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We present a comprehensive study of the effects of third-order dispersion (TOD) on dispersion-managed (DM)
solitons. The two main effects of TOD are creation of asymmetry of the DM soliton’s profile and generation of
continuum radiation. Considering these two effects, we derive a conservative bound on the magnitude of TOD
below which it will not have a significant detrimental effect on DM solitons over transoceanic distances. We
also calculate the shifts in the DM soliton’s position and central frequency that are due to TOD. Finally, we
discuss a novel possibility of observing a nonradiating soliton in DM systems with TOD. © 1999 Optical So-
ciety of America [S0740-3224(99)00709-2]
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1. INTRODUCTION
It has been shown in many recent studies (see, e.g., Refs.
1–14 and references therein) that the dispersion manage-
ment technique can significantly improve the perfor-
mance of soliton-based telecommunication systems. In
its simple form, the dispersion management technique
consists of using a periodic dispersion map such that each
period is composed of two optical fibers of generally differ-
ent lengths and opposite types of group-velocity disper-
sion (GVD). Such a dispersion map provides high GVD
locally while keeping the average dispersion relatively
low. The most advantageous regime appears to be that
of strong dispersion management, for which the average
GVD is much less than the local GVD. In this regime the
effect of third-order dispersion (TOD) can become quite
appreciable, especially as solitons become shorter with in-
creasing bit rate. Surprisingly, the effect of TOD on
dispersion-managed (DM) solitons has not yet been stud-
ied systematically. In Refs. 3 and 4 it was briefly men-
tioned that numerical simulations did not show splitting
of a DM soliton when a sufficiently weak TOD was in-
cluded. In experimental studies5 it was noted that the
average TOD in the dispersion map should be minimized
by choice of fiber sections whose dispersion slopes (nearly)
compensate for one another. References 6 and 7 pre-
sented numerical evidence that TOD can reduce long-
term oscillations of a quasi-stationary DM soliton. The
need to minimize the average TOD coefficient in nonsoli-
ton dispersion-management systems was established in
Ref. 8.

We present a comprehensive study of the effects of
TOD on a single DM soliton. These effects are similar,
with one exception, to the corresponding effects in the
well-understood case of a uniform-dispersion fiber. Spe-
cifically, we find that the TOD (i) changes the DM soli-
ton’s velocity, (ii) leads to emission of continuum radia-
tion by the soliton (see, e.g., Refs. 15–17 and references
therein), and (iii) makes the soliton’s shape asymmetric.
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We show that this asymmetry becomes more pronounced
as the strength of the dispersion map increases. More-
over, we find that, in a fiber with periodically compen-
sated loss, TOD leads to a continuous shift of the DM soli-
ton’s frequency. It should be emphasized that this
frequency shift occurs only in fibers with both dispersion
management and periodic compensation of the loss. In
an idealized lossless fiber, or in a fiber with uniform dis-
persion, this shift vanishes.

The body of this paper is organized as follows: In Sec-
tion 2 we present the generalized nonlinear Schrödinger
(NLS) equation that governs the soliton evolution in opti-
cal fibers with both dispersion management and TOD.
This equation is solved in Section 3 by use of an expan-
sion of the DM soliton over a basis of Hermite–Gaussian
(HG) components.9,10 In Subsection 4.A we quantify the
soliton’s asymmetry by estimating the magnitude of its
largest HG component that causes that asymmetry.
Subsequently we derive an analytical bound on the TOD
coefficient b3 for which the energy of that HG component
is not to exceed a certain small value, which we arbi-
trarily set to 1% of the total DM soliton energy. In Sub-
section 4.B we derive the expressions for the soliton posi-
tion and frequency shifts. In Subsection 4.D we compare
our analytical predictions with the results of direct nu-
merical simulations. Subsection 4.C contains the main
result of our study. First we show that, for the same
value of b3 that guarantees that the energy in the largest
symmetry-breaking HG component is below the threshold
chosen, the energy of the TOD-induced continuum radia-
tion from the soliton is, in the generic case, still quite con-
spicuous. We then analyze how much further one should
decrease b3 to make the energy of the continuum radia-
tion fall below the same threshold (for realistic distances
of propagation). From these considerations we obtain a
conservative upper bound on b3 that can be tolerated in
real systems. We emphasize that such a bound is ge-
neric. That is, there can be isolated values of b3 for
1999 Optical Society of America
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which the continuum is not generated, at least asymptoti-
cally for large propagation distances. This effect is in
stark contrast to that for a uniform-dispersion fiber and
occurs because of a special structure of the DM soliton’s
power spectrum. This issue is discussed in Section 5,
where the summary of our results is also presented.

2. GENERALIZED NONLINEAR
SCHRÖDINGER EQUATION
The basic equation that governs propagation of an optical
pulse in a fiber and includes the effects of both the GVD
and TOD can be written as18
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where bm 5 (dmb/dvm)v5v0
with m 5 1, 2, 3 to take into

account dispersive effects at progressively higher orders.
Physically, b1 [ 1/vg is inversely related to the group ve-
locity, and b2 is called the GVD parameter because it
takes into account the dispersion of the group velocity.
The effects of TOD are included through b3 . Parameters
b2 and b3 are related to the dispersion coefficient D and
its slope dD/dl by
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where l is the operating wavelength and c is the speed of
light. For most fibers, the first term in the expression for
b3 is much less than the second term, whence

b3 ' S l2

2pc D
2 dD
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. (28)

Parameter g in Eq. (1) is the nonlinearity coefficient, and
the effect of fiber loss and its periodic compensation is in-
cluded through the parameters a and g(z), respectively.
Varying the form of a and g(z), we can study the case of
an idealized lossless fiber as well as the cases of lumped
and distributed amplification. In a DM fiber, b2(Z) is a
piecewise-constant, periodic function with values b21 and
b22 in the two sections of the dispersion map. The
lengths of these two sections are L1 and L2 , respectively,
and L1 1 L2 5 Lmap , where Lmap is the period of the
map.

