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Asymmetric partially coherent solitons in saturable nonlinear media
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We investigate theoretically properties of partially coherent solitons in optical nonlinear media with slow
saturable nonlinearity. We have found numerically that such a medium can support spatial solitons which are
asymmetric in shape and are composed of only a finite number of modes associated with the self-induced
waveguide. It is shown that these asymmetric spatial solitons can propagate many diffraction lengths without
changes, but that collisions change their shape and may split them apart.@S1063-651X~99!12808-3#

PACS number~s!: 42.65.Tg, 41.20.Jb
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Incoherent spatial solitons have attracted considerable
tention recently@1–7#, especially after the first experiment
observation of partially coherent solitons~PCS’s! was made
by Mitchell et al. @8#. The case of temporally incoherent so
tons was considered previously by Hasegawa in a serie
papers@9#, both for waves in bulk dispersive media and f
nonlinear pulses in multimode fibers. In optical fibers, t
wave packet can propagate as a single stationary pulse w
the intermodal dispersion is balanced by the nonlinear
Intermodal dispersion usually exceeds the intramodal dis
sion and, as a result, the generation of incoherent soliton
optical fibers requires unrealistically high pulse energi
The situation with spatial solitons in this respect might
different. Photorefractive materials are probably the m
suitable medium for experimental studies, since they ge
ally exhibit very strong nonlinear effects at extremely lo
optical powers@10–12#.

Spatial incoherent solitons are objects qualitatively diff
ent from temporal incoherent solitons. A general descript
of incoherent spatial beam propagation can be quite com
cated@13,14#, and meets with serious mathematical difficu
ties. Nevertheless, the case of incoherent spatial solitons
special one. From a conceptual point of view, for spa
solitons, it is the diffraction of the beam components wh
has to be balanced by the nonlinearity. This basic princi
which is similar to the one for fundamental solitons, is a
valid for incoherent solitons. Using this principle allows f
great simplifications. In fact, several different approach
have been used for investigating incoherent solitons theo
cally. The ‘‘coherent-density approach,’’ in which a partial
coherent beam is represented as a superposition of mut
incoherent components, was developed by Christodoul
and co-workers@1,2#. For the special case of the logarithm
nonlinearity, symmetric solutions can be written in an an
lytic form @1#.

The description of optical beams in nonlinear media
terms of a self-induced multimode waveguide has been
pecially fruitful. This idea has been suggested for higher
der solitons in birefringent media@15,16# and was used re
cently for incoherent solitons@3–6,17#. In this point of view,
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stationary soliton propagation is governed by a proper co
bination of various mutually incoherent linear modes of t
self-induced waveguide. On the other hand, this appro
has so far provided only symmetric solutions@1,2,6,7#, al-
though asymmetric solitons are likely to exist. For the Ke
like medium, asymmetric solutions were recently conside
in Ref. @18#. In this special case the problem is integrab
and all solutions including asymmetric ones can be written
analytical form. The analysis of Ref.@18# showed that PCS’s
can be considered from two complementary point of view
On the one hand, the PCS is a multimoded self-indu
waveguide and, on the other hand, it is a multisoliton co
plex. This latter point of view is another facet of PCS
which allows one to understand in simple terms such co
plicated phenomena as collision of PCS’s.

One of the remarkable features of integrable system
that there is no binding energy between the fundamental s
tons. In particular, for the system considered in Ref.@18#,
there is no binding energy between the fundamental solit
in the multisoliton complex, so that they may be locat
arbitrarily inside the PCS. The arbitrariness in amplitud
and locations allows the whole PCS to be variable in sha

On the other hand, it is known that for saturable mediu
the binding energy between the fundamental solitons is
zero, and the question of the existence of a PCS with a v
able shape becomes questionable. The diffractionless
optics limit for treating spatially incoherent solitons was pr
posed in Ref.@19#. This approach is accurate when the si
of the PCS is much larger than the optical wavelength.
terms of a multimode waveguide, this limit is valid when th
number of modes goes to infinity, so that the soliton becom
completely incoherent. It has been shown, in this limit, th
solitons of arbitrary shape may exist for nonlinearities oth
than Kerr-like. However, the question of the existence
asymmetric solitons in media with saturable nonlinear
when the number of modes is finite is not obvious for t
reasons mentioned above. Hence a separate study of
problem is needed.

