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Influence of the Raman effect on dispersion-managed solitons
and their interchannel collisions
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We calculate the self-frequency shift experienced by a soliton in a dispersion-managed fiber that is due to the
Raman effect, as well as the energy and frequency shifts that result from a collision of such solitons with
different wavelengths. We f ind that dispersion management suppresses both types of frequency shift but does
not signif icantly affect the energy shift that is accumulated over a large propagation distance. The latter
shift may represent a potential problem for wavelength-division-multiplexed systems with several gigabits per
second in a single channel.  1999 Optical Society of America
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As the demand for an increased bit rate in optical fiber
communications grows, pulses as short as 5 ps (or even
shorter) must be used. For such pulses the Raman ef-
fect represents a small but nonnegligible perturbation.
Here we use a recently developed technique1 to study
the effect of that perturbation on (i) a single dispersion-
managed (DM) soliton and (ii) the collision between two
DM solitons in different wavelength channels.

The equation for an optical pulse in the presence of
the Raman effect is
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where the notation is the same as in Ref. 2.
Equation (1) is for the case of an idealized lossless
fiber. We show below that periodically compensated
fiber loss changes our main results only in an insignifi-
cant way.

By use of the following nondimensionalization of
variables, z ­ ZyLmap, e ­ gP0Lmap, t ­ tysjk2
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Here Lmap is the period of the dispersion map, k1, 2
00

and L1, 2 are, respectively, the dispersion coefficients
and the lengths of the two sections in one cell of
the map sL1 1 L2 ­ Lmapd, P0 is the input peak
power, the average dispersion is eD0 ­ 2sk1

00L1 1

k2
00L2dLmapysjk1

00 2 k2
00jL1L2d, and the local dispersion,

Dszd, is defined accordingly to have zero average over
the map cell:

R1
0 Dszddz ­ 0 (cf. Ref. 1). The local

dispersion is assumed to be much greater than both
the average dispersion and the nonlinearity; hence
e ,, 1. In addition, the Raman effect is an even
smaller perturbation for a 5-ps pulse; hence m ,, 1.

When m ­ 0, Eq. (2) has a pulse solution, referred
to as a DM soliton, that is expressable as an infinite
sum of Hermite–Gaussian harmonics.3 When 0 ,
0146-9592/99/120808-03$15.00/0
m ,, 1, with an accuracy of ,5%, the evolution of
the perturbed DM soliton could be approximated by a
chirped Gaussian1:
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where D ; Dsz0d ­ 2sgnsk2
00 2 k1

00dy2 1
Rz

0 Dsz0ddz0,
j ­ ft 2 tcszdgyfT0s1 1 D2yT0

4d1/2g, tcszd ­ 2v0sD 1

D0z1d, and C ­ j2Dys2T0
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the notation z0 ; z and z1 ; ez for the fast and
the slow variables, respectively.1 Thus any function
f szd is to be considered as f sz0, z1, . . .d. We ignore the
soliton’s center coordinate and the z-dependent phase
as inessential to this analysis.

When m ­ 0, the parameters T0, a0, and v0 are, re-
spectively, the DM soliton’s minimum width, maximum
amplitude, and frequency. They are independent of
both z0 and z1; in addition, a0 may be taken to be real.
We define the so-called strength S of the dispersion
map as S ­ 1ys2T0

2d. In physical units,
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where tFWHM is the pulse width at half-maximum
and kav

00 ­ sk1
00L1 1 k2

00L2dyLmap. In the Gaussian
approximation the average dispersion is related to the
soliton parameters by3
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where I sSd ­ 2ys1 1 S2d1/2 2 flnhs1 1 S2d1/2 1 SjgyS.
Note that I sSd ­ 0 for S ø 3.3.

When 0 , m ,, 1, the following slow evolutions of the
soliton parameters occur1:
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Here emR denotes the perturbation that appears on
the right-hand side of Eq. (2). The quantities Rn, n ­
0, 1, . . . , are the expansion coefficients of R over the
Hermite–Gaussian basis1:
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where Hnsjd are the Hermite polynomials and the
phase, C, is given after Eq. (3). The first of Eqs. (6)
gives the slow evolution of the soliton’s energy, E ;
sa0

2T0d, which is the physical quantity measured by the
optical receiver. Using Eq. (7), we obtain R0 ­ 0 and
R1 is purely real; thus the frequency is the only DM
soliton parameter that is affected by the Raman effect:
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In dimensional units, Eq. (8) is rewritten as follows:
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In the limit of the uniform fiber sS ! 0d, Eq. (9) re-
duces (within the above-noted 5% accuracy) to the well-
known expression for the self-frequency shift of the
nonlinear Schrödinger soliton.4 As the DM strength
increases, the frequency shift is suppressed owing
to the increase of the pulse-stretching factor, s1 1
S2d1/2.1 In other words, the Raman effect operates
most effectively in those spans in which the soliton is
narrower. These spans are shorter for stronger maps,
and hence the Raman self-frequency shift is sup-
pressed by dispersion management.