It is common to introduce normalized variables and
write Eq. (1) in a dimensionless form. We introduce new
variables as

z 5 Z/Lmap , t 5 ~T 2 b1Z !/TDM ,

u 5 A expF1/2E
0

Z

g~Z8!dZ8 2 1/2aZG Y AP0, (3)

where TDM is a time-scaling parameter chosen such that

TDM 5 ~ ub21 2 b22uL1L2 /Lmap!1/2. (4)

Parameter P0 is a reference power used for normalization
and equals the peak power in a lossless fiber. Its relation
to the average pulse power or to the pulse energy in a fi-
ber with periodically compensated loss is specified after
Eq. (14) below.

In terms of the normalized variables z, t, and u we ob-
tain the following nondimensional form of the NLS equa-
tion:
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where the periodic coefficient

G~z ! 5 exp $Lmap@*0
z g~z8!dz8 2 az#%

accounts for weakening of the nonlinear effects as a result
of the fiber loss. The dimensionless parameters e and m
are defined as

e 5 gP0Lmap , m 5 b3 /~6gP0TDM
3!. (6)

The average GVD, eD0 , is introduced through

eD0 5 2
~b21L1 1 b22L2!Lmap

ub21 2 b22uL1L2
, (7)

whereas the periodic part of the GVD coefficient, D(z), in
each period of the dispersion map varies as

D~z ! 5 H sgn~b22 2 b21!Lmap /L1 0 , z , L1 /Lmap

2sgn~b22 2 b21!Lmap /L2 L1 /Lmap , z , 1
.

(8)

The local GVD, D(z), is assumed to be much greater than
both the average GVD, eD0 , and the nonlinearity, which
implies that e ! 1. Thus, in the absence of TOD, the
strong local GVD determines the functional form of the
DM soliton’s shape (see below), and the weaker average
GVD and nonlinearity provide the relation between the
amplitude and the width of a stationarily propagating
soliton. To carry out the perturbation theory when TOD
is included, we assume that its effect on the DM soliton is
even smaller than that of the average GVD and nonlin-
earity and thus require that m ! 1. This condition holds
in most practical situations. Although we take m to be a
constant, our results can easily be generalized to the case
in which m is different in the two sections of the disper-
sion map by simply replacing m by its weighted average
value, (m1L1 1 m2L2)/Lmap , in the two sections.

3. HERMITE–GAUSSIAN EXPANSION
In this section we solve Eq. (5), using the HG expansion
introduced in Refs. 9 and 10 (see also Ref. 12). This ap-
proach is based on the analytical solution of Eq. (5) that is
easy to obtain when e 5 0 and includes the effects of
e-dependent terms as a perturbation. We first set m
5 0 and review those results obtained in Ref. 12 that are
relevant to the present study. When m 5 0 and e ! 1, a
DM soliton can be represented as the following superpo-
sition of chirped HG components:
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t0 is the minimum pulse width and occurs at values of z
for which d( z) 5 0, and v0 is the frequency shift of the
soliton spectrum from the carrier frequency. The center
tc(z) of the soliton and its phase f(z) evolve with propa-
gation according to the following two equations:
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where I0 and I2 are obtained from
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The nature of the terms collectively denoted O(e) in Eq.
(9) is different from that of the e-order terms in Eqs. (11)
and (12). According to the method of multiple scales, by
which solution (9) was obtained in Ref. 12, the former
group of terms represents small oscillatory corrections to
the zeroth-order solution, whereas the latter group yields
e-order corrections to the evolutions of the pulse param-
eters.

In Eq. (9) we have included the frequency parameter v0
for the sake of completeness only. In the case of a single
channel, we can always take v0 5 0. Moreover, even in
the presence of TOD (i.e., when m Þ 0), a nonzero v0 can
be eliminated by a well-known transformation in Eq. (5)
(see, e.g., Ref. 19):

z → z̄ 5 z,
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D0 → D̄0 5 D0 2 6mv0 .

For this reason, below we shall consider solution (9) with
v0 5 0. However, a frequency shift dv0 /dz can still be
nonzero.
We can determine the amplitudes an in Eq. (9) by sub-
stituting expansion (9) into Eq. (5). When m 5 0, all HG
components with odd n vanish. Moreover, the ampli-
tudes an of even terms decrease rapidly with increasing n.
Therefore, as the first approximation, we can consider the
evolution of just the two lowest-order amplitudes, a0 and
a2 . If a2 is found to exhibit any significant growth, the
DM soliton will lose its single-peak structure; i.e., it will
be destroyed. The requirement that no such growth of a2
occur leads to the following two relations9,11:

ua0u2 5 D0A2/~ t0
2 Re I2!, Im I2 5 0. (14)

Under these conditions and within the two-component ap-
proximation, we also find that a2 5 0, and hence a0 is the
amplitude of the DM soliton. This amplitude can always
be normalized to unity by a proper choice of P0 , in which
case the average soliton power is just P0I0 . Alterna-
tively, the DM soliton energy immediately after an ampli-
fier equals ApG(zamp)P0TDMt0 , where G(zamp) is the
value of G(z) at the amplifier’s location. In what follows,
we do not set a0 to unity but keep it arbitrary, because
the resultant formulas then show explicit dependence on
the soliton power.

We now consider the effects of TOD on the DM soliton.
When m Þ 0, the TOD is expected to generate HG compo-
nents with odd n in Eq. (9), making the coefficients a1 ,
a3 , etc. nonzero. One can always reduce the n 5 1 com-
ponent to zero by readjusting the parameters tc and v0 of
the soliton.12 Thus the lowest HG component that would
contribute to the soliton’s asymmetry is the n 5 3 compo-
nent. We point out that there could, in principle, exist
stationary, weakly asymmetric DM solitons supported by
a delicate balance among nonlinearity, average GVD, and
TOD. Moreover, as we show in Section 5 below, such
weakly asymmetric DM solitons do exist. However, the
relative amplitudes of the third- and higher-order HG
components in such solitons should be sufficiently small.
Otherwise, if the TOD-induced third HG component be-
comes large enough, conspicuous higher-order compo-
nents will be generated through the nonlinearity. A
pulse with many excited HG components will no longer
keep its single-peak structure. In fact, it can be de-
stroyed, although it is not known exactly how much en-
ergy in the components with n . 0 a DM soliton can tol-
erate. On the other hand, if the TOD-induced third HG
component remains sufficiently small, the higher-order
components will also remain small, and the DM soliton
should be stable. Thus we proceed to obtain a generic
condition on b3 that will keep the amplitude a3 of the
third HG component below some small value.