In this paper, we investigate the properties of partia
coherent solitons in a saturable nonlinear optical mediu
2377 © 1999 The American Physical Society
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FIG. 1. Intensity profile of an asymmetric partially coherent soliton composed of four modes. The inset shows the amplitude
constituent modes. The normalized propagation constants arel153.052 49,l252.084 766,l351.438 924, andl450.605 24.
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We have found asymmetric solutions for such solitons.
have shown, using numerical simulations, that these s
tions propagate several diffraction lengths without chang
The interaction of incoherent and partially coherent solito
is an interesting area of research, and it has only been
dressed in recent papers@4,5#. Here we have studied numer
cally collisions of asymmetric PCS’s.

It has been shown that propagation of a partially coher
beam in nonlinear media can be represented by a set of e
tions for the mutually incoherent components constitut
the beam@2,9#. For a beam consisting ofN such components
the corresponding equations have the following form in c
of saturable nonlinearity:

i
]c i

]z
1

1

2

]2c i

]x2
1

aI

11I /I 0
c i50, ~1!

wherec i denotes the amplitude of theith component of the
beam (i 51,2, . . . ),a represents the strength of the nonli
earity, I 0 is the saturation parameter,x andz denote dimen-
sionless transverse and propagation coordinates, res
tively, and

I 5(
i 51

N

uc i u2 ~2!

is the total intensity created by all incoherent components
the light beam. The specific form (11I /I 0)21 of the satura-
tion of nonlinearity used in Eq.~1! holds, for instance, for a
homogeneously broadened two-level system and biased
torefractive crystals; other functional forms should also
hibit similar qualitative behaviors. The nonlinear medium
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assumed to have a slow response compared with the
scale over which the phases of the individual compone
change, so that the change of the refractive index is de
mined by the total intensity given by Eq.~2!. It can be shown

FIG. 2. Collision of the asymmetric partially coherent solito
whose intensity profile and mode amplitudes are shown in Fig
The angle of collision corresponds to tanu50.3.
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FIG. 3. Another example of collision of partially coherent solitons withl153.000 416, l251.922 105, l351.002 799, andl4

50.25964. The angle of collision is the same as in Fig. 2. The inset shows the amplitudes of the four constituent modes.
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that the width of the spatial coherence function depends
the number of components included in the sum appearin
Eq. ~2! @7#. For this reason, we refer to the beam with fin
N as ‘‘partially coherent.’’

We are interested in PCS solutions of Eq.~1! whenN is
finite and a relatively small number. Such solutions cor
spond to stationary waveguides self-induced by their o
modes. However, the self-consistency condition, represe
by Eq. ~2!, requires these solutions to be multisoliton co
plexes, which are nonlinear superposition of fundamen
solitons propagating in parallel and thus creating the wa
guide. This complementary view is important for a physic
understanding of the PCS’s.

Stationary solutions of Eq.~1! can be written in the form

c i~x,z!5ui~x!exp~ il iz!, ~3!

with real functionsui(x) and real eigenvaluesl i . Then the
set of equations~1! reduces to a set of ordinary differenti
equations of the form

]2ui

]x2
12aS ( j 51

N uj
2

11( j 51
N uj

2/I 0
D ui52l iui . ~4!

Physically,l i is the propagation constant associated with
mode profileui(x).

