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Asymmetric partially coherent solitons in saturable nonlinear media
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We investigate theoretically properties of partially coherent solitons in optical nonlinear media with slow
saturable nonlinearity. We have found numerically that such a medium can support spatial solitons which are
asymmetric in shape and are composed of only a finite number of modes associated with the self-induced
waveguide. It is shown that these asymmetric spatial solitons can propagate many diffraction lengths without
changes, but that collisions change their shape and may split them [§J463-651X%99)12808-3

PACS numbdis): 42.65.Tg, 41.20.Jb

Incoherent spatial solitons have attracted considerable astationary soliton propagation is governed by a proper com-
tention recenth{1-7], especially after the first experimental bination of various mutually incoherent linear modes of the
observation of partially coherent solitofBCS’9 was made self-induced waveguide. On the other hand, this approach
by Mitchell et al.[8]. The case of temporally incoherent soli- has so far provided only symmetric solutiofs2,6,7, al-
tons was considered previously by Hasegawa in a series éfiough asymmetric solitons are likely to exist. For the Kerr-
paperg 9], both for waves in bulk dispersive media and for like medium, asymmetric solutions were recently considered
nonlinear pulses in multimode fibers. In optical fibers, thein Ref. [18]. In this special case the problem is integrable,
wave packet can propagate as a single stationary pulse whand all solutions including asymmetric ones can be written in
the intermodal dispersion is balanced by the nonlinearityanalytical form. The analysis of RdfL8] showed that PCS’s
Intermodal dispersion usually exceeds the intramodal dispeican be considered from two complementary point of views.
sion and, as a result, the generation of incoherent solitons i®n the one hand, the PCS is a multimoded self-induced
optical fibers requires unrealistically high pulse energieswaveguide and, on the other hand, it is a multisoliton com-
The situation with spatial solitons in this respect might beplex. This latter point of view is another facet of PCS'’s
different. Photorefractive materials are probably the mostvhich allows one to understand in simple terms such com-
suitable medium for experimental studies, since they genemplicated phenomena as collision of PCS'’s.
ally exhibit very strong nonlinear effects at extremely low One of the remarkable features of integrable systems is
optical powerd10-12. that there is no binding energy between the fundamental soli-

Spatial incoherent solitons are objects qualitatively differ-tons. In particular, for the system considered in RéB],
ent from temporal incoherent solitons. A general descriptiorthere is no binding energy between the fundamental solitons
of incoherent spatial beam propagation can be quite complin the multisoliton complex, so that they may be located
cated[13,14], and meets with serious mathematical difficul- arbitrarily inside the PCS. The arbitrariness in amplitudes
ties. Nevertheless, the case of incoherent spatial solitons isand locations allows the whole PCS to be variable in shape.
special one. From a conceptual point of view, for spatial On the other hand, it is known that for saturable medium
solitons, it is the diffraction of the beam components whichthe binding energy between the fundamental solitons is not
has to be balanced by the nonlinearity. This basic principlezero, and the question of the existence of a PCS with a vari-
which is similar to the one for fundamental solitons, is alsoable shape becomes questionable. The diffractionless ray-
valid for incoherent solitons. Using this principle allows for optics limit for treating spatially incoherent solitons was pro-
great simplifications. In fact, several different approachegosed in Ref[19]. This approach is accurate when the size
have been used for investigating incoherent solitons theoretof the PCS is much larger than the optical wavelength. In
cally. The “coherent-density approach,” in which a partially terms of a multimode waveguide, this limit is valid when the
coherent beam is represented as a superposition of mutualhumber of modes goes to infinity, so that the soliton becomes
incoherent components, was developed by Christodoulidesompletely incoherent. It has been shown, in this limit, that
and co-worker$1,2]. For the special case of the logarithmic solitons of arbitrary shape may exist for nonlinearities other
nonlinearity, symmetric solutions can be written in an anathan Kerr-like. However, the question of the existence of
lytic form [1]. asymmetric solitons in media with saturable nonlinearity