As before, we begin by substituting Eq. (9) into Eq. (5)
and collecting the coefficients for each HG component.
To the first order in e, a m-dependent term is added to
each equation in the infinite set of equations obtained in
Ref. 12. In particular, the coefficient an satisfies
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5
im

t0
3 @~n 1 1 !~n 1 2 !~n 1 3 !an13 2 3/2 ~n 1 1 !2an11
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where the overdot denotes the derivative with respect to
the slow variable (ez).

We cannot solve the infinite set of equations obtained
above in a closed form without making further approxi-
mations. Recall that, in the absence of TOD (m 5 0), the
consideration of just the first two even HG components
was sufficient to provide conditions (14) for the DM soli-
ton’s parameters, whereas components with n > 4 led
only to small corrections.10,12 Therefore we expect that
the consideration of the first four components with n
5 0 –3 will provide us with a good approximation of the
results that we seek. This truncation of the infinite set of
equations to just four equations reduces the complexity of
the problem considerably. Inasmuch as we are inter-
ested only in the asymptotic behavior that occurs for z
˜ `, we set ȧn 5 0 for n 5 0 –3. Thus we neglect the
effect of the continuum radiation on the DM soliton and
assume that a weakly asymmetric DM soliton is formed
at z → `. Next, as shown in Ref. 12, we can always ad-
just the soliton’s parameters tc , v0 , t0 , and d0 to have
a1 5 a2 5 0. Moreover, we can set a0 to be purely real
without loss of generality. As a final simplification, we
carry out the analysis of the truncated system only to the
first order in m. Because for m 5 0 there is no third HG
component in the DM soliton (a3 5 0) and the param-
eters v0 and tc are constant, we assume that for m ! 1
they all vary as

ua3u ; ṫc ; v̇0 ; m. (16)

We should still enforce the condition ṫ0 5 ḋ0 5 0 to pre-
vent the pulse’s spread or collapse. However, we shall al-
low conditions (14) to be violated by an amount O(m).

The equation for n 5 0 in the set of four equations ob-
tained from Eq. (15) with n 5 0 –3 is automatically sat-
isfied to the first order in m. The remaining three equa-
tions for n 5 1, 2, 3 with the above simplifications can be
written, respectively, as
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From Eq. (17) we immediately see that TOD does not
modify conditions (14). Also, because I2 is real, we have
that I2 5 I22 , and hence the first term in Eq. (17a) van-
ishes. From Eq. (17c) we can find a3 5 a3R 1 ia3I in
terms of a0 . The result is
a3R
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5mI6I
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Finally, from Eq. (17a) we find that the soliton’s fre-
quency and the center position change linearly with z,
and the rate of change in terms of the previously defined
quantities is given by
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[recall that the overdot denotes the slow derivative,
d/d(ez)]. This completes the formal solution of Eq. (5) to
the first order in the TOD parameter m. Assuming that
the DM soliton, found when m 5 0, remains an approxi-
mate solution even when m Þ 0, we have shown that its
frequency and position change linearly with propagation,
with the rates of change being proportional to m. At the
same time, the creation of the third HG component makes
the soliton shape asymmetric.

4. EFFECTS OF THIRD-ORDER DISPERSION
In this section we use the results of the preceding section
to study the effects of TOD on the DM soliton. In gen-
eral, we need to specify a large number of parameters re-
lated to the dispersion map and the input pulse launched
into the fiber. However, when the nonlinearity and the
average GVD are small (i.e., e ! 1), the results of previ-
ous studies indicate that the single most important pa-
rameter is the normalized pulse width t0 5 T0 /TDM .
Here T0 is the minimum width of the Gaussian pulse, re-
lated to the full width at half-maximum (FWHM) as
TFWHM 5 2Aln 2T0 . For convenience and for easy com-
parison with previous studies we use a related dimension-
less parameter S, called the strength of the dispersion
map and defined as follows:

S 5
1

2t0
2 5

2 ln 2ub21 2 b22uL1L2

LmapTFWHM
2

5 ln 2
u~b21 2 b2

av!L1 2 ~b22 2 b2
av!L2u

TFWHM
2 , (22)

where b2
av 5 (b21L1 1 b22L2)/Lmap . Except for a factor

of ln 2 ' 0.69, our definition of S agrees with that of Ref.
2. Stationary propagation of a DM soliton at zero aver-
age GVD requires a specific value S 5 S0 , where the
quantity Re I2 vanishes [cf. Eqs. (14)]. Accordingly, the
average GVD should be normal for S . S0 . For both
lossless and periodically amplified cases, the value of S0
was found13 to be approximately equal 3.3. Note that
when we consider higher-order corrections in e (i.e., the
high-power regime) we find that for S . S0 the DM soli-
ton can exist for either sign of the average
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GVD.4,14 In the present study we restrict the consider-
ation to the low-power regime, for which conditions of sta-
tionary propagation are given by Eqs. (14).

A. Asymmetry of the Dispersion-Managed Soliton
The presence of the n 5 3 component in Eq. (9) shows
that the shape of the DM soliton is no longer symmetric.
The magnitude of the n 5 3 component is governed by
the coefficient a3 that is generally complex. Consider
first the ideal case of a lossless fiber by setting a 5 g(z)
5 0. As G(z) 5 1 in this case, all integrals In are func-
tions only of S. Moreover, the condition Im I2 5 0 in Eqs.
(14) guarantees that d0 5 2sgn(b22 2 b21)/2t0

2, ensuring
that all In with even n are real.12 It follows from Eq.
(19a) that a3R 5 0; i.e., a3 is purely imaginary. The rela-
tive magnitude of the third HG component is then ob-
tained from Eq. (19b) and is given by

Ua3

a0
U 5

2~2 ln 2 !3/2ub3u

3g~P0a0
2!TFWHM

3 S 1

3I0 1 12I2 1 5/2I6
D . (23)

The factor within the large parentheses depends on the
dispersion map strength S and increases rapidly with in-
creasing S (see below). As we discussed at length in the
paragraph following Eqs. (14), we need to keep the quan-
tity ua3 /a0u sufficiently small if the DM soliton is going to
survive the TOD-induced degradation. We use the crite-
rion that the energy in the third HG component does not
exceed 1% of the total soliton energy, with the latter being
approximately equal to the energy in the zeroth HG com-
ponent. Using Eq. (23), the definition of energy E
[ *2`

