence temporal and spectral shifts whose magnitude
depends on the diffraction angle. When the effects of
group-velocity dispersion are included, the pulse
width depends not only on the diffraction angle but

Žalso on the nature of GVD normal versus anoma-
.lous . Much larger off-axis pulse widths are pre-

dicted for the case of anomalous GVD. We discuss
the effects of third-order dispersion briefly and con-
sider how a slab of silica glass can be used to verify
the pulse-width dependence on the nature of GVD
by using femtosecond pulses obtained from a Ti:sap-
phire laser.

Acknowledgements

The author thanks Dr. Hong Guo for a critical
reading of the manuscript. The research is partially
supported by the National Science Foundation, USA.

References

w x Ž .1 I.N. Duling III Ed. , Compact Sources of Ultrashort Pulses,
Cambridge University Press, New York, 1995.

w x Ž .2 I.P. Christov, in: E. Wolf Ed. , Progress in Optics, vol. 29,
Elsevier Science, Amsterdam, 1991, Chap. 3.

w x Ž .3 A. Federico, O. Martinez, Opt. Commun. 91 1992 104.
w x4 M. Kampe, U. Stamm, B. Wilhelm, W. Rudolph, J. Opt. Soc.

Ž .Am. B 9 1992 1158.
w x Ž .5 R.W. Ziolkowski, J.B. Judkins, J. Opt. Soc. Am. A 9 1992

2021.
w x6 Z.L. Horvath, Z. Benko, A.P. Kovacs, H.A. Hazim, Z. Bor,´ ´

Ž .Opt. Eng. 32 1993 2491.
w x7 Z. Wang, Z. Zhang, Z. Xu, Q. Lin, Opt. Commun. 123

Ž . Ž .1996 5; IEEE J. Quant. Electron. 33 1997 566.
w x Ž .8 A.E. Kaplan, J. Opt. Soc. Am. B 15 1998 951.
w x Ž .9 G.P. Agrawal, Opt. Commun. 157 1998 52.

w x10 K.E. Oughstun, G.C. Sherman, Electromagnetic Pulse Propa-
gation in Causal Dielectrics, Springer-Verlag, New York,
1994.

w x11 G.P. Agrawal, Fiber-Opt. Commun. Systems, 2nd ed., Wiley,
New York, 1997.

w x Ž .12 T. Melamed, L.B. Felsen, J. Opt. Soc. Am. A 15 1998
1268; 1276.

w x Ž .13 K.E. Oughstun, Pure Appl. Opt. 7 1998 1059.
w x14 J.A. Solhaug, J.J. Stamnes, K.E. Oughstun, Pure Appl. Opt.

Ž .7 1998 1079.
w x15 E. Budiarto, N.-W. Pu, S. Jeong, J. Bokor, Opt. Lett. 23

Ž .1998 213.
w x Ž .16 S. Feng, H.G. Winful, R.W. Hellwarth, Opt. Lett. 23 1998

385.
w x17 J. Bromage, S. Radic, G.P. Agrawal, C.R. Stroud Jr., P.M.

Ž .Fauchet, R. Sobolewski, J. Opt. Soc. Am. B 15 1998 1953.
w x18 L. Mandel, E. Wolf, Optical Coherence and Quantum Optics,

Cambridge University Press, New York, 1995, Chap. 3.
w x19 O. Svelto, Principles of Lasers, 4th ed., Plenum, New York,

1998, Chap. 5.
w x Ž .20 K.E. Oughstun, H. Xiao, Phys. Rev. Lett. 78 1997 642.
w x Ž .21 I.H. Malitson, J. Opt. Soc. Am. 55 1965 1205.