Equation ~4! can be solved numerically using either
shooting or an iteration technique. In the latter case, we
find the modes of a given~zero-order approximation! wave-
guide, vary the amplitudes of different modes to modify t
refractive index profile, and then use the self-consiste
condition~2!. Repeating these steps results in a converge
to a stationary beam profile. Using this iterative approa
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we have found the intensity profiles of several differe
PCS’s and their constituent linear modes. In our simulatio
the propagation distancez is normalized to the diffraction
length, and we choosea52 and I 052 in Eq. ~1!. An ex-
ample of a PCS is shown in Fig. 1, together with the spa
profiles of the four modes associated with the self-induc
waveguide. Notice that the modes are also asymmetric s
an asymmetric PCS induces index changes that are th
selves asymmetric.

In turns out that, in most cases, the numerical proced
converges to a symmetric solution, similar to those presen
in previous works@3,6#. However, some specific initial con
ditions with a refined iterative procedure result in asymm
ric solutions such as the one displayed in Fig. 1. We sho
note that asymmetric solutions are generic and appear on
same basis as symmetric ones. They also appear in o
nonlinear optical problems@20#. Their emergence is no
completely surprising, since a symmetric nonlinear equat
can have asymmetric solutions.

Note, however, that in the case of a single nonline
Schrödinger equation~NLS! with constant coefficients, sta
tionary asymmetric solutions do not exist. The one-solit
(N51) solution is symmetric, and all higher-order solito
are nonstationary solutions of the NLS. In fact, it appe
that only a coupled set of NLS’s admit stationary asymme
solutions.

There is a deep physical reason why the symmetric s
tions appear naturally. In contrast to Kerr-like media, there
a binding energy between the soliton components in s
rable media. This binding energy results in an attract
force which tries to keep different components together a
makes the whole soliton symmetric. This is exactly wh
happened in numerical simulations of Refs.@3,6#. Neverthe-
less, the asymmetric solutions do exist and we have fo
them here.
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Extensive numerical simulations indicate that asymme
solutions are multiparameter families rather than isolated
lutions. First, the mode amplitudes are variable paramet
Changing them, we were able to change the shape of
soliton continuously. Second, there must be parame
which control the asymmetry of the soliton. In the integrab
case~a slow Kerr-like medium@18#!, the total number of
parameters which control the shape is 2N21, whereN is the
number of the modes. We can assume that PCS’s in satu
media have the same property. On this basis,N propagation
constants are arbitrary, andN21 relative parameters o
asymmetry between the modes adds up to the total 2N21
parameters of the solution.

At this stage of investigation, we have found several
amples of asymmetric solutions, and checked that they
relatively stable solutions of Eq.~1! in the sense that they d
not change their shape for several diffraction lengths dur
propagation inside the nonlinear media. However, the sh
of the PCS changes appreciably after collisions. Moreo
the optical beam may split into several parts on collisio
Two examples of collisions are shown in Figs. 2 and 3. T
angle of propagation is achieved using a Galilean trans
mation @21# with the ‘‘velocity’’ v5tanu, whereu is the
angle of propagation in thex-z plane. As the intensity of the
p
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solitons is quite high, both cases correspond to relativ
strong saturation regime (I /I 0'8). These figures show
clearly that the initial soliton profiles are indeed stationa
but those which appear after collisions are not. They m
oscillate and emit other solitons which propagate away fr
the main beam. Radiation waves also appear as a result o
collision. The nonlinearity model of the saturable mediu
considered in this paper is nonintegrable. Hence the sol
resulting after the collision does not have to correspond t
stationary solution@21#. The output beam generally chang
on propagation~oscillates!, and detailed evolution depend
on the specific choice of the angle of collision and oth
parameters that determine the initial conditions. The oscil
ing beam can be considered a perturbed PCS.

In conclusion, we have shown that nonlinear optical m
dia with slow saturable nonlinearity admit propagation
partially coherent solitons with an asymmetric intensity p
file. Although such asymmetric solitons maintain their sha
for several diffraction lengths if propagated in isolation, th
mutual collisions generate radiation~diffractive waves!, and
result in a beam profile that is no longer stationary.
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