` uuu2dt, and the normalization condition for Her-
mite polynomials:

E
2`

`

Hn
2~x !exp~2x2!dx 5 2nn!Ap, (24)

we obtain the following condition:
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(25)

where Pav 5 P0a0
2I0 and LNL and LTOD are, respectively,

the nonlinear and the TOD length scales defined by the
relations

LTOD 5
TFWHM

3

ub3u
, LNL 5

1

gPav
. (26)

In what follows, we denote by b3
1% the value of b3 for

which the equality in expression (25) holds. Clearly, this
value depends on the pulse power and width and on the
DM strength S. Below, we explicitly indicate only the
last dependence by writing b3

1% 5 b3
1%(S). Numerical

verification of expression (25) is discussed in Subsection
4.C below.

In practice, fibers are always lossy, and their loss is
compensated for periodically by use of in-line amplifiers.
In that case, G(z) 5 @aLamp /(1 2 exp(2aLamp)#
3 exp(2a z) within one amplification span and is re-
peated periodically with the period Lamp . The prefactor
in front of exp(2a z) ensures the condition *0

1G(z)dz
5 1. Given the explicit form of G(z), the integrals In in
Eq. (13) can be evaluated numerically (cf. Refs. 12 and
13). The resultant threshold value of LNL /LTOD can then
readily be calculated from Eqs. (19) as a function of S.
As an example, in Fig. 1 we plot the threshold value of
LNL /LTOD as a function of S, using a 5 0.22 dB/km for
three different periodic amplification schemes considered
previously in Ref. 13. In all three cases the amplifier
spacing and the dispersion-map period are the same and
are equal to 40 km. Curves (b) and (c) of Fig. 1 corre-
spond to postcompensation and precompensation
(L1 /Lmap 5 0.9 and L1 /Lmap 5 0.1), respectively. Be-
cause they are very close to each other, in Fig. 1 we show
only one of them. Curve (d) corresponds to the case
L1 /Lmap 5 7/18, for which the energy enhancement factor
was found to be maximum for any given value of S in the
range 0–3.3.13 The lossless case is shown by curve (a).
Because curves (a) and (d) are very close to each other
(which is in agreement with the observation in Ref. 13
that the periodically compensated case with L1 /Lmap
5 7/18 is in many respects similar to the lossless case),
we also show only one of them in Fig. 1.

The main conclusion that follows from Fig. 1 is that
b3

1% decreases as the map strength increases. We now
consider an example whose purpose is to illustrate how
our criterion [expression (25)] can be applied to a practical
system. Consider a DM soliton with TFWHM 5 8 ps and
Pav 5 2 mW, propagating at l 5 1550 nm in a map that
consists of the longer segment of the Corning LEAF
dispersion-shifted fiber (DSF) with DDSF 5 4 ps/
(nm km), dD/dl 5 0.11 ps/(nm2 km), a 5 0.21 dB/km,
and effective core area Aeff 5 72 mm2 and of the shorter
segment of dispersion-compensating fiber (DCF) with
DDCF 5 2100 ps/(nm km). We take the map period to be
Lmap 5 33 km. Below, we determine the maximum
value of dDDCF /dl required for the inequality in expres-
sion (25) to hold. As long as the average GVD is much

Fig. 1. Normalized value of the TOD coefficient for which the
energy in the third HG component equals 1% of the total DM
soliton energy, plotted as a function of map strength S. (a) Loss-
less case; (b), (c), (d), periodically amplified case with a
5 0.22 dB/km, Lmap 5 Lamp 5 40 km, and L1 /Lmap 5 0.9, 0.1,
7/18, respectively.
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smaller than the local GVD, the length of the DCF is
much smaller than that of the DSF, and hence the attenu-
ation and the nonlinearity of the DCF can be neglected.
For the parameters specified above, we have LDSF
' 31.7 km and LDCF ' 1.3 km. Then the dispersion
management strength is estimated from Eqs. (22) and (2)
to be S ' 3.5. The nonlinearity coefficient is found from
g 5 2pn2 /(lAeff ), where n2 ' 3 3 10220 m2/W,18 to be
g ' 1.7 (km W)21. Now the parameters of the consid-
ered map are rather close to those for which curve (b) of
Fig. 1 is obtained, and we verified that the threshold val-
ues b3

1%(S) are also close in these two cases. Hence we
use the threshold value b3

1% from Fig. 1, along with ex-
pression (25) and relation (28), to find the maximum al-
lowed average value of the dispersion slope to be
(dD/dl)av ' 0.097 ps/(nm2 km). This implies that the
maximum allowed value for dDDCF /dl in such a disper-
sion map is 20.22 ps/(nm2 km). Conversely, given the ac-
tual dispersion slope of the DCF segment, we could have
verified whether the inequality in expression (25) holds
for the resultant dispersion map.

B. Temporal and Spectral Shifts
In the lossless case, all integrals In with even n are real,
as we explained above. Inasmuch as a3R 5 0 in that
case, then from Eq. (20) we have v̇0 5 0. Thus, in a loss-
less fiber, the TOD will not shift the soliton’s frequency in
the approximation used here. However, its position will
still shift according to Eq. (21). With a3R 5 0 and inas-
much as I4 and I6 are real, the temporal shift in physical
units, Tc 5 tcTDM , is given by

Tc~Z ! 5
~ ln 2 !b3Z

TFWHM
2 S 1 2

2I4

3I0 1 12I2 1 5/2I6
D . (27)

The first term within large parentheses in Eq. (27) comes
from eliminating the first HG component by setting a1
5 0; the second term is a contribution of the third HG
component [see Eq. (21)]. The factor within the large pa-
rentheses is close to 1 and increases from 0.88 to 1.14 only
when the map strength S increases from 0 to 3.3 (where
D0 ' 0). Thus the contribution of the third HG compo-
nent to the shift of the soliton’s position is relatively small
(within 615%), and we conclude that the TOD-induced
shift in the soliton position is nearly independent of the
dispersion management strength. As an estimate, the
position shifts at a rate of ;3 fs/km if we use b3
5 0.1 ps3/km [dD/dl ' 0.06 ps/(nm2 km) at l 5 1550
nm] and TFWHM 5 5 ps as typical values. Even such a
small shift would become noticeable after the soliton
propagated over a transoceanic distance.