Now let us turn to a collision of solitons u1 and u2
that propagate in different channels. We assume that
their widths (and hence the resulting DM strengths)
are the same and that their respective central frequen-
cies, 2v0 and v0, are separated by Dv ; 2v0 .. 1.
In general, because of third-order dispersion, solitons
u1 and u2 will see different average dispersions, eD01
and eD02, respectively. Hence, from Eq. (5), their am-
plitudes, a01 and a02, will also be different. Below we
calculate the energy and frequency shifts of each soli-
ton that result from the collisional Raman effect. It
should be noted that the analogous problem for the
nonlinear Schrödinger solitons has already been stud-
ied.5,6 There it was found that the energy shift of each
soliton was independent of the frequency separation
Dv, whereas the frequency shift scales as Dv21. In
this Letter we arrive at similar conclusions for DM
solitons.

We substitute u ­ su1 1 u2d (thus neglecting any
radiation) into Eq. (2) and obtain for un sn ­ 1 or 2d an
equation of similar form on the left-hand side, and the
right-hand side is replaced with

ef22unju32nj2 1 munsjunj2dt 1 msunju32nj2dt

1 munu32nsup
32ndtg . (10)
The first term is the interchannel collisional term.7 – 9

The second term is the self-Raman effect considered
above. The last two terms describe how the Raman
effect inf luences the soliton parameters during a col-
lision. The explicit form of the relevant part of this
perturbation, for the first soliton is
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where the subscripts 1 and 2 denote the quantities
pertaining to the first and the second solitons, respec-
tively, j1 ­ sj1 1 j2dy2, and dj ­ sj1 2 j2d. Using
the expression for j that is found below Eq. (3), we find
that dj ­ 2f2v0Dsz0d 1 Vz1gyhT0f1 1 D2sz0dyT0

4g1/2j,
where V ­ v0sD01 1 D02d and we have explicitly indi-
cated the dependence of dj on both the fast and the
slow evolution variables. Now since we are interested
only in the total shifts, dEyE and dv0, during the col-
lision, we need to integrate Eqs. (6) over z1. Thus the
final answer will involve two z integrations, the in-
ner one over z0 [cf. Eq. (7)] and the outer one over z1.
Since z0 and z1 are treated as independent variables by
the method of multiple scales, we can reverse the order
of the integrations.9 Then all integrals can be evalu-
ated explicitly. Assuming a complete collision (i.e.,
where the pulses are well separated before and after
the collision, and hence the integration over z1 is from
2` to `), we obtain for the first soliton
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where we have used Eq. (5). For the second soliton,
we simply change the sign in Eq. (12) and replace
D02 with D01 in the numerators of both equations.
Equations (12) and (13) reduce to the results for the
uniform fiber5,6 when S ! 0.

It is easy to understand the increase of the energy
and frequency shifts in Eqs. (12) and (13) that oc-
curs with the increase of the DM strength [recall that
I sSd ­ 0 for S ø 3.3]. As is well established,7 ow-
ing to the periodically varying dispersion the centers
of the DM solitons zigzag about one another, result-
ing in multiple crossings during a complete collision.
The Raman energy and the frequency shifts from the
individual crossings accumulate and add up (in con-
trast with the non-Raman interchannel collisional fre-
quency shifts,7,9 which alternate in sign and thus tend
to cancel). Thus the total shifts from a complete col-
lision are enhanced compared with those for a single
crossing. We can estimate this enhancement factor
by the number of such crossings in a complete colli-
sion. The latter number is of the order of the ratio of
the DM soliton’s instantaneous and average velocities,
s2v0dyV , SyfeI sSdg, which gives the I sSd dependence
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in Eqs. (12) and (13). (The factor 1ye is absent there
owing to our definition of m.) When the average dis-
persion is very low fI sSd ø 0g the upper limit of the in-
tegration in Eqs. (12) and (13) is not infinity but rather
depends on z. In that case the energy and frequency
shifts both grow linearly (on average) with z.