The description of optical beams in nonlinear media inwhen the number of modes is finite is not obvious for the
terms of a self-induced multimode waveguide has been eseasons mentioned above. Hence a separate study of this
pecially fruitful. This idea has been suggested for higher orproblem is needed.
der solitons in birefringent medid5,16 and was used re- In this paper, we investigate the properties of partially
cently for incoherent solitons8—6,17. In this point of view,  coherent solitons in a saturable nonlinear optical medium.
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FIG. 1. Intensity profile of an asymmetric partially coherent soliton composed of four modes. The inset shows the amplitudes of the
constituent modes. The normalized propagation constants,ar8.052 49,\,=2.084 766, ;=1.438 924, and ,= 0.605 24.

We have found asymmetric solutions for such solitons. Weassumed to have a slow response compared with the time

have shown, using numerical simulations, that these soluscale over which the phases of the individual components

tions propagate several diffraction lengths without changeshange, so that the change of the refractive index is deter-

The interaction of incoherent and patrtially coherent solitonsmined by the total intensity given by E). It can be shown

is an interesting area of research, and it has only been ad-

dressed in recent papdrg5]. Here we have studied numeri- =o

cally collisions of asymmetric PCS'’s. '
It has been shown that propagation of a partially coherent

beam in nonlinear media can be represented by a set of equa-

tions for the mutually incoherent components constituting

the beanj2,9]. For a beam consisting &f such components,

the corresponding equations have the following form in case

of saturable nonlinearity:
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where ¢; denotes the amplitude of théh component of the
beam (=1,2,...), « represents the strength of the nonlin-
earity, I is the saturation parameterandz denote dimen-
sionless transverse and propagation coordinates, respec-g
tively, and

N
— |2
l glw.l 2 O

is the total intensity created by all incoherent components of
the light beam. The specific form ¢1/1,) ~* of the satura-
tion of nonlinearity used in Eq1) holds, for instance, for a
homogeneously broadened two-level system and biased pho- FIG. 2. Collision of the asymmetric partially coherent solitons
torefractive crystals; other functional forms should also ex-whose intensity profile and mode amplitudes are shown in Fig. 1.
hibit similar qualitative behaviors. The nonlinear medium isThe angle of collision corresponds to tés 0.3.
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FIG. 3. Another example of collision of partially coherent solitons with=3.000416,\,=1.922 105,A3=1.002 799, and\,
=0.25964. The angle of collision is the same as in Fig. 2. The inset shows the amplitudes of the four constituent modes.

that the width of the spatial coherence function depends owe have found the intensity profiles of several different
the number of components included in the sum appearing iRCS’s and their constituent linear modes. In our simulations,
Eqg. (2) [7]. For this reason, we refer to the beam with finite the propagation distanczis normalized to the diffraction

N as “partially coherent.” length, and we choose=2 andl,=2 in Eq.(1). An ex-

We are interested in PCS solutions of Et) whenNis ~ ample of a PCS is shown in Fig. 1, together with the spatial
finite and a relatively small number. Such solutions correprofiles of the four modes associated with the self-induced
spond to stationary waveguides self-induced by their owrfvaveguide. Notice that the modes are also asymmetric since
modes. However, the self-consistency condition, represented? @symmetric PCS induces index changes that are them-
by Eq. (2), requires these solutions to be multisoliton com-S€lves asymmetric. - ,
plexes, which are nonlinear superposition of fundamental " tUns out that, in most cases, the numerical procedure
solitons propagating in parallel and thus creating the wavetonverges to a symmetric solution, similar to those presented

guide. This complementary view is important for a physical'c?. _prewogi workfg{?.,g].. However, son(;ne specmlc ]n|t|al con-
understanding of the PCS's. itions with a refined iterative procedure result in asymmet-