When the fiber loss is included, the major difference is
that In for even n are no longer real. It follows from Eq.
(19a) that a3R Þ 0. As a result, both terms in Eq. (20)
become nonzero and lead to a frequency shift of the DM
soliton that increases linearly with z. The conclusions
about the soliton’s position shift for the periodically am-
plified case remain qualitatively the same as in the loss-
less case and thus are not discussed further. The rate
of the normalized frequency shift, v̇0t0 /I0
5 2Aln 2LNL(dn/dZ)/DnFWHM , is plotted in Fig. 2 versus
the dispersion map strength S [curves (b)–(d)] for the
same three values of L1 /Lmap as in Fig. 1. Curve (a) of
Fig. 2 corresponds to the frequency shift that occurs be-
cause of the spectral recoil effect in a lossless fiber and is
discussed below.

Note that we set b3 5 b3
1%(S) in all cases shown in

Fig. 2, which ensures that the energy in the third HG
component will remain sufficiently small and that the
pulse will be almost undistorted. In fact, this smallness
of the third HG component guarantees that the frequency
shift associated with the creation of this component will
also be quite small. Indeed, it follows from the behavior
of curves (b) and (c) of Fig. 2 that even when L1 /Lmap
5 0.1 or L1 /Lmap 5 0.9 and for S ' 1.8, where the fre-
quency shift is the most conspicuous, the DM soliton’s
central frequency shifts by DnFWHM after propagation over
a distance of more than 140LNL . Because in the strong
DM regime LNL @ Lmap and Lmap is a few tens of kilome-
ters, we conclude that this frequency shift can be negli-
gible, provided that we enforce the condition b3
< b3

1%(S).

C. Numerical Verification of Expression (25)
To verify the validity of the approximate analytical re-
sults obtained in Subsection 4.A, we solve Eq. (5) numeri-
cally. In all numerical simulations we choose e
5 0.2, G(z) 5 1 (lossless fiber) and L1 5 L2( 5 0.5).
The initial soliton, launched with an appropriate chirp at
the beginning of the anomalous section, was taken as a
superposition of the two HG components with n 5 0 and
n 5 4:

u0 5 Fa0 1 a4S 1 2 id0

1 1 id0
D 2

H4~ t/t i!G
3 expF2

t 2

2t i
2 ~1 2 id0!G , (28)

where t i 5 (1 1 d0
2)/A2S, a0 5 1, and a4 was taken ac-

cording to the equation presented in Refs. 9 and 12.
Once we specify the minimum pulse width t0 or, equiva-
lently, the dispersion management strength S

Fig. 2. Rate of the normalized frequency shift v̇0t0 /I0 that oc-
curs as the result (a) of spectral recoil in a lossless fiber and (b)–
(d) of generation of a third HG component of a DM soliton in a
periodically amplified DM fiber. Parameters for (b)–(d) are the
same as in Fig. 1.
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5 1/(2t0
2), the initial chirp d0 and the average GVD eD0

are set according to Eqs. (14). (We even included higher-
order corrections that are due to the n 5 4 HG
component12 for improved accuracy, although this was
not found to have any major effect on our results.)

In Fig. 3 we plot the evolution with z of the ratio of the
energies of the third and zeroth HG components of a DM
soliton affected by TOD. The two curves in Fig. 3 corre-
spond to the dispersion management strength values of
S 5 1 and S 5 3 (recall that D0 5 0 at S ' 3.3). In
both cases the dimensionless TOD parameter m was
taken to be m 5 m1%(S), where m1%(S) is computed from
Eq. (6) for b3 5 b3

1%(S). For S 5 1 the numerical re-
sults are in good agreement with the analytically calcu-
lated asymptotic limit of 1% for the energy ratio. Inas-
much as the expression for a3 in Section 3 was obtained
in the limit z → `, the large burst of ua3u near z 5 30
seen in Fig. 3 is not accounted for by our theory. For S
5 3 the agreement is less satisfactory, as the asymptotic
value of the energy ratio is ;0.006. (Note, however, that
the corresponding ratio of the amplitudes is ;0.077, i.e.,
is lower than the analytical result by less than 25%.) In
this regard we also recall that our very choice of the
threshold for the ratio of the third and zeroth HG compo-
nents to equal 1% is itself rather arbitrary, and hence a
deviation from it by a factor of order unity should be of
little consequence for the dynamics of the DM soliton.
Moreover, in Subsection 4.D we show that generation of
continuum radiation by the DM soliton can be a stronger
effect than generation of the third HG component. Nev-
ertheless, the quantity b3

1%(S) defined above is still
found to provide a useful reference for quantifying the ef-
fect of TOD on a DM soliton.

D. Generation of Continuum Radiation
The preceding analysis does not include the generation of
continuum radiation by the DM soliton perturbed by
TOD. How important is this effect compared with the
generation of the third HG component? It is well known
(see, e.g., Ref. 17 and references therein) that a NLS soli-
ton, when it is perturbed by TOD, generates dispersive

Fig. 3. Evolution of the ratio of the energies of the third and ze-
roth HG components for S 5 1 and S 5 3. In both cases, m
5 m1%(S). Other parameters are specified in the text.
waves into a shelf that propagates away from the soliton.
A similar situation also occurs for a DM soliton. In Fig.
4(a) we plot the evolution of the DM soliton profile found
numerically from Eq. (5) for a representative case of a
lossless fiber and dispersion management strength S
5 1. The other parameters in this simulation are as in
Subsection 4.C. The formation of a shelf behind the soli-
ton, consisting of continuum radiation emitted at a fre-
quency different from that of the soliton, is clearly seen in
Fig. 4(a). For a stronger map with S 5 3 we observed a
similar behavior, except that the shelf length increased
approximately four times slower than it did for S 5 1.
This result agrees with the equation for the shelf length
as found after Eq. (A6) in Appendix A. In Fig. 4(b) we
plot, for S 5 1 only, the energy contained in the shelf as a
function of the propagation distance. The important con-
clusion of Fig. 4(b) is as follows: Whereas for b3
5 b3

1% the energy of the third HG is 1% of the total soli-
ton energy, the energy of the continuum radiation is sev-
eral times larger. Thus, for b3 5 b3

1%, the continuum
radiation is the dominant effect produced by TOD.