We also verif ied the validity of Eqs. (8) and (12) by
numerically solving Eq. (2) with e ­ 0.2, L1 ­ L2 ­
1y2, a0 ­ 1, and D01 ­ D02 determined from Eq. (5).
We considered four sets of parameters: sS ­ 0.5, m ­
0.05d, sS ­ 1, m ­ 0.0125d, sS ­ 1.5, m ­ 0.008d, and
sS ­ 2, m ­ 0.003d. As we increased S, we decreased
m to keep the ratio dEyE from becoming too large. For
sets 1, 2, 3, and 4 of S and m, Eq. (12) appears to overes-
timate the numerical values by 3%, 2%, 5%, and 6.5%,
respectively. Equation (8) for the self-frequency shift
underestimates the numerical values by approximately
5–6% in all four cases. The frequency shifts given by
Eq. (13) could not be resolved in our numerical simula-
tions, because their magnitudes were below our spec-
tral resolution, which was 2pys800 T0d.

Let us now discuss how a periodically compensated
fiber loss would affect these results. Its effect can be
included in Eq. (2) by multiplication of the nonlinear
terms by a periodic function Gszd,1 with

R1
0 Gszddz ­

1. Calculations analogous to those presented above
yield the following: First, Eq. (8) is modified by only
a numerical factor of order 1. Second, Eqs. (12) and
(13) do not change their form, although the explicit
expression for I sSd changes slightly.1 We can explain
this invariance of the energy and frequency shifts
with respect to the form of Gszd by simply noting
that a collision of DM solitons occurs over many
amplifications stages, and therefore the loss-induced
periodic variations of the pulse power are smeared out.

Now, in a DM transmission line of length z, there
would occur approximately N ­ zyzbc complete col-
lisions between any two channels, where zbc is the
minimum distance between interchannel collisions.
Obviously, zbc , 8T0yseVd, where we assume the tim-
ing window to be ,8 sø5 3 2

p
ln 2 d Gaussian widths of

each pulse and their relative velocity to be V ø 2ev0D0.
Using Eq. (5), we obtain the following estimate for
the number of collisions: N , ezI sSd s2v0T0dys8

p
2 d.

Assuming that the spectral separation between two
neighboring channels is ,5 spectral widths of each
pulse, whence 2v0T0 ­ 5,2 and summing over M 2

1 channels (if the total number of channels is M),
we find that a DM soliton in the channel with the
lowest or the highest wavelength has approximately
s1y2dezI sSdM sM 2 1dy4 collisions (the factor 1y2 in
front of e accounts for the probability of having a soli-
ton in each time slot). Multiplying this number by the
right-hand side of Eq. (12), we find that the relative
shift of the pulse energy induced by the Raman effect
in all the collisions can be as large asµ

dE
E

∂
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, gP0ZM sM 2 1d
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, (14)

in dimensional units. This result does not depend on
the DM strength because neither does the total number
of interchannel soliton crossings. As an example, for a
pulse with the peak power P0 ­ 2 mW, tFWHM ­ 5 ps,
and for typical values2 g ­ 2 W21 km 21, tR ­ 5 fs,
relation (14) yields an energy shift that is close to 50%
for Z ­ 104 km and M ­ 4 channels.

For the frequency shift it is more important to es-
timate the relative timing jitter between two neigh-
boring solitons than the total frequency shift of a
single soliton.10 Thus a critical difference arises be-
tween the DM case and that of a uniform, periodi-
cally amplified fiber. In the latter a relative frequency
shift of two consecutive solitons could differ consid-
erably since, in principle, each soliton can experience
most of its collisions either just before or just after
the amplifiers. Hence the maximum timing jitter is
roughly proportional to the frequency shift accumu-
lated over distance z. In a DM system, as noted above,
the collision is smeared out over many amplif ication
stages, and hence the relative frequency shift between
two consecutive solitons can differ, at most, by the fre-
quency shift that occurs over one collision.10 The re-
sulting timing jitter is then estimated as dv0zbc. For
Lmap ­ 40 km, S ­ 2, and with all the other parame-
ters the same as above, this estimate yields timing jit-
ter of less than 10% of the timing window. As this
value is independent of the transmission distance [pro-
vided that z .. zbc, which holds unless the average
dispersion is too close to zero], we conclude that the
collisional Raman frequency shift does not present
a serious problem for (unfiltered) DM systems with
many wavelength channels. However, the correspond-
ing energy shifts can indeed present a problem for such
systems.
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