) . . . ric solutions such as the one displayed in Fig. 1. We should
Stationary solutions of Eq1) can be written in the form note that asymmetric solutions are generic and appear on the
_ . same basis as symmetric ones. They also appear in other
$i(X,2) = Ui(x)explirz), (3  nonlinear optical problem$20]. Their emergence is not

. . . completely surprising, since a symmetric nonlinear equation
with real functionsu;(x) and real eigenvalues;. Then the -, have asymmetric solutions.

set of equationgl) reduces to a set of ordinary differential Note, however, that in the case of a single nonlinear

equations of the form Schralinger equation{NLS) with constant coefficients, sta-
tionary asymmetric solutions do not exist. The one-soliton

9%u; E}\Llujz (N=1) solution is symmetric, and all higher-order solitons
2 a 115N U] Ui=2\U;. (4) are nonstationary solutions of the I\_ILS. In fact, it appears
j=17770 that only a coupled set of NLS’s admit stationary asymmetric
. . : : . solutions.
Physically,\; is the propagation constant associated with the " thare s a deep physical reason why the symmetric solu-
mode profileu;(x). tions appear naturally. In contrast to Kerr-like media, there is

Equation (4) can be solved numerically using either a 5 pinding energy between the soliton components in satu-
shooting or an iteration technique. In the latter case, we firstagple media. This binding energy results in an attractive
find the modes of a givefzero-order approximatiorwave-  force which tries to keep different components together and
guide, vary the amplitudes of different modes to modify themakes the whole soliton symmetric. This is exactly what
refractive index profile, and then use the self-consistenchappened in numerical simulations of R€f3,6]. Neverthe-
condition(2). Repeating these steps results in a convergencless, the asymmetric solutions do exist and we have found
to a stationary beam profile. Using this iterative approachthem here.
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Extensive numerical simulations indicate that asymmetricsolitons is quite high, both cases correspond to relatively
solutions are multiparameter families rather than isolated sostrong saturation regimel/ll,~8). These figures show
lutions. First, the mode amplitudes are variable parameterglearly that the initial soliton profiles are indeed stationary,
Changing them, we were able to change the shape of thgut those which appear after collisions are not. They may
soliton continuously. Second, there must be parametergscillate and emit other solitons which propagate away from
which control the asymmetry of the soliton. In the integrablethe main beam. Radiation waves also appear as a result of the
case(a slow Kerr-like medium(18]), the total number of  cgjlision. The nonlinearity model of the saturable medium
parameters which control the shape 821, whereNisthe  gnsidered in this paper is nonintegrable. Hence the soliton
number of the modes. We can assume that PCS'’s in saturablggjting after the collision does not have to correspond to a
media have the same property. On this baigropagation  gtationary solutiori21]. The output beam generally changes
constants are arbitrary, anl—1 relative parameters of on propagationoscillates, and detailed evolution depends
asymmetry between the modes adds up to the tdib2 o, the specific choice of the angle of collision and other
parameters of the solution. parameters that determine the initial conditions. The oscillat-

At this stage of investigation, we have found several €Xing beam can be considered a perturbed PCS.
amples of asymmetric solutions, and checked that they are |, conclusion, we have shown that nonlinear optical me-
relatively stable solutions of Eq1) in the sense that they do gja with slow saturable nonlinearity admit propagation of
not change their shape for several diffraction lengths during,artially coherent solitons with an asymmetric intensity pro-
propagation inside the nonlinear media. However, the shapge. Although such asymmetric solitons maintain their shape
of the PCS changes appreciably after collisions. Moreoverior several diffraction lengths if propagated in isolation, their
the optical beam may split into several parts on collision..;y 43 collisions generate radiatiddiffractive waves, and
Two examples of collisions are shown in Figs. 2 and 3. Thgegyit in a beam profile that is no longer stationary.
angle of propagation is achieved using a Galilean transfor-
mation [21] with the “velocity” v=tan#, where 6 is the Natalia M. Litchinitser thanks the Aileen S. Andrew
angle of propagation in the-z plane. As the intensity of the Foundation for financial support.
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