There are, in principle, standard methods15–17,20 that
allow this radiation field to be calculated asymptotically
for large z. However, as we now explain, these methods
can give only an order-of-magnitude estimate in the case
in which we are interested. For a transoceanic distance
of a few thousand kilometers and the typical value of
Lmap ; 50 km, the dimensionless distance z 5 Z/Lmap is
less than 300. As we can see from Fig. 4(b), the evolution

Fig. 4. Evolution over 300Lmap (a) of the pulse amplitude and
(b) of the ratio of the radiation energy to the total DM soliton en-
ergy for S 5 1 and m 5 m1%. Other parameters are specified in
Subsection 4.C.
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of the radiation consists of two distinct stages. In the
first stage, associated with the formation of the shelf’s
head clearly seen in Fig. 4(a), the radiation energy in-
creases rapidly. (The formation of the shelf’s head was
also noted in Refs. 20 and 21 for a NLS soliton affected by
TOD.) Then, for larger distances, when a relatively flat
shelf begins to form, the energy increase becomes slower
and almost linear in z. It is this second stage that is de-
scribed by the asymptotic methods of Refs. 15–17 and 20.
However, for z , 300, the energy generated during the
second stage is less than that generated during the first
stage. Thus the asymptotic methods underestimate the
energy of continuum radiation by a large amount when
the propagation distance is not long enough, as in the
case considered here.

Even though the asymptotic calculations of the radia-
tion energy, Erad , do not yield its value accurately
enough, they still provide a solution to the following key
question: How rapidly will this energy decrease with the
decrease of b3? We answer this question here, while
moving the mathematical details of estimating the
amount of continuum radiation to Appendix A. As is well
known in the case of the NLS soliton, and as we also show
in Appendix A to be the case for the DM soliton, Erad is
proportional to the value of the soliton’s spectral power,
uû0(v)u2, at a certain frequency v 5 vr :

Erad '
ezm2vr

5uû0~vr!u2

~3mvr 1 D0!
. (29)

As discussed above and as Fig. 4(b) shows, this energy in-
creases linearly with z. The physical reason for the oc-
currence of vr in relation (29) is that, at this frequency,
the dispersion curves of the soliton and the linear radia-
tion intersect,16 thus leading to the energy transfer from
the soliton to the continuum radiation at this frequency.
In the spectral domain, generation of the continuum ra-
diation is manifested by a small and narrow peak at v
5 vr (see, e.g., Fig. 3 of Ref. 15). As shown in Appendix
A, vr is the real root of the cubic equation

mvr
3 1

D0

2
vr

2 5 2
a0

2

A2
S I0 2

I2

4 D , (30)

where the integrals I0 and I2 are defined by Eq. (13). In
Fig. 5 we plot the normalized radiation frequency (vrt0)
as a function of b3 /b3

1% for five values of dispersion
strength S. For simplicity, in Fig. 5 and below we con-
sider only the case of an idealized lossless fiber because
this is sufficient to illustrate the main idea of our ap-
proach. Given the parameters of a realistic fiber such as
the loss coefficients and the lengths of the two sections of
the dispersion map,13 we can always generalize the
present results to a specific amplification scheme.

The following important trend is obvious from Fig. 5:
For weak and moderately strong maps (S , 2), vr varies
as b3

21. Therefore, as b3 decreases, the radiation en-
ergy also decreases in proportion to the soliton’s spectral
power at vr , i.e., approximately exponentially fast. On
the other hand, for stronger maps (S . 3), the radiation
frequency remains almost constant as b3 changes in the
range b3

1%/5–b3
1%, and therefore the radiation energy in

that case decreases simply as b3
2 [cf. relation (29)].
Thus, as b3 is decreased from b3
1% to, say, b3

1%/2, we
should expect a much stronger suppression of the con-
tinuum radiation for not-too-strong maps. That this in
fact occurs is confirmed by the numerical results shown in
Fig. 6, where we plot the fractional radiation energy as a
function of map strength S for two values of the TOD co-
efficient, b3 5 b3

1% and b3 5 b3
1%/2. Note that for S

5 4, when the radiation frequency vr is almost the same
for b3 5 b3

1% and for b3 5 b3
1%/2 (cf. Fig. 5), the radia-

tion energy indeed scales as b3
2 (recall the factor 1/4 used

for the solid curve), in agreement with our prediction
above. In Fig. 6 we also plot the ratio of the continuum
radiation energy Erad to the total soliton energy evaluated
from Eqs. (28)–(30) for m 5 m1%(S). The analytical for-
mula is seen to underestimate greatly the radiation en-
ergy, the reason for which was given above.

Fig. 5. Normalized radiation frequency uvrut0 as a function of
the TOD parameter for five values of the DM strength S.

Fig. 6. Numerically calculated ratio of the radiation energy to
the total DM soliton energy as a function of S at Z 5 300Lmap for
b3 5 b3

1% and b3 5 b3
1%/2. The additional factor of (1/4) is in-

cluded in the data for b3 5 b3
1% to demonstrate that for large

values of S the radiation energy scales as b3
2, as predicted in

Subsection 4.D. Dashed and solid curves provide a cubic spline
to the discrete data. The dotted–dashed curve shows the ana-
lytical estimate for the radiation energy in the lossless case as
obtained from relation (29).
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From Fig. 6 we draw the following important conclu-
sion: When b3 5 b3

1%/2, the total energy lost by a DM
soliton into generation of both the continuum radiation
and higher-order HG components is less than or approxi-
mately 1%. This condition,

b3 < 1/2b3
1%~S !, (31)

is the main result of our study. When it is satisfied, the
effect of TOD on a DM soliton (apart from the position
shift) is negligible for transoceanic distances of propaga-
tion. Condition (31) is rather conservative; i.e., for suffi-
ciently strong maps (e.g., S . 2) we can neglect both the
TOD-induced radiation and the higher-order HG compo-
nents for somewhat larger values of b3 (cf. Fig. 6). We
also emphasize that condition (31) was established on the
basis of numerical calculations of the radiation energy,
because the corresponding analytical calculations do not
seem feasible, as explained above. We can suggest an
analogy between this condition and the numerically de-
rived condition under which TOD does not affect NLS
solitons in a uniform-dispersion fiber.22 The latter condi-
tion is, in fact, more restrictive than our condition (31), as
it requires that the continuum radiation not be seen in
numerical simulations performed with a certain preci-
sion.

We conclude this section by pointing out that genera-
tion of continuum radiation leads to a shift of the soliton’s
central frequency.17,20,22 This effect is sometimes called
spectral recoil because its origin lies in the conservation
of the total momentum, defined by Eq. (A7) below. Inas-
much as the length of the shelf formed by the continuum
radiation increases linearly in z [cf. Fig. 4(a) and the text
after Eq. (A6) in Appendix A], so does the momentum car-
ried by the radiated waves; hence the central frequency of
the soliton should also shift, in the direction away from vr
and at a constant rate (for sufficiently large z). This rate
is given by relation (A9) below, and its normalized value
(v̇solt0 /I0) is plotted in Fig. 2 as curve (a). In obtaining
that curve we approximated û0(v) by a two-term trunca-
tion (with n 5 0 and n 5 4) of Eq. (A2).

5. DISCUSSION AND CONCLUSIONS
In this section, we first summarize and interpret the re-
sults obtained above. Then we discuss the possibility of
the existence of a nonradiating, weakly asymmetric DM
soliton in the presence of TOD.

We have shown, by means of numerical simulations,
that the energy lost by a DM soliton propagating in the
presence of TOD into both the continuum radiation and
higher-order HG components remains less than 1%, pro-
vided that condition (31) is satisfied. This condition may
be thought of as an analog of the condition under which
TOD does not affect a NLS soliton in a uniform-dispersion
fiber,22 although the latter condition is more restrictive,
as was noted in Subsection 4.D. Another difference be-
tween the two conditions is that, in the uniform-
dispersion case, the condition was formulated (after an
appropriate normalization) in the form

b3 , number.
In the DM case the map strength S is the additional pa-
rameter, and therefore the corresponding condition has to
have the form

b3 , function of S.

Taking that function of S as being related to the size of
the largest symmetry-breaking HG component of the DM
soliton appears to be a reasonable choice, because this au-
tomatically guarantees that the TOD-induced frequency
and position shifts, as well as higher-order HG compo-
nents, should remain small, too. Let us note that nu-
merical results of Ref. 6 indicate that a single DM soliton
could propagate over long distances even for b3
' 6.5b3

1%, at least for the parameters used in that study
(in our notation, those parameters were e 5 0.16, S
5 4.2, and zmax 5 150). However, as we verified, in that
case a significant amount of energy is found outside the
main peak of the pulse, as was also illustrated in Fig. 3 of
Ref. 7 for slightly different values of the parameters. It
is not clear how such a pulse might behave in collisions
with pulses from other wavelength channels or interact
with neighboring pulses that are similarly affected by
TOD. Thus we believe that it is still advantageous to en-
sure that the energy in the continuum radiation and
higher-order HG components be sufficiently small.

A realistic soliton-based dispersion management sys-
tem is likely to use both optical filters and many wave-
length channels. In this case it may be possible to sup-
press the dispersive waves that are generated as a result
of TOD.21 In fact, if, for a given channel, the radiation
frequency vr falls outside the filter half-bandwidth v f/2,
and is still small enough not to fall into the bandwidth of
the neighboring channel, i.e., if

v f /2 , vr , vch 2 v f /2, (32)

where vch is the channel spacing, the linear radiation can
be effectively suppressed by optical filters. Then the con-
dition on the allowed magnitude of TOD can be somewhat
relaxed compared with condition (31). Note that TOD-
induced frequency shifts, which originate from spectral
recoil as well as from generation of the third-order HG
component, can also be suppressed by the filters.

The shift of the soliton’s position, given by Eq. (21),
cannot be suppressed by optical filters. Although by it-
self this shift is harmless in the sense that it does not
cause timing jitter, provided that the widths of all pulses
in the same channel are the same, it can cause timing jit-
ter when we account for the amplifier’s noise. The am-
plified spontaneous emission generates amplitude fluc-
tuations that change the pulse widths in a random way,
thus causing each pulse to change its velocity randomly.23

This kind of timing jitter for the NLS case was shown in
Ref. 23 to dominate the Gordon–Haus jitter when the
pulse width became sufficiently small.

In the remaining part of this section we discuss the re-
lation of our results to those of a recent paper24 in which
a nonradiating DM soliton was numerically found even in
the presence of TOD. In Ref. 24 it was also noted that a
certain relation between the TOD coefficient and the pa-
rameters of the DM soliton had to hold for this to occur,
but that relation was not specified. Here we point out
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that the existence of a nonradiating DM soliton indeed
follows from our relation (29); that is, when radiation fre-
quency vr is such that the DM soliton’s power spectrum
at that frequency, uû(vr)u2, vanishes, the soliton will not
radiate.

We emphasize two points regarding this observation.
First, such a nonradiating DM soliton can exist only when
the map strength exceeds a certain threshold value,
which can be estimated as follows: If one truncates ex-
pansion (A2) for û0(v) at the term n 5 4 (recall also that
a2 5 0), then the condition for such a truncated û0(v) to
become zero can be shown to be a4 < 0. The amplitude
a4(S) can be computed along the lines of Ref. 12, where in
the lossless case it was found that a4 5 0 for S ' 0.91.
Note that, when S is increased sufficiently above that
value, terms with higher n need to be retained in expan-
sion (A2), and û0(v) can become zero at several points (on
the real v axis). However, the case when vr coincides
with the first zero, v1 , of the power spectrum, appears to
be the most interesting. In the case of a lossless fiber, we
verified that the location of v1 is predicted from expan-
sion (A2) truncated at n 5 4 with an accuracy better than
2% for S , 2 and better than 5% for S , 3.5.

It is also interesting to note that the same reason, i.e.,
the coalescence of the radiation frequency with the fre-
quency where the pulse’s power spectrum vanishes, may
be behind the existence of a two-peak nonradiating soli-
ton in a uniform-dispersion fiber, which was predicted
and numerically observed in Ref. 25. In that paper, the
existence of such a pulse was explained by destructive in-
terference of the TOD-induced shelves in the time do-
main.

Our second remark is that a nonradiating DM soliton
in the presence of TOD can be observed in either numeri-
cal simulations or real systems only when the asymptotic
limit z → `, for which relation (29) was derived, is
reached. In fact, our own numerical simulations, whose
details were presented in Subsection 4.C, did not show
the existence of such a soliton. We performed simula-
tions for several values of S in the range from 1 to 2. In
particular, we considered the case S 5 1.41, when vr
5 v1 for b3 5 b3

1%. (The value of b3 for which vr
equals v1 increases monotonically with S.) Decreasing
the step size in z, increasing the number of points in t, or
both did not change our conclusion. How can one recon-
cile our numerical results with the results of Ref. 24 and
the analytical prediction of relation (29)? Our answer is
that relation (29) is valid only asymptotically, i.e., for
z → `. For z not sufficiently large, the pulse emits a
slowly. In particular, it is not expected to decay much for
the parameters e 5 0.2, b3 ' b3

1%, and z ' 300, which
we used in our numerical simulations. In fact, we con-
tinued the simulations as far as z 5 800 but still did not
observe the asymptotic nonradiating soliton. On the
other hand, the authors of Ref. 24 used a modified version
of the accelerated convergence procedure, which was first
proposed in Ref. 3 for TOD-free DM solitons. That pro-
cedure effectively increases the propagated distance z and
thus is capable of finding asymptotically nonradiating
DM solitons. A more detailed analysis of this issue re-
quires a separate investigation. However, it does appear
from this discussion that a nonradiating DM soliton is not
likely to form in a real transmission system (with TOD)
whose length is below 10,000 km.

APPENDIX A: ENERGY OF THE THIRD-
ORDER DISPERSION–INDUCED
CONTINUUM RADIATION
The derivation of the asymptotic expression for the en-
ergy of continuum radiation Erad generated by a DM soli-
ton in the presence of TOD closely follows similar deriva-
tions for the NLS soliton.16,17,20 We stress that this
derivation produces an accurate estimate of Erad only in
the asymptotic limit z → `; see also Subsection 4.D,
where this issue is discussed in detail. We start by sub-
stituting u 5 u0 1 ur into Eq. (5), where u0 is the unper-
turbed DM soliton [Eq. (7)] and ur is the radiation field to
be determined. Because the radiation is both small and
generated sufficiently far from the soliton’s center [cf. Fig.
4(a)], we can neglect the terms that are nonlinear in ur as
well as the cross terms uu0u2ur and u0

2ur* . Denoting the
Fourier transform by û(v) 5 *2`

` exp(2ivt)u( t)dt, we ob-
tain

iûr,z 2 H v2

2
@D~z ! 1 eD0# 1 emv3J ûr 5 emv3û0 ,

(A1)

where, from Eq. (9), we have

û0~v! 5
t0

A2p
expF 2

1

2
~vt0!2~1 1 id!G

3 (
n50

`

~21 !3n/2anHn~vt0!. (A2)

Solving Eq. (A1) and taking the inverse Fourier transform
of the solution, we find that
considerable amount of radiation that is not accounted for
by that relation [cf. the discussion related to Figs. 4(a)
and 6]. We can further estimate, by generalizing the
analysis presented in Appendix A, that for vr such that
û0(vr) 5 0, the amplitude of the radiation far behind the
soliton; i.e., for utu @ ez, decays as (eb3z)21/4, i.e., very
ur~ t, z ! 5 2
m exp~iezksol!

2p
E

2`

`

v3û0~v!
exp~ivt! 2 exp@ivt 2 iez~mv3 1 D0v2/2 1 ksol!#

ksol 1 mv3 1 D0v2/2
dv, (A3)
where ksol represents the nonlinear contribution to the
soliton’s propagation constant:

ksol 5 e
ua0u2

A2
S I0 2

I2

4 D (A4)



1342 J. Opt. Soc. Am. B/Vol. 16, No. 9 /September 1999 T. I. Lakoba and G. P. Agrawal
[cf. Eq. (12)]. The integral in Eq. (A3) can be evaluated
analytically only if some approximations are made. For
large z, the main contribution to the integral in Eq. (A3)
comes from the vicinity of v 5 vr , where the denomina-
tor of the integrand vanishes. The corresponding value
vr satisfies Eq. (30). By expanding the denominator in
Eq. (A3) about vr and then using the formula

E
2`

` f~v!exp~ivt!

v 2 v0
dv 5 pif~v0!exp~iv0t!sgn~ t!

1 O@exp~2utu!#, (A5)

while omitting the localized terms O@exp(2utu)#, we obtain
the final result:

ur~ t, z ! 5 2
imvr

3û0~vr!exp~iezksol 1 ivrt!

2~3mvr
2 1 D0vr!

3$sgn~ t! 2 sgn@t 2 ez~3mvr
2 1 D0vr!#%

1O~z21/2!. (A6)

The first term of this solution describes a shelf that ex-
tends away from the soliton over the region 0 , t , tr ,
with the shelf-length tr growing at a rate dtr /dz
5 e(3mvr

2 1 D0vr). The energy contained in this
shelf, i.e., *0

truuru2dt, is given by relation (29).
As was pointed out in Subsection 4.D, the generation of

continuum radiation by the soliton leads to a shift of its
central frequency17 vsol , which can be estimated as fol-
lows: The evolution of u governed by Eq. (5) conserves
the total momentum

P 5 E
2`

` S u*
]u

]t
2 u

]u*

]t
D dt. (A7)

Substituting u 5 u0 1 ur into Eq. (A7) and using the or-
thogonality of the radiation field ur to the soliton u0 , we
find that

vsolE
2`

`

uu0u2dt ' 2vrE uuru2dt. (A8)

Using the approximate form *2`
` uu0u2dt ' a0

2T0Ap for
the total DM soliton energy and relation (29) for the ra-
diation energy, we obtain

dvsol

dz
' 2

em2vr
6uû0~vr!u2

a0
2T0Ap~3mvr 1 D0!

. (A9